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Memory-function approach to spin-temperature oscillations in the rotating frame
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A memory-function approach (Mori-Zwanzig-Shimizu) is applied to treat the non-Markovian
behavior of coupled nuclear spins in the spin-locking experiment, One-, two-, and three-spin-
temperature concepts are discussed and compared with experimental results for ' F in CaF2,

I. INTRODUCTION

The spin interactions in solids containing either nu-
clear or electron spins can be separated into spin-spin
interactions and spin-lattice interactions, respective-
ly. ' We shall restrict ourselves in this article to the
former, namely, to the dipolar interaction of nuclear
spins in a large static magnetic field Ho.

The separation into spin-spin and spin-lattice in-
teractions is justified by the two different time scales
(usually T2 and T, ) involved, where in the solid state
usually T2 (( T~, i.e., the spins are effectively
disconnected from the lattice on the time scale of
spin-spin interactions (T2).

The experiments we are going to discuss, however,
are of some importance for the evaluation of spin-
lattice relaxation measurements in the rotating
frame. 3

Due to the many-body character of the spin-spin
interactions, the theoretical treatment of spin dynam-
ics is quite involved and no rigorous answer is ex-
pected. Different kinds of approximation schemes
have been applied in the past, ranging from moment
expansions to integrodifferential equation approaches
of different sorts. The current literature has mainly
been restricted to the free-induction decay and to the
so-called Strombotne-Hahn experiment. 4 In the fol-
lowing we shall discuss the spin-locking experiment
for the following reasons: (i) it offers a rather gen-
eral model for mixing processes between subsystems
of a many-body system; (ii) it contains the free-
induction decay (fid) as a limiting case; (iii) it is the
experimental technique widely applied in nuclear
magnetic resonance (NMR) for the observation of
spin-lattice relaxation in the rotating frame (Tt~)
(Ref. 3); and (iv) there is a pulsed analog version of
spin locking which. has stirred up some interest re-
cently. '

The spin-locking experiment was first proposed and
performed by Solomon. It consists of, e.g.-, applying
a 90'„pulse in the rotating frame to a spin system in
Boltzmann equilibrium, thus creating macroscopic
magnetization in the x direction, which is "locked"
by an rf field of strength H~ in the same direction
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FIG. 1. Spin-locking pulse sequence for detection of Zee-
man and dipolar order as a function of 0» and ~. The time
delay between the 90'~ pulse and the 45'„pulse is at about
t =400 p,s so that T2 (& t && T&D.

(x) in the rotating frame. Terminating the Ht field
after a time r leads to a free-induction decay (fid),
whose amplitude is a measure of the magnetization
M, (r), i.e., of the "Zeeman order" in the x direc-
tion of the rotating frame. Such a sequence is
sketched in Fig. 1. Moreover one is interested in the
dynamic behavior of "dipolar order" during spin
locking. In fact, the dipolar order at the termination
time ~ of the H& field is unaffected by the fid and
can be observed by means of a 45' read-oui pulse
after the fid, ' as is sketched in Fig. 1.

The following relevant features as a function of 7

are observed and have been known for some time
(i) oscillations with frequency 2', (where cot = yHt)
with a damping time of the order T2 (spin-spin relax-
ation time) and (ii) decay of the magnetization to a
constant value, depending on H~ and the "local
field" HL due tg spin-spin interaction. For high field
(H~/HL, )) 1) this decay takes place in two different
time domains; the first domain is terminated with the
disappearance of the oscillations in (i), while the
second occurs on a much slower time scale.

The final magnetization in a spin-locking experi-
ment is readily calculable by simple spin thermo-
dynamics. . After the 90 y pulse we start with an ini-
tial density matrix in the frame rotating at the Lar-
mor frequency coo as'

Po = &
—&0-3-'» ~
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with ap = (I/ksTg, ) a&0/cut (where ks is the Boltzmann
constant and TL is the lattice temperature), X„
= e&I„, and where the high-temperature approxima-
tion has been invoked as is usually done in NMR.
Under the action of the Hamiltonian

+=+x +3-Dz (1.2)

where 3'.Dz is the secular part of the dipolar Hamil-

tonian with

XD = —XA~)(31;I J
—I; I~)

i/j
1 3cos Hij

o,' =x,p,z, Qij ——y2f-ij r

(1.3)

the initial density matrix po evolves into the final
state

pf = 1 Qf.X

The "inverse temperature" of may be calculated by
assuming energy conservation

QJ]

f =O
aoi + coL

where cvL is the frequency of the local field

tr(X')
ruL2 tr(xn2z )

Physically this decay of magnetization signals an
equilibration of the temperatures of the Zeeman and
the dipolar reservoir, a process, which is generally
known as "mixing. "

The above calculation is typical for spin thermo-
dynamics. It gives us, however, no information
about what happens between the initial and the final
state. Also the Provotorov theory' fails to describe
the dynamics involved, since in our case there is no
weak perturbation which mixes the two reservoirs.
In contrast, the appearance of oscillations with fre-
quency 2'~, is a manifestation of the non-Markovian
behavior of the mixing process which makes it neces-
sary to consider the general equation of motion.

Several approaches have been devised. for the
description of systems with strong coupling. The first
one, mainly due to Prigogine and co-workers, starts
with a microscopic approach using partial resumma-
tion in perturbation theory up to infinite order. "
This approach is quite laborious and the results, as
compared with the invested labor, are not over-
whelming. The second approach, which is a more
naive one, uses some explicitly calculable moments
of the correlation function, fitting them to a line
shape which is usually Gaussian or Lorentzian. ' And
last but not least we want to mention Mori's ap-
proach, ' which expands the correlation function into
an infinite-order continued fraction and tries to ob-
tain the correct short- and long-time behavior by suit-

II. THEORY OF SPIN-LOCKING EXPERIMENT

A. Equations of motion

All information about macroscopic observables
may be extracted from the density matrix of the sys-
tem which obeys the Liouville —von Neumann equa-
tion:

d—p =-Ixlp):
dt

(2.1)

I

In the following we will adopt the notation of Liou-
ville space, i.e., we define

(i) a superoperator X

xip) = i[x, pl),
(ii) a scalar product

(A ~B) = tr(A tB)

(2.2)

(2.3)

The Liouville —von Neumann equation (2.1), howev-

er, is not exactly solvable except in trivial or patho-
logical cases. Nevertheless, this may not be neces-
sary, since we are only interested in those parts of
p(r), that correspond to macroscopic observable
quantities, i.e., in our case to Zeeman and dipolar or-
der.

Projection schemes have long been known in sta-
tistical mechanics, ' "but we will restrict ourselves to
a version that is amenable to NMR. This version
was introduced by Shimizu' and by Lado, Memory,

able (but often not rigorously justifiable) approxima-
tions. This formalism has rarely been applied so far
to NMR. '3

The purpose of this paper is twofold. First we

want to derive exact equations of motion for the Zee-
man energy and the secular and nonsecular dipolar
energies in the rotating frame. In Sec. II we employ
a projection scheme due to Mori, Zwanzig, and Shim-
izu to derive rigorous equations of motion for the
corresponding "inverse temperatures" within a one-,
two-, and three-temperature concept, respectively.

Secondly, we want to demonstrate, that experimen-
tal data can be theoretically described most con-
veniently using no adjustable parameter whatsoever,
by assuming a simple functional form for the
memory functions involved. The lattice structure
enters in this approach through second and fourth
moment-type calculations. The corresponding experi-
mental and theoretical results are discussed in Sec. III.

We want to emphasize, that our approach is more
rigorous and offers more physical insight than the
naive direct fitting of the time dependence of the
Zeeman order by, e.g. , a Gaussian having the correct
second moment as was applied to the Strombotne-
Hahn experiment.
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p=Pp+(1 —P) p

with the projection operator

X
IQ, )(Q, I

, , (Q;IQ, )

(2.4)

(2.5)

and Parker" and has been used in the dynamical
theory of high-resolution NMR in solids' ' recently.

As usual, we project out the relevant variables

properties of EkJ may be stated. """
(i) Symmetry:

Kki ( r, t ) = Kg ( t, t)
(Qg I Qg)

k k

(ii) Boundedness:

IK l, ~ (Qklx'IQ») (Q&lx'IQ&)

(Q.IQ.) (Q, IQ, )

(2.11)

(2.12)

(QilQi) =0 for i &j (2.6)

The macroscopic observables are now related to so-
called thermodynamic coordinates P, (t)

on the relevant variables Q;. The equations of
motions are greatly simplified if we assume the Q; to
be pairwise orthogonal

(iii) Completeness: If P projects on all variables

that are contained in .the Hamiltonian, i.e.,

X
IQ;)(Q;I
(Q, IQ;)

'

then

N

p(r) = Xp;(r) Q;+ ( I —P) p(r), (2.7)
QK~J(r) =0 . (2.13)

which obey the following exact non-Markovian kinet-
ic equations

d
Pk I X (Qkl Xl QJ) Pldt

, (Q»IXS(t, 0) (I —P) I p(0))
(Q.IQ.)

(2.8)

with the so-called memory functions

(Qk I X(r) &(r r') (I -P) X(r')
I Q, )

(Q»IQ»)

Let us now turn to the spin-locking experiment.
First we have to determine the relevant variables
which are also experimentally observable and which

have to be included in the projection operator.

B. One-temperature concept

In the usual spin-locking experiment (as employed
in T~~ measurements) one is predominantly interest-
ed in the time evolution of the transverse magnetiza-
tion, i.e.,

(I„(r))=tr[p(r)I„)

so that we may first consider the following form of
the density matrix

and
1 r t

p(r) = I —a(r)X„+ (2.14)

S(r, t') = T exp i, d v'(I —-P) X(r) (2.10)
leading to the projection operator

In the following we will refer to the thermodynamic
coordinates P; as to "inverse temperatures" or even
more loosely to "temperatures" although nondiago-
nal elements of the density matrix are involved and
are taken into account rigorously.

Our main task now is to calculate the memory
functions KkJ. They are, however, not exactly cal-
culable in most cases (nor is the Liouville —von Neu-
mann equation), but one hopes that approximations
to the memory functions, such as functional assump-
tions or continued fraction approximations, " will

be less drastic than applying these techniques to the
original equation of motion (2.1). Some general

IX ) (x„l
(X„IX„)

and to the equation of motion

do,
dt

K(r —i') u(r') dr',
Jp

where

(X„IXozexp[ —it (1 —P) X]Xozl X„)
(x„lx„)

A moment expansion of K(t) leads to

(2.15)

(2.16)

(2.17)

M4 —M2 2 i M6 —2M4Mp+M2 2M4 —Mp 2M4K t) =M2 I —— +4'~) +- + 8 a)21 + 16 co] +16')f, (2.18a)
2 M2 4! M2 M M
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where Mz, M4, M6 are the second, fourth, and sixth moment of the free-induction decay (fid) line shape and M4
is a modified fourth moment defined by

M4= «.IXDZ(XD»/4) XDZIX )/(X,

XAgkI(1+I)( I2+—I —-—)+ $A A 4I (I+1) + XA A Attgl (I+1) (2.18b)
k, l k, I

In order to obtain the overall line shape of K(t), we

now turn to the structure of the "propagator"

S(t) =exp[ —it(1 —P)X]

which yields

Kf„,( t) =M2 cos(2')t) (2.20)

St,„(t)=exp( —itX„) (2.19)

which allows some assumptions on the functional
structure of K(t) to be made.

First consider the "free" (i.e., undamped) propa-
gator

The effect of Xnz in S(t) will be to cause some
damping, so that K(t) will be of the form

K (t) = g (t) cos(2aot t) (2.21)

where g(t) exhibits damping. Expanding around the
exactly solvable Kf„„we use the well-known identity

exp [—it (1 —P) (X„+Xnz) ] = exp( it X„)—T exp i e—xp(+it'X„) (1 —P)Xoz exp( —it'X„)dt'

The second factor (which leads to damping) may be approximated in the following cases.
(i) Low-field case (co~ && cuL): Baker-Campbell-Hausdorff (BCH) formula2~

t2
exp[ —it(1 —P)X] =exp( —itX„)exp[ —it(1 —P„)Xoz]exp —[X,(1 —P„)Xoz]

which yields
I

[for the definition of XD», see Eq. (1.3)] which yields

M4 —M2K(t) =M2 1 — —+ cos(2ro~t)
M2 2

and

+it'
XT exp i ' e —(1 —P)Xoze

+u'Ã -it 3C
Texp iJ e "(I P-)Xnze "-dt'

=exp[ —i(XO+ X, + )t]

where especially the 0th Magnus approximation is
given by

, I

Xo = —
J e (1 —P)Xoze "dt', (2.22)

t,

(ii) High-field case (a&~ && cuL): Magnus formula'4

together with the cycle-time approximation '

-u&i -r)aC=e

M, t2
K(t) =M, 1 — —+ cos(2co~t) . (2.25)

M2 2

Having eliminated the most rapidly varying factor in

K(t), we make a functional assumption for the
damping factor g(t)

In order to satisfy the conditions (2.11) and (2.12),
we choose a Gaussian form of g(t), as has been
done by many authors. " %e are aware, however,
that this choice is in conflict with the thermodynamic
limit (1.5), since with a Gaussian choice for g (t),
a(t) will decay to zero. This discrepancy may be
resolved in Mori's continued fraction formalism, as
will be discussed in Sec. III D. If we restrict our-
selves to the discussion of the short-time behavior,
however, the Gaussian assumption may be justified.
Adapting the half-width of g(t) to yield the correct
second moment of K(t), we obtain

(i) low-field case (ru, « ruL)

with the cycle time K(t) =M2exp— 4 M22 t2—cos(2cot t), (2.26)
2

7rtc= && T2
QJ]

In our case we obtain

1+0 +Dx

(2.23)

{2.24)

(ii) high-field case (cot » coz)

M4 t2
K ( t) = M& exp — —cos(2~~ t )

M2 2
(2.27)
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C. Two-temperature concept so that the Eqs. (2.30a) and (2.30b) may be reduced
to one for the difference

As was stated in Sec. I, the decay of magnetization
to a final value corresponds to a creation of dipolar
order which may be experimentally observed. In or-
der to get a better description of the mixing process
than in the one-temperature concept, let us project
on the Zeeman and the dipolar variables

h(t) = a(t) p(—t),

which reads

(2.32)

IX.)(x.l IXDz)(XDzl~-~-+" (x,lx.)
' (x„lx„)

so that

p( t) = 1 —u( t) Xrr P ( t) Xoz +

(2.28)

(2.29)

r

Cd1+, K»(t —t')h(t') dt' .
dt ~ 0 CdL2

Obviously the energy

(2.33)

and therefore

tet

K»(t —t') a(t')+ K»(t —t') P(t') dt',
dt

(2.30a)

Cd

X = a(t) + ' p(t)
Cd i

is a constant of motion

(2.34) .

d

dt

with

ted

= —„K»(t—t')a(t')+K»(t —t') p(t') dt',
(2.30b)

—X=Od
dt

(2.35)

«.IxDZ5'(t) XDzlx*)
(x„lx„)

Kfz(t) = —Kff(t)

QJ
2

K„(t)=—,' Kff(t)
CdL

OJi
K»(t) =+,' Kff(t)

COL

(2.31)

We want to emphasize that in the two-temperature
concept employed here [Eqs. (2.30a) and (2.30b)] the
thermodynamic limit (1.5) is self-consistently taken
care of when Kff(t) decays to zero. Also from the
physical intuition the two-temperature concept is su-
perior to the one-temperature concept.

Our aim is now to compute K&&(t). First we con-
sider again its moment expansion

r

M4 —M2 2 t M6 —2M4M2+ M2 2 M4 M2 2 M4 4Kit t =My 1 —— +~] + —, +2Cd~ + 16Cd~ + Cd~

2
(2.36)

In order to determine the functional structure we
consider again the "free" propagator

rr(f P)JC„— —
(2.37)

It should be warned against the tempting approach to
take exp(itX ) as a "free" propagator, because this
does not guarantee a systematic expansion in powers
of a&f (low-field case) or co~

' (high-field case). With
Eq. (2.37) we obtain for the memory function

Kf,( t) =' Mp cos( fr) f t) (2.38)

x x„,(1 —& )x~ ]

We now investigate again the damping function g(t).
(i) Low-field case: BCH approximation

exp[ —it(1 —P)x] =exp[ —it(l —PD)X„]

x exp[ —it(1 —p„)gtroz]

2
&& exp —[(1-&D)

2

which yields
r

K(t) =M, 1 — —cos(a), t) . (2.39)
M4 —M2

M2 2

(ii) High-field case: Magnus approximation. We
obtain ~0=0, which leads to

K (t) = Mq cos(a» t)

as in the case of the "free" propagator, Eq. (2.38).
We will come back to this astonishing result later.

D. Three-temperature concept

As has already been stated in the Introduction, for
high fields (cot )) coL) there is a different behavior
of secular and nonsecular dipolar interaction. Mixing
takes place in two steps: (i) First the Zeeman reser-
voir and the nonsecular dipolar reservoir mix in a
time of the order Tq. (ii) Then this combined reser-
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~~ + ~DX + ~DDT

IX„)(X„I IXDx/2) (X]]x/2 I

(XDx/2 IXDX/2)

+ IXDz+XDx/2) (Xoz+XDx/2 I

(xoz +xt]x/2 I xoz +xax/2 )
(2.40)

voir mixes with the secular dipolar reservoir in a time
that grows as T3 exp(coz]/cozz). 9 37 Taking this dif-
ferent behavior of secular and nonsecular dipolar or-
der into account, we project on three different
relevant variables (X IXoz&(t)Xnz(X )

(X,IX )
(2.44a)

«-IXDZ~(t)Xozl Xox/2)
(X„IX„)

(2.44b)

Of these nine memory functions only three are really
independent, due to symmetry Eq. (2.11) and com-
pleteness Eq. (2.13). We choose

where

~X,~Dxl =o,
so that

p(t) = 1 —n( t)X —P(t) (—XDx/2)

—y(t)(Xoz+XDx/2) + ' ' '

(2.41)

(2.42)

(XDx/21Xoz~ ( t)Xoz IXDx/2)

(XDX/21XDX/2)

and the rest may be calculated from these:

K]3(t) K]](t) K]3(t)

(2.44c)

and the equations of motion now read

„,E»( t —t') a(t') + K»(t —t') /3( t')

+ K»(t —t') y(t') dt', (2.43a)

+K»(t —t') y(t')dt', (2.43b)

dy
dt

K»(t —t') ~(t') +K»(t —t')P(t')

pf
= —

J K3](t —t')tx(t') +K3,(t —t')/3(t')
dt o

4coy
K3](t) = K]3(t)

COL

K33(t) =—Kz](t) —K33(t)

4 GJ]
K3](t) =—,' K„(t),

Mg

K3$(t)
3 K33(t)
1

K33(t) K3, (t) —K33(t)

+ K 33 ( t —t') y ( t') dt' (2.43c) %e start with the moment expansion

]

t~ M4 —Mp t M6 —2M4Mg +Mg g M4
K]](t) =M3 1 —— +- +4']

2 Mp O'. Mp Mp
~ ~ ~ (2.4Sa)

K„(t)=—M4+
2

3M4
K (t)=

M
~ ~ ~

2

(2.45b)

(2.4Sc)

In order to determine the functional structure of
the memory functions we consider first the "free"
propagator

St„,(t) =exp[ —it(1 —PDDx)X I

K]](t) and K33(t) are bounded by their initial values
which yields

IK„(t) I «K]](0)

IK„(t) I «K„(0),
whereas

IK]3(t) I «(M3M4/40]3]) 'i',

(2.46a)

(2.46b)

(2.46c)

K]']"(t) =M, ,

K rr.e (,)
3M4KI" (t) = cos(2'] t)

2

(2.47a)

(2.47b)

(2.47c)

so we see that for co~ ~ E~q is of vanishing impor-
tance.

%e now turn to the calculation of the damping
functions. Starting with E]](t) we obtain
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(i) low-field case: BCH approximation
1

M4 —M2 t2
Kii(t) =Mz 1 — —+

M2 2

Therefore

p(t) =1 —a(t)X„—y(t)(XDz+Xpx/2)

and

(2.51)

1

4 M 22 g2

M2 2
K~~(t) =Mzexp— (2.48a)

(ii) high-field case: Magnus approximation
1

M4 —M4 —M2 g2
K3i(t) =Mz 1 — —+

M2 2

The damping of K33(t) and K33(t) is not simply cal-
culable since it involves the determination of higher
moments analogous to the calculation of the sixth
moment of the fid line shape.

%e therefore make the following reasonable as-
sumptions: (i) 03~ ~03L. K&3(t) and K33(t) have the
same damping constant as K3(t). (ii) t0& )) o&L.

K33(t) has the same damping constant as E»(t),
whereas K~3(t) =0. This is formally justified by Eqs.
(2.46c) and (2.47b) and physically reasonable since
K33(t) describes the mixing between Zeeman and
secular dipolar order ~hose rate decreases drastically
as co~ increases. Together with the Gaussian func-
'tional assumption we finally obtain for co~ ~ coL.

K))(t —t') n(t') + E)3(t —t') y(t') dt'
dt 4o

(2.52a)

dh
K3& ( t —t') a( t') + K33( t —t') y( t') dt'

(2.S2b)

The four memory functions resemble those of the
three-temperature concept except for the changed
projection operators. If we retain only the leading
terms in m~, we obtain

Ki3(t) =—Kii(t)

4 co2~

K„(t)=——,' K„(t)

OP}
K33(t) =+—,' Kii(t)

CdL

and the two equations of motions [(2.52a) and
(2.52b)] may be reduced to one for

2

K33(t) = —M4—exp—
2

M4 —M2
(2.48b)

M2 2
O(t) =a(t) y(t), —

(2.s3)

3M4 M4 —M2K (t) = exp —cos(2403t)
M2 M2 2

(2.48c)
and for ~] &) cd/, .'

4 M4 M2 t~
K 3 3 ( t) = M3 exp-

M2 2

K33(t) =0,

(2.49a)

(2.49b)

3M4 M4 M4 M22 t~
K33(t) = exp — —cos(2403t)

M2 M2 2

(2.49c)

E. Nonsecular two-temperature concept

In the last section we noted that for ~~ )) co~ the
thermodynamic coordinate p(t) of the secular dipolar
reservoir is an irrelevant variable for the first stage of
the mixing process. It should therefore be sufficient
for some T2 to consider only Zeeman and nonsecular
dipolar order as relevant variables, which leads to the
following nonsecular two-temperature concept:

~x +~DDX

[X.) (X.[ [XDZ+Xpx/2) (XDZ+Xpx/2[

(Xoz+Xpx/2IXDz+ Xpx/2)

(2.50)

= —Ji 1+—,K»(t t') a ( t') dt'—,
df 0 3 coL2

and P0 (( n0, which evolves into the final state

(2.55)pf 1 nf(Xx+XDZ)

So we consider the following two-temperature con-
cept

p(t) =1 —n (t)(X„+Xoz+Xpx/2)
—P(t) (—Xpx/2) + (2.56)

where K~~(t) is the same as in the three-temperature
concept [see Eq. (2.44a)].

Once the Zeeman and the nonsecular dipolar reser-
voir are in equilibrium with each other (a process
which has misleadingly been called "establishment of
a Zeeman temperature" by several authorsz 0) it is
tempting to describe also the second stage of the
Zeeman-dipolar cross relaxation by a two-temperature
concept.

After some T2 we have for high fields

p0 1 a0 (Xx +XDz +Xpx/2 ) PO( Xpx/2)

(2.54)
where o.o is given by

2
OJ~

0,'0 = Ao
co] +0.75QJL
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Hence F. Related experiment of Jeener, Du Bois, and Broekaert

P =Pi+P2
IX.+XDz+XDx/2) (X.+XDz+XDx/2I

(Xz +XDz +Xox/2 IX+ +XDz +Xox/2 )

Jeener and co-workers performed an experiment
that is very similar to spin locking except the fact that
they started with high dipolar order

Po I PQXDz (2.62)

+ I Xox/2) (Xox/2 I

(Xox/2 IXox/2)
(2.57)

Under the irradiation of a strong rf field (co~/coL
=4.37) the nonsecular dipolar reservoir mixes with
the Zeeman reservoir to a common temperature

and therefore

fat

= —
J K (t —t')a"(t')+K p(t —t')p(t')dt'

0.75 ML,

', +0.7S,' ' (2.63)

(2.58a)

10'

gp ppKp (t t')a"—(t')+K (t t') p—(t')dt' .

(2.58b)
It may easily be seen that

Kpp(t) = K22(t)

of Eq. (2.44c) and

Kp (t) =—Kpp(t)

0.25ppL2
)

~, +0.75~L
Kpp tK (t)=

K p(t) = K(t)—,

so that

4' COi + CdL,[a (t) p(t)l
2 2 K22(t t )

dt Mi +0.75NL

pf = I Pp( Xo—x/2)—

which decays into

1
p~ I

g PQXDz

(2.64)

(2.6s)

after some more T2. This has been discussed by
6oldman. 2

Our projection operator formalism now shows
some peculiarities when we do not project on Dz
but only on the relevant part which is XDZ+Xox/2,
i.e.,

IXDz+XDx/2) (&Dz+XDx/2I
DDX 2.66(XDz +XDxI2 I XDz +XoxI2)

The created Zeeman order alone is unobservable in
this experiment. One nevertheless observes a decay
of the dipolar order from Pp to —„Pp which stems
from the fact that the secular dipolar part does not
mix in a time T2, so that after the rf pulse

x [a ( t') —p( t') ]dt' p(t) = I —y(t) (XDZ+Xox/2) (2.67)

For times t && T2, we may apply the short-
correlation limit

(2.59) Now the second term in our equation of motion (2.8)
does not vanish but yields

Cali + QJLOO—[a'(t) —p(t)l =—, , K22(t')dt'
dt cubi +0.75coq

dy (xoz+xox/2Ixs(t, 0)(1 —P) lp(0))
dt 0.75(xozlxoz)

x [a'(t) —p(t) j . (2.60) JOE

K»(t —t')y(t')dt' .Jo (2.68)

Let us now consider the cubi dependence of the cross-
relaxation rate. Since the damping function g (t) of
K22(t) was assumed to be Gaussian in Sec. III D, i.e.,

K 2(t) = exp t cos(2tp~t)——3M4 g 2

M2 2

we see that

K„(t')dt' —exp(cro2~) + 0(tp, ')
', +0.75,'

(2.61)

which reaffirms Kronig and Bouwkamp's result of
1938.2~

This is a consequence of the fact that the initial state
(2.62) is not completely in our projected subspace.
One may, however, easily see that the first term on
the right-hand side of Eq. (2.68) may be written as

(X +X /2IXS(t, 0)(1 P) lp(0))—
0.75 (XDz I XDZ)

= —
J~ K,2(t')dt',

which corresponds to a p( t) = p( t =0) in the three-
temperature concept. The same effect arises in a
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modified two-temperature concept for a(t) and y(t)
as in Sec. II E above, and only vanishes in the three-
temperature concept, where the initial state (2.62)
lies completely in the projected subspace.

III. EXPERIMENTAL RESULTS AND DISCUSSION

1.0 i

0.8

0. 6

0.4

0.2

—=0
(uL

A. Experimental remarks 0.

All experiments were performed on the ' F spins in
CaFq in a field of 2.114 T (84.6 MHz) at room tem-
perature. The applied pulse sequence is shown in
Fig. 1. After the 90'~ pulse the magnetization is
"locked" by a spin-locking pulse of intensity Hi„and
length v as explained in the Introduction.

The initial height of the fid signal after this pulse
was observed as a function of H~„and 7. It repre-
sents the Zeeman order. In order to measure the di-
polar order we then wait for a time of several T~ and
apply a 45'„pulse. This produces a signal whose
height is directly proportional to dipolar order. 7 Un-
fortunately one cannot observe secular and nonsecu-
lar order, P(r) and y(r), separately using this pulse
sequence; instead one observes after some T~ the
weighted sum

1.0

0.8

0.6

0.4

0.2

-0.2

0.1

0

~yI
~+~9 ~

yO

(b)

= 0.24
4)L

5 = 0.25P +0.75y

due to the different heat capacities of X»/2 and
Xoz +X»/2.

(3.1) -0.1
I

20 40 60

z ( }j,s}
80

I

100

B. Low-field case

pt
K (r —r') a(r') dr' (3.2)

where

In order to check our theoretical results we now
consider the spin locking in low field (rat tuL) case.
One special case is ei =0, i.e., the free-induction de-
cay (fid). In this case the one-temperature, two-
temperature, and three-temperature concept all
predict the Zeeman order to decay to zero:

FIG. 2. (a) Free-induction decay of '9F spins in CaF&
with HOII[100]. Dots represent data of Barnaal and Lowe
(Ref. 29), solid line is a(r) as obtained from our theory
with a Gaussian memory function. (b) Zeeman order Ot(7)
as a function of ~ for low-field case (co~/aoL =0.24,
Holl[100]). Dots are our experimental values; dashed line:
one-temperature theory; solid line: two- and three-
temperature theory. (c) Equilibration of Zeeman order
(solid line), secular (dashed line), and nonsecular (dot-
dashed line) dipolar order, calculated from three-
temperature theory for cut/cuL =0.24, Hell[100].

M4 —M
K(r) =M, 1—

Mg 2

M6 —2M4Mg +Mp

4!

may be approximated as

K(r) =M&exp—M4 —M~ g&

Mp 2

This explains quantitatively the experimental results
of the fid up to the first zero and then at least quali-
tatively agrees with experiment [see Fig. 2(a) and
Ref. 29}.

This, however, is not surprising since the fid line
shape may be fitted with almost every memory func-
tion line shape. """'' If we now irradiate with a
small rf field, the Zeeman order will not decay to
zero, but will be locked at the value of Eq. (1.5), i.e. ,

Cdi
0!f= O.'0

QJi + o)L

At the same time dipolar order builds up and ap-
proaches the same final temperature.

In the low-field case (rot ~ a&L) the two-tempera-
ture concept of Sec. II C is sufficient to yield quanti-
tative agreement with experiment, as may be seen
from Figs. 2(b) and 3. In particular, the calculation
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FIG. 3. Zeeman order o.(t) and dipolar order P(t) as a
function of ~ for the. intermediate case (equi/~L =0.97,
Hollt100]). Dots represent our experimental data; solid

line: two-temperature theory; dashed line: three-
temperature theory.

FIG. 4. Zeeman order a( v ) and dipolar order 8{v )
=0.25P(7) +0.75y(r) as a function of 7 for the high-field
case (cot/coL =2.34, Hpll[111)). Dots represent our experi-
mental data; solid line: one-temperature theory; dashed
line: nonsecular two-temperature theory; dot-dashed line:
three-temperature theory.

of the correlation functions in the three-temperature
concept shows that secular and nonsecular dipolar or-
der always remain in equilibrium with each other and
relax with the Zeeman order on the same time scale
[Fig. 2(c)l.

C. High-field case

High-field spin-locking experiments provide much
more phenomena than the low-field experiments, due
to the fact that we now have three reservoirs and two
relaxation times. We have calculated the thermo-
dynamic coordinates n(t), P(t), y(t) from Gauss-
shaped memory functions using the one-temperature
concept of Sec. II B, the three-temperature concept of
Sec. II 0 and the nonsecular two-temperature concept
of Sec. IIE.

The comparison of our numerical calculations with

our spin-locking experiments shows that only in the
one-temperature concept we obtain quantitative
agreement with experiment, whereas in the three-
and nonsecular two-temperature concept we are only
able to describe correctly the frequency of the oscilla-
tions and the shape of the curves up to the end of
the first oscillation period (Fig. 4).

The most striking fact is that our numerical work
predicts much weaker damping than do the experi-
ments, where the oscillations are observed to die out
in a time of the order of T2. Also the experiment of
Jeener and co-workers shows this discrepancy. Fig-
ure 5 shows the measured values of 5 =0.25P+0.75y

1.0 ~ = 4.37
(dL

0.25 -—

0

-o s(-

0 20

& {psj
40 60

FIG. 5. Dipolar order 8(~) =0.25 p(~) +0.75y(7-) in the
experiment of Jeener and co-workers (Ref. 8) as a function
of irradiation time (coi/cuL =4.37, Holll100] ). Dots
represent Jeener's data; solid line: one-temperature theory;
dashed line: nonsecular two-temperature theory and three-
temperature theory.

[Eq. (3.1)] together with our calculations (note that
in Fig. 2 of Ref. 22 an incorrect orientation of Ho
was used). In this case also the one-temperature
concept (which had success in spin-locking experi-
ments) fails to predict quantitatively correct damping.

Several explanations may be given for the disagree-
ment between theory and experiment. One possibili-

ty, an instability of the numerical algorithm, may be
discarded since we have carefully checked its conver-
gence properties; also the explanation that an inho-
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mogeneity of the rf field in the coil causes additional
damping of the NMR signal does not seem to be the
reason. We do believe that the discrepancy has its
origin in the functional structure of the memory
function which will be investigated in the next sec-
tion.

D. Structure of the memory function

In this section we shall investigate some peculiari-
ties of the memory functions in the spin-locking ex-
periment. In. the Secs. II B—II E we expanded the
corresponding memory functions around the exactly
solvable case of an undamped propagator, Sh„„(t),
and then tried to combine contributions from 3'.pz in
a damping function, g(t), which was assumed to be
of a simple form, e.g. , Gaussian.

Two discrepancies between theory and experiment
have already been observed.

(i) In the one-temperature concept of Sec. II B the
Gaussian assumption for g (t) was in conflict with the
exact long-time behavior. In order to satisfy the
latter requirement one must have (see Appendix A)

J~ K(t) dh =0 (3.3)

exactly Theref. ore the Gaussian form of g (t) is only
approximately correct in the high-field limit. Further
application of the Mori continued fraction formal-

' ism" yields for the memory function of the memory
function, K2(t)

three-temperature concept), while the second one is
of the order of T2exp(cuf/coL2) and governed by

K22(t), we restrict our consideration to an investiga-
tion of Kt~(t) which seems to be responsible for the
lack of damping. First we want to point out that a
Gaussian functional form for K(t) does not automat-
ically imply a Gaussian form for G (t), but may, e.g. ,
lead to a long-time exponential behavior as has been
noted by Borckmans and Walgraef. "

Now one could put the blame on the Gaussian as-
sumption taken for the damping function g(t) of
K~t(t) and try different functions also satisfying the
symmetry and boundedness requirements and also
possessing the correct second moment (see Appendix
B). We found, however, that the other choices do
not improve. the damping significantly so that we are
led to suspect that g (t) is a "nonsimple" function.
In order to clarify this proposal we consider the non-
secular two-temperature concept of Sec. II E and start
from Eq. (2.53) for the difference of Zeeman and
nonsecular dipolar order, o (t) =a(t) —y(t)

4 OJ=—JI I+—,' K»(h —h' )P(t')dh' . (2.53)
dt o, 3 QJL,

We now try to go the reverse way and calculate
K(t):

K(t) = I+—,' Ktt(t)4 0J]

0JL

from a a(t) that is assumed to be of Gaussian form,
e.g. ,

dX K,( t t') K (t') dh'—,
Ch

(3.4) .a (t) =exp( —,' M2t') cos(2cutt)

which leads to the following long-time behavior for
K,(t)

(3.5)

so that K2(t) analogously to G(t) possesses a pede-
stal. This is a functional form of a memory function
which is completely new (to our belief) in the current
literature. One might wonder if these difficulties are
only present in the one-temperature concept and
remedied by using a more refined projection opera-
tor, i.e., in our case going to a two-, modified two-,
or three-temperature concept. Indeed these ap-
proaches automatically satisfy the correct thermo-
dynamic limit as was already stated above. However,
other complications arise, which are due to the un-
known functional structure of the memory function.

(ii) Comparison with experimental data has shown
that in the high-field limit the correct damping of the
transient oscillations is not achieved by a Gaussian
memory function, whereas'the case of small fields up
to 0J& = coL is very well represented. Since we have
two different time scales for co~ )& col. , the first being
of the order of T2 and governed by Kt t(t) (in the

From this we get for s =0

n(h) dh J K(h) dh =O(0) = I

Now since we have choosen

(3.6)

a(t) =exp( —
2

M2t2) cos(2cu, t)

we have

Jl O(t) dh=
0 2M2

2'exp—
2,

then we see that K (t) is not Gaussian at all (Fig. 6)
or Lorentzian or (sint)/t or. . . , but decays to a
(slowly decaying) intermediate quasiequilibrium value
which becomes more pronounced as 0J~ increases.
This may be understood as follows: Consider again
the general equation of motion

d~ K(t t') a (t') dh'—
dt

Laplace transformation leads to

-( ) a(0)
s+K(s)
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FIG 6. Numerical determination of K(v) from a Gauss-
shaped, cosine-modulated G(v) according to Eq. (2.53)
(]/L =2.34, 00~~[ & & I] solid lines) and determination of
G(v) from a Gauss-shaped K(v ) with the correct second
moment (dashed lines).

moment expansions and assumption of a functional
form of the memory function, but without any free
parameter.

One-, two-, and three-temperature concepts have
been discussed and show progressive success in
describing the dynamical behavior of the spin system
under spin-locking conditions. Transients, which we
observed experimentally, can be compared with
theory quantitatively for relatively weak fields
(ca~ & coL), where in the case of high fields
(co~ )) cot. ) agreement between theory and experi-
ment becomes ahorse. This has been traced back to
the functional structure of the memory function
which becomes of increasing importance in the high-
field case.

A simple mathematical structure does not suffice
and more elaborate techniques are required to yield
correct interpretation of the experimental data. The
theoretical technique described here has been applied
to pulsed spin locking, too. ' This, however, will be
published elsewhere.
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APPENDIX A: LONG-TIME BEHAVIOR OF K(t) IN
THE ONE-TEMPERATURE CONCEPT

%'e shall now derive some rigorous expansions for
the long-time behavior of E (t) in the one-tempera-
ture concept. Laplace transformation of Eq. (2.16)
leads to

a(s) = 1

s+E(s)
(AI)

where a(s), E(s) are the Laplace transforms of
a(t), E(t), respectively, and a(0) = l. In the long-
time limit we have

OJ
lim a(t) =lim sa(s)=lims-o s-o s+E(s) ~1+~~2

(A2)

where the last equality has its origin-in the spin-
thermodynamic results of Eq.. (1.5). If we now as-
sume that E(s) may be expanded around s =0, i.e.,

The memory function approach as applied here
does offer a simple, but rigorous description of the
oscillation behavior of macroscopic observables in a

spin-locking experiment. Exact equations of motion
have been set up for the different energies (or "in-
verse temperatures") involved and solved by use of

E(s) =E(0) +E (0)s+
we immediately obtain from Eq. (A2) that

OJE (0),=0, E (0) = —,'-

so that Eq. (3.3) follows,

(A3)
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In the same way, Laplace transformation of Eq.
(3.4) leads to

Then a (t) may be calcuiated exactly" from Eq.
(2.53)

K( ) K(0)
s +K2(s)

Combining this with Eq. (A2) we obtain

lim K2(t) = lim sK2(s) = 3cuh
f ~oo s~0

(A4)

with

h t

a(t) =exp( —at) cos(bt) + sin(bt), (C2)
2 2b

b =&A —a2/4

so that K2(t) possesses a pedestal. A and a may be determined if we expand K(s) as a
continued fraction

APPENDIX B: FUNCTIONAL FORMS FOR K11~t)

Let us recall the moment expansion for K~~(t) [Eq.
(2.45a)1

(1+ 3 ho)/hoh)M2 (M~ M2 )/M2K(s) =
S+ s+

%e then choose

s+ ~ ~ ~

(C3)

K&h(t) =M2 1 — t + t
N2 2 N4 4

2 4.'
h 't

4 M~a=1+—,M, ,
Mg

&/2M4- M2

M2

where

M4 —M2
N2=

2

M6 —2M4M2+ M2 M4
4

M2
""'M,

(Bl)

in order to terminate the continued fraction. If we
insert this into Eq. (C2), we obtain CI (t) with oscilla-
tions of the frequency 2ho~ + 0(cu~ ') and a damping
constant —, [(M4 —M2 )/M21' ' which is independent

of au~. This is a special feature of the exponential
form of K(t), since

We see that the ratio N4/N2 is strongly co~ dependent
in contrast to possible one-parameter line shapes for
K„(t), e.g. ,

(i) sint/t

[(N /3)'"hl

(ii) Gaussian

K»(t) =M2exp( —
2

N2t ), N~/N2 ——3
1

I+oo 41+—
2

Khh(t)dt —o)f
OJg,

and from Eq. (C2)

0 (t) dt —cot

so that the co~ dependence exactly matches.
This simple model for Kth(t) may also serve to

consider the two relaxation times in the three-
temperature concept. If we assume that K22(t) has
the same exponential decay behavior with the same
constant, we have in the short-correlation limit

(iii) Lorentzian

K))(t) =M2/(1+ 2 N2h ), N4/N2 =6

so that the correct long-time behavior will not be
reproduced by these choices for K~h(t).

d 0!

dt

dP
dt

raoo

= —J, K»(h')Ch'a(t)+ „K»(t')dh'y(t),
(C4)

K»(t') dt'p( t) + K22( t') dt'y( t)

(Cs)

APPENDIX C: SHORT-CORRELATION LIMIT

K(t) =A exp(-at) (Cl)

The short-correlation limit of the equations of
motion is capable of giving some semiquantitative
results in the high-field case and is (at least in its
simplest version) exactly calculable.

Let us start with the modified two-temperature
concept of Sec. II E and choose K (t) to be exponen-
tial

dy t'~ 4 cd) goo

3 Qjg

= J —,' K»(t') Ch'o (h)+ J 'K»(t') Ch'p(—t)
0 3

taboo 4 &
, K»(t') + —,K»(t') Ch'y(h),

(C6)
which yields the following eigenvalues

xh =0 (corresponding to conserved quantities)

A.2, A.3 &0,
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FIG. 7. Numerical calculation of 0,(7), P(~), y(v) in the
three temperature concept with exponential memory func-
tions [Eq. (2.43), solid lines] and in the short-correlation
limit [Eqs. (C4)—(C6), dashed lines] in the high-field case
(air/ruL =2.34 Hpll[111]) ~

Obviously A.2 is the decay constant for the first step
of the mixing process [it should in principle be pit in-
dependent; the ao2~ dependence stems from the
cos(2rpit) term], while A.3 describes the second step
of the mixing process.

We see in our model that in this second step the

mixing process is rather well described by the equa-
tions of motion in the short-correlation limit, Eqs.
(C4)—(C6) (Fig. 7). Other more realistic models
show an even stronger co~ dependence of A.3. For ex-
ample the assumption of a Gaussian cross-relaxation
spectrum [Eq. (2.61)],s" yields

)i3 ~ exp( —crp', }
and also a Lorentzian cross-relaxation function has
been considered leading to

)t3 ~ exp( —crp, )
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