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We have formulated the problem of two-dimensional electrons on a film of liquid helium as a
polaron problem and have used the Feynman formulation of the polaron to compute the
ground-state energy and the effective mass of the system for all values of the coupling constant
(from strong to weak). We find that the effective mass undergoes an extremely rapid transition
from an electronic value to a value on the order of several helium-atom masses for coupling
constants which are easily attainable; i.e., a ‘‘localization’’ transition occurs.

By now it is well known that image potential bound
electrons at the surface of liquid helium are essential-
ly two dimensional (2D); i.e., the energy level spac-
ing for motion perpendicular to the surface is typical-
ly large compared to the temperature so that (at heli-
um temperatures) there is no motion in this direc-
tion, and attention can be focused on the in-plane
dynamics of the carriers.! The motion in the plane of
a single electron is free except for coupling to the
thermally excited ripples of the liquid surface. This
coupling is particularly simple and directly analogous
to electron-phonon coupling in 3D crystals. The in-
teraction between electrons and ripplons comes about
because of the change in energy of the electron as it
rides on the surface waves in the presence of an elec-
tric field 8. (image plus external).

The one-electron properties of this ideal system are
of interest because of the variability of the coupling
to the ripplons. The use of different substrates for
the liquid-helium film or of different film thicknesses
allows a change in the effective coupling over several
orders of magnitude.? For bulk helium (zero exter-
nal field), & =10? V/cm, and the electron-ripplon
coupling is weak. As the helium thickness is reduced
to 100 A, large image potential fields contribute to
the total field which increases to & =10° V/cm. At
these fields the electron-ripplon coupling is strong
and new interesting nonperturbative polaronic effects
may occur.

Sander? has already published what amounts to a
strong-coupling calculation of the ground-state energy
of this system. He has shown that the ground state
for a sufficiently thin film consists of an electron
trapped in a dimple whose size uis roughly the capil-
lary length (X, =k,~!, for 100-A films X, =100 A),
and the binding energy is about 10 K. In this Com-
munication we will investigate a few of the polaronic
properties of this system. More precisely, we will use
the Feynman* formulation of the polaron to compute
the ground-state energy and effective mass of the
system. We will be able to show that the mass of

this polaron undergoes an extremely rapid ‘‘transi-
tion’’ from an electronic value to a value on the or-
der of several He atom masses for coupling constants
(electric field, film thickness) which are easily attain-
able. Some speculations about possible temperature
dependence will also be made.

The interaction of electrons of mass m with rip-
plons of frequency w¢ can be described by the po-
laron Hamiltonian
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When there is a strong electric field present the in-
teraction potential U =e8 - § with & the displacement
of the surface. Expanding & in ripplon modes yields
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Equation (2) is valid whenever the distortion of the
helium surface is small compared to 4 and the forces
from the image charge in the substrate dominate the
forces arising from polarization of the helium. These
two conditions certainly are well satisfied for

10 <d < 10° A. In this case
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- for a substrate of dielectric constant €. The ripplon

frequency for such films 4 =100 /o\, is given by the
hydrodynamic equation,?

wx=[(g'k +ak’/p) tanhkd]'? , @

where p, o, and g’ are, respectively, the density, sur-
face tension, and acceleration of the fluid due to its
van der Waals coupling to the substrate. For real
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substrate materials and for d =100 A, g'/g =108 (g
being the acceleration due to gravity) and the capil-
lary constant k., = (pg'/o)2=6 x 105 cm™.

Without going into any real detail it suffices to say
that the Feynman* method consists of eliminating the
phonon coordinates from the problem in favor of a
retarded interaction of the electron with itself. The
resulting functional integral for the energy, being in-
tractable, is replaced by a simple exactly solvable qua-
dratic functional. Since the first term in the pertur-
bation expansion (in the difference between the two
actions) is an upper bound to the energy, the param-
eters in the approximate action may be determined
by minimizing the energy. The so-called two-
parameter model assumes that the electron interacts
with a single particle of mass M via a spring with
spring constant k. The Lagrangian characterizing this
interaction is

2
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where X is the 2D coordinate of the electron, and ¥
is the 2D coordinate of the fictitious particle. The
two parameters v and w defined in terms of « and M,
ie., k/m=(v*—w?) and M/m=(v*—w?)/w? are a
more conventional choice. A simple normal mode
analysis of the Lagrangian shows that v is the inter-
nal frequency of relative motion and that v?/w?
=(M +m)/m is the total mass of the composite sys-
tem.

The trial energy of the system in this two-

parameter model is given by
- 2
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where (in the appropriate units m =f=1)

A=fd7 (2 )2 |Q (k) |26 e=K*MF® - (7)

In Eq. (7),

F(r) =222 (1 ey + 22, ®
v v

is the time-dependent response function of the two-

oscillator system described by Eq. (5), and Q (k) is

the coupling constant given in Eq. (3).

Because of the form of the phonon dispersion and
the complexity of the coupling Q (k) the evaluation
of the integrals except at strong coupling must be
done numerically. However, we have found by a
careful examination of the analytic form and numeri-
cal results for (d =100 A) that the problem is well
approximated by assuming tanhkd = kd and,

we=sk, s=(g'd)'?, k <k, . )]

In this cutoff approximation the integrals over & and
7 may be performed analytically in the strong-

coupling and weak-coupling limits.

Let us define a coupling constant a = (e¢8)?/
[87 o (#2k2/2m ) ]; energy in units of k2/2.5 In the
strong-coupling limit (a — o) v ~ a!’2, w/v—0, and
F(7) =1/v. Thus,

E=3v—av(l—e) (10)
minimizing with respect to v yields v=a!/? and
E=—a+va+ - ; (1)

i.e., the strong-coupling limit [F(7) =1/v] gives a
power series in Ve It is important to point out that
there is no minimum for a < % This is true because
the range of the strong-coupling effective potential is
short and a critical value of the coupling constant is
needed to bind an electron in its well. The correc-
tions due to the time dependence of F(7) =1/v

+w?/v?r +(1/v) e " arise from two physically dis-

tinct effects: recoil (w?r/v?) and internal excited
states [(1/v)e™"]. A minimization of the energy in-
cluding these two terms to lowest order shows that
another physically relevant parameter n=w./(k2/2)
comes in. (For 100-A films n=5x1073.) The energy

—(— ny oy _9 7
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The term in parentheses is identical to Eq. (11) and
comes from setting F(7) =1/v. The term linear in 5
comes from corrections due to the internal excita-
tions energy, i.e., e™*", and the 5’ term comes from
the recoil of the entire object.

In the weak-coupling regime v/w —1; i.e.,
v/w=1+e. To order €

F(r) = —37+—(1 o) (13)

and
2
Epe=—(an) ——’; (am)?+ - -+ . (14)

Thus the weak-coupling expansion (n=1073) ap-
pears to be valid for « >> 1.5 However, we know
from our strong-coupling results that the system will
essentially switch from a quasifree object to a self-
trapped object at o — 1.

The numerical results for the energy are displayed
along with the approximate strong- and weak-
coupling results in Fig. 1. The sharp change at

=1/2 is evident. When the polaron is weakly cou-
pled, it is delocalized, and we expect that its mass will
be of order 1. When it is strongly coupled, it is local-
ized, and its mass will be of order 10* (several
helium-atom masses). Since the transition in cou-
pling constant is extremely rapid, we would expect an
even more dramatic variation of the effective mass.
In Fig. 2 we plot the model mass mg=v?/w? and
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FIG. 1. Energy in units of ﬁzkc2/2m vs coupling constant
«. Points are numerical results; lines are guides to the eye.

the so-called Feynman mass (which comes from cal-
culating the energy as a function of velocity),*

8)2%d —w, T __2 r
mF=l+% quq4fd772e 4 g=q°/2F(7)
15)

The strikingly rapid four-orders-of-magnitude change
in this quantity for a 10% change in « is evident.

We have shown that the existence of a ‘‘localiza-
tion”’ transition in an ideal system which is, nonethe-
less, physically realizable. Such a rapid transition
from a quasi-free to a quasi-localized state has been
speculated on previously for deformation potential
systems by Toyozawa and Shinozaka’ and others.5$
We refer to the transition as ‘‘localization’” because
of the rapidity and the size of the change in the ef-
fective mass over a very narrow range of coupling
constant (<10%). This implies that in a mobility
measurement, the diffusion constant would decrease
very rapidly. In fact, in the strong-coupling limit, the
model mass is proportional to a/n?. As n—0, this
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FIG. 2. Model mass (mg) vs coupling constant a. Feyn-
man mass (mg) vs coupling constant «. Mass in units of
free-electron mass. Points are numerical results; lines are
guides to the eye.

mass —oo and the magnitude of the jump in mass at
the transition becomes larger for a given value of the
coupling constant. Therefore, the transition looks
more and more like a real localization transition.

The beauty of the present system is threefold.
First, the system corresponds very closely to our con-
tinuum electron-phonon model. Secondly, the value
of the coupling constant where the transition occurs
is in a physically accessible region. Finally, the cou-
pling constant is variable by changing the substrate or
by changing the film thickness in the presence of an
applied field.

The calculations have assumed a single electron at
zero temperature. The validity of these assumptions
will depend on the experimental conditions. The
scale of the energy #2k2/2m for d =100 A is for the
strongly coupled state 10 K. Therefore, we would ex-
pect our model to be valid for n < 10%; i.e., the inter-
particle Coulomb energy Ve=(e%/e)n'?=1K
(n=108%), and for T <1 K.°
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