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Universality and the power spectrum at the onset of chaos
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Two one-dimensional maps are iterated to evaluate the average height $(k) of the peaks in

the power spectrum corresponding to frequencies cukt = (2t —1)n/2, where / =1,2. . . , 2

and k =1,2, . . . at the onset of chaos, It is shown that the ratio $(k)/Q(k +1) is nearly con-
stant and for large k approaches a universal limit 2P =20.963, . . .

iV

c(j) = lim —Xxkxk, = (xpx, ) (2)

and the Fourier transform of this autocorrelation
function C(ru) = ~x(co) ~' is

C(co) =c(0) +2 $c(j)cosjco
i-&

Recently there has been considerable excitement
over the possibility that iterated maps of the interval
might provide a mathematical model for certain phys-
ical systems that undergo a transition from periodic
to chaotic behavior. One reason for this excitement
is the fact that there are characteristics of the maps
that behave in a universal fashion at and near the
transition. ' In fact, it has proven possible to con-
struct an analogy with critical phenomena, derive crit-
ical exponents, and, in one case, obtain a universal
scaling function. ' '

From a physical point of view it is clear that one
should consider variables exhibiting universal
behavior that are directly accessible experimentally.
In this Communication we discuss just such a

quantity —the autocorrelation function of points
under the iterated map and the Fourier transform of
this function which ought to be directly related to the
power spectrum of the physical system for which the
iterated map is a model. This allows for direct ex-
perimental tests of the physical relevance of the re-
cently developed models of the transition to chaos."

Consider a one-dimensional map defined by the
following recursion relation:

Xk+1 f (xk r )

The function f(x;r) is defined on the interval
a & x ( b which it maps into itself. It is assumed
that f (x;r) is a smooth function of x on the interval
with a single quadratic maximum and no other ex-
tremum. The variable r controls the height of the
maximum. A simple example of such a function is
rx(1 —x) in the interval 0 ~ x ~1 with 0 ~ r ~4.

The autocorrelation function of the map is defined
by

C(cu) =Cp pg(co) +Cp, g(o) —m)

2k —I

(2I —I) n

k 1 /

(4)

and define the average P(k)

1
2k-1

@(k) —= k, $ Ck(
t

We find that the ratio $(k)/@(k +1) is nearly
constant (see Table I), and we show that it ap-
proaches a universal ratio for large k, provided

The transition to chaos in the iterated map is herald-
ed by a cascade of period-doubling bifurcations. On
the periodic side of the transition at a value of r such
that the stable orbit has a period 2" (i.e. , x„,„=xk),
C(a) will consist of a set of S functions at
cu = arm/2", with m an integer less than 2". As the
transition is approached so that a bifurcation takes
place and the orbit has a period 2"+', new contribu-
tions to C(cu) will appear in the form of S functions
at cu = m(2m —1)/2" +' with m an integer and
2m —1 & 2". On the chaotic side of the transition a

point acted upon by the map follows a trajectory that
takes it between a set of bands that merge pairwise as
r is adjusted to take the map ever further into the
chaotic region. This merging occurs in a sequence
that is the mirror image of the bifurcation sequence
on the periodic side. p In the chaotic regime, C(o&)
will consist of the same kind of 5 functions as on the
periodic side with the addition of a broad-band com-
ponent representing the noisy, or chaotic, aspect of
trajectories under the map. In what follows we will

concentrate on the S-function contributions to C(co).
Aspects of the broad-band behavior have already
been considered. '

One quantity of interest is the ratio between the
coefficients of the 8 functions in C(co) which are re-

lated to the peaks in the power spectrum.
We write
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Feigenbaum

@(k)/y(k +1)
Parabolic

TABLE I. The values for @(k)/$(k +1) were obtained
by two methods: (a) evaluating $(k) directly from Eq. (5),
and (b) evaluating D(2") from Eqs. (9) and (10) and substi-
tuting into Eq. (8). Both methods gave the same result,
verifying numerically our analysis.

shown that

lim =P =10.4817. . .
D (2k)

L) (2k+1)

Hence for large enough k

p(2) (p(2))s

and we obtain

(12)

(13)

21.1876
20.8684
20.9924
20.9532
20.9670

21.8911
20.7707
21.0453
20.9383
20.9744

1

y(k) I P' —I D (2«) 0.4750 D (2«)
2«+1 2p(» I

( )

(14)
In particular

d (k) 2D (2")
d, (k + I ) D (2«+()

we can obtain an expression for $(k) by substituting
Eq. (7) in Eq. (5). After some algebra we find

«k)= «+2D(") '-&, (2)
s 1 2 /3s. k

where

and

D(2 ) —= lim —XD(2 (2s —I))
M, ,

N —. 1

D (j) = lim —g [x (j +j ') x(j ')1'—
N-~ Pf

J ssso

(10)
=2[e(0) —c(j)]

s

(,) D(2")
D (2k+s)

From the nature of the universal map it will be

k (& n, independent of the map,

y( k —I )/y( k) = 2)8

where P") is a constant whose value'2 is
10.4817. . . . Furthermore, if we consider sts(n —I)
for a value of the parameter r such that the mapping
has a period 2"just before the bifurcation to the
period 2"+', and correspondingly (t '(n) for r' with
period 2"+' before the bifurcation to the period 2"+',
we find that for large n, sos(n —I)/$'(n) =2P'2).

To arrive at the scaling relationship (6) let us see
how $(k) is calculated. Since the coefficient of the 8
function 8(ps = (2!—I ) rr/2«) is given by

1

Ck f
= lim —e(0) +2 $ c (j) cosI . (2I —I)jsr

w-~ Pf J 1
2k

and Eq. (6) follows immediately from Eq. (12).
Some of the results of our numerical investigations

are summarized in Table I. The ratio @(k)/@(k + I)
was calculated for both the Feigenbaum invariant
map f(x) and the parabolic map rx(1 —x). In the
case of the parabolic map, r was adjusted so that
there was a stable orbit of period 2". Our results
were independent of n to the accuracy quoted here
when n & 10. For such an orbit we can replace A' in

Eq. (7) and in similar formulas by 2" and not take
the limit of an infinite number of terms. For the
Feigenbaum map we adjusted the initial point so that
it was mapped back into itself after 2" iterations of
the map with n & 10. Again, to the accuracy quoted
here, our results were independent of the precise
value of n. For the initial point which mapped into
itself after 2" iterations of the map, we took
( —I/n) "xf, where xf is the unstable fixed point of
f(x) that is closest to the origin. The period 2" orbit
executed by this point is unstable, in contrast to the
orbits in the periodic regime. The results in Table I
show that for both cases the universal limiting ratio
P(2) is approached for sufficiently high $(k)'s.

Finally, we would like to comment briefly on our
calculation of P(2) directly from the Feigenbaum in-
variant map f(x), which is displayed in Fig. 1. This
function has a single maximum at x =0, in the re-
gion —I/n ~x ~ I, a region which is mapped into it-

self by f(x). As shown in Fig. I, the function
f(f(x)), the iterate of f(x), has three extrema in
this region. There are two subregions, centered
about two of the extrema, that are mapped into
themselves by f(f(x)). In the subregion centered
about x =0 the function f(f (x)) is exactly a scaled-
down, inverted version of f(x), the scale factor be-
ing n. In the other region f(f(x)) is approximately
a scaled-down, shifted f(x), that is,

f(f(x)) =—(I/n') f(n'(x —xp)) +xp

where n' = (I + I/n)/[I f(I/n) ]. The mean-—
square width of these two regions is smaller than the
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Feigenbaum invariant map

FIG. 1, Feigenbaum invariant map f'(x) (dark curve) and
the iterated map f(f(x)) (light curve) are displayed. The
subregions about the extrema which are mapped into them-
selves by f(f(x)) are indicated by the squares.

width of the original region, by the factor —'(1/a2
+1/a'2). Likewise iterating f(f(x)) we find four re-
gions mapped into themselves by

I'"'(x ) =—f(f(f(f(x )))),
with a mean-square width reduced by a factor of ap-

proximately [
2

(1/n +1/n'2)]'. The ratio of the

mean-square width of the 2" regions mapped into
themselves by f'2 '(x) to that of the 2t "+" regions

l2(a+i)1
mapped into themselves by f'2 l(x) is just P'2'

where in our approximation Pt2~ = [—(1/a2+1/n'2) 1

=10.31. It can be readily seen that in this approxi-
mation the widths of the allowed regions are dis-
tributed according to a binomial distribution. This
estimate for Pt" can be systematically improved, and
Igt'~ can be calculated to arbitrary accuracy by consid-
ering the ratios of the mean-square widths of regions

mapped into themselves by f'2 '(x). The value of
Pt'~ quoted in this paper was obtained by this pro-
cedure.

In conclusion, we note that, although it will be
necessary for the experimentalists to look at orbits
deep in the bifurcation scheme in order to test the
limiting behavior, we predict that, with precision, it
ought to be possible to observe ratios in reasonably
good accord with the limit predicted by Eq. (6) early
in the sequence.
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