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Certain approximate renormalization-group recursion relations are exact for Ising models on
special hierarchical lattices, as noted by Berker and Ostlund. These lattice models provide
numerous examples of phase coexistence and critical points at finite temperatures, including
cases of continuously varying critical exponents and phase transitions without phase coexistence.
The lattices are, typically, quite inhomogeneous and may possess several inequivalent limits as

infinite lattices.

The discovery of a large class of exactly soluble lat-
tice models exhibiting a variety of first-order phase
transitions and critical phenomena (with nonclassical
exponents) at finite temperatures would ordinarily
give rise to considerable excitement in the world of
statistical mechanics. However, the very important
observation of Berker and Ostlund' that the approxi-
mate Migdal-Kadanoff? real-space recursion relations
applied to Ising models on Bravais lattices provide the
exact solution for an Ising model on a very different
lattice, which in effect amounts to such a discovery,
has received very little attention.

We wish to point out that these ‘‘hierarchical lat-
tices,”’ as we shall call them, and the corresponding
Ising (and Potts, etc.) models, are interesting objects
in and of themselves, and the associated phase transi-
tions are worth studying for a variety of reasons. To
begin with, they provide elementary examples of du-
ality transformations, continuously varying critical ex-
ponents, phase transitions without true long-range or-
der (e.g., without spontaneous magnetization), and
similar phenomena whose study in exactly soluble
models has usually required considerable effort and
mathematical skill. Second, these lattices are much
more inhomogeneous; i.e., they have a much lower
symmetry, than are Bravais lattices, and thus they
may provide insights into other low-symmetry prob-
lems such as random magnets, surfaces, and the like.
Third, a study of models on which real-space
renormalization-group methods are exact may throw
some light on the situations in which such methods
are probably to some degree misleading.? In this
Communication we report several results related to
the first and second of these topics.

Previous studies of Ising models on hierarchical
lattices include investigations of some cases in which
the phase transitions only occur at zero tempera-
ture,*® and calculations on Bethe lattices with a sur-
face.”® Forgacs and Zawadowski® have noted another
situation in which a Migdal type of recursion relation
is exact for a special model, but which does not seem
to be associated with a hierarchical lattice as we de-

fine it here. Our definition also excludes those self-
similar lattices of Gefen et al.® which (presumably)
possess phase transitions at finite temperatures. Also
note that Dyson’s hierarchical model,'® in which each
spin interacts with an infinite number of neighbors,
does not involve a hierarchical /attice on which each
(or almost every) spin interacts with a finite number
of neighbors. Bernasconi et al.'""'? have used the lat-
tice of Fig. 1 in a study of random conductance net-
works.

One example of a hierarchical lattice is shown in
Fig. 1. Five of the zero-order or primitive bonds in
Fig. 1(a) are assembled to form a unit or ‘““bond’’ of
order one in Fig. 1(b). At the next stage, five of
these units are assembled in the same manner to form
a bond of order two in Fig. 1(c). Repetition of this
procedure produces units of arbitrarily high order.
One can, alternatively, view Fig. 1 as a prescription
for ‘‘miniaturization’’: The bond of order N shown
(schematically) in Fig. 1(a) possesses an internal
structure revealed in Fig. 1(b), where the lines are
bonds of order N —1, and in still greater detail in
Fig. 1(c), where the bonds are of order N —2.

Note that such a lattice contains sites with different
coordination numbers, 3 x2" »=0,1,2, ... . Let
o;= 1 be the Ising spin variable associated with the
ith site. The dimensionless interaction associated
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FIG. 1. (a)—(c) Construction of a particular hierarchical
lattice.
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with the primitive bond from ito jis
~3¢o/kT = Hy( oy, ;) =Kooi0; , m

and the total (dimensionless) Hamiltonian His the
sum of Hy over all primitive bonds. (One could, of
course, include a magnetic field in Hp.) The partition
function is obtained by successive decimation: e” is
first summed over spins at clusters of neighboring
sites of coordination number 3, producing an effec-
tive interaction H, between spins at pairs of sites ad-
jacent to each cluster. The next sum is over spins at
sites of coordination number 6, then 12, etc.

The hierarchical arrangement of sites means that at
each stage the spins that are summed out or ‘‘de-
cimated” belong to finite clusters interacting with a
finite number of neighbors outside the cluster (but
not with spins in other clusters). We shall use the
term ‘‘hierarchical” to denote lattices having the
property that the two finite numbers just mentioned
are bounded, independent of the cluster and the
stage of decimation. In the case under consideration
they are, of course, constant, which is what makes
this Ising model ‘‘soluble’’ by elementary methods.

The aggregation instructions for a number of other
hierarchical lattices are shown in Fig. 2. In each case
two stages of aggregation are shown, starting with the
primitive bond in Fig. 2(a). Figure 2(b) is that dis-
cussed by Berker and Ostlund.! In Fig. 2(c) the
dashed line is a noniterated bond representing an en-
ergy as in (1) but with an interaction constant K’ in-
dependent of K, and also independent of the stage of
aggregation. [Thus the five dashed lines in the
second part of Fig. 2(c) all correspond to the same
interaction.]

Hierarchical lattices can also be constructed by ag-
gregation of units involving 3, 4, etc., sites. In the
example in Fig. 3, four squares of order N —1 are
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FIG. 2. (a)—(e) Construction of additional hierarchical
lattices.
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FIG. 3. Hierarchical lattice using aggregation of squares.

combined by placing them on top of each other and
identifying the corner vertices. Noniterated bonds
then connect these vertices to those of the square of
order N, and the dashed circle stands for various
noniterated two- and four-spin interactions.
Kadanoff’s ‘‘lower bound’’ bond-shifting approxima-
tion' to a square lattice is the exact solution' to the
Ising model on the lattice in Fig. 3 if the straight
dashed bonds are equal to p (in his notation) and the
other noniterated interactions are chosen appropriately.

In all of these cases the aggregation number B is de-
fined as the number of iterated units which are as-
sembled at each step to form the unit of next high
order. Itis 4, 4, 3, 2, and 4 in Figs. 2(b), 2(c), 2(d),
2(e), and Fig. 3, respectively. Note that noniterated
units (dashed bonds) are not counted in B.

More than one aggregation procedure can be used
in constructing a hierarchical lattice. An example is
shown in Fig. 4, whose significance will be clear if it
is regarded as a prescription for miniaturization. If
one chooses the two primitive bonds to be ferromag-
netic but of different strengths, the result is a
hierarchical model which mimics certain features of
the “‘rectangular’’ Ising model (i.e., an Ising model
on a square lattice with unequal horizontal and verti-
cal exchange interactions).

We have obtained a number of results on the prop-
erties of Ising and similar models on various
hierarchical lattices, among them the following (de-
tails will be published elsewhere):

(i) For B =2 the free energy per primitive unit,
B~ NInZy, where Zy is the partition function of a unit
of order N, is well defined as N — oo under fairly
general conditions, including those in which the noni-
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FIG. 4. Hierarchical lattice with two kinds of iterated bonds.



498 RAPID COMMUNICATIONS 24

terated interactions are allowed to vary (within cer-
tain limits) with the aggregation step.

(ii) There is not a single infinite lattice (regarded as
a connected graph) associated with the aggregation
procedures of Figs. 1 and 2(b), 2(c), and 2(d). In-
stead there is a large number of inequivalent infinite
lattices. The thermodynamic properties of the ine-
quivalent lattices are the same, but local statistical
properties—e.g., the average (o;)—can show sub-
stantial variation within one infinite lattice, and
between different inequivalent lattices.

(iii) The lattices just mentioned are extremely in-
homogeneous in the sense that each group of sites
equivalent to one another under the symmetries of
the lattice contains a vanishingly small fraction of the
total number of sites as N —oo. This is, of course,
very different from the usual Bravais lattice, in which
all sites are identical. The examples in Figs. 2(e) and
3 are intermediate in the sense that while not all sites
are equivalent, the fraction in each equivalence class
is finite in an infinite lattice.

(iv) When noniterated interactions are present, as
in Figs. 2(c), 2(e), and 3, and the model has a critical
point, the critical fixed point and the associated ex-
ponents depend on the value(s) of the noniterated
interactions, giving rise to a continuous variation of
critical exponents. This phenomenon has been noted
previously in special cases®!? of hierarchical lattices.

(v) We can prove that phase coexistence at finite
temperatures in hierarchical lattices of the types
shown in Figs. 1—3 is only possible if either the ef-
fective Hamiltonian Hy or the noniterated interac-
tions tend to infinity with the step of aggregation. In
particular, if the noniterated interactions are indepen-
dent of the aggregation step in Figs. 2(e) and 3, there
is no phase coexistence at any finite temperatures,
even though there are phase transitions (nonsmooth
behavior of the free energy). Thus phase transitions
without a finite order parameter, noted previously in

a particular case,® are easily produced in hierarchical
lattices.

(vi) By contrast, the lattice of Fig. 2(d), along with
certain other cases in which the bond of order N con-
tains at least one bond of order N —1 extending
directly between its two vertices, has phase coex-
istence at all finite temperatures.

(vii) The lattice in Fig. 1 is self-dual,'! and it is
possible to work out the phase diagram of the
Ashkin-Teller model'® in complete detail, and com-
pare it with exact and conjectural results for a square
Jattice.'®

We have also studied the ¢-state Potts model'’ on
the self-dual lattice of Fig. 4 and compared the
answers with exact results on a rectangular lattice.

In closing we wish to mention an important un-
resolved problem which we find rather perplexing:
that of defining a correlation length and/or a dimen-
sionality d for a hierarchical lattice. The two prob-
lems are not unrelated, since the aggregation number
B is denoted by 5¢in renormalization-group
language,'* with b the factor by which the correlation
length (on a Bravais lattice) is reduced at each itera-
tion. Since B is known, there is no ambiguity in de-
fining the thermodynamic critical exponents using
fixed-point eigenvalues. However, correlation-length
exponents are not well defined unless b (equivalent-
ly, d) is known.

It may be the case that 4 (or b) has no well-defined
meaning for hierarchical lattices in general. Certainly
none of the proposals of which we are aware*™®
seems very compelling. In any case the matter
deserves further attention.
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