Errata

Erratum: Chemisorption geometry of $c(2\times 2)$ oxygen on Cu(001) from angle-resolved core-level x-ray photoemission [Phys. Rev. B 22, 6085 (1980)]

S. Kono, S. M. Goldberg, N. F. T. Hall, and C. S. Fadley

We have noted a minor textual error in the definition of the angles θ_k and θ_{r_j} on p. 6088 just after Eq. (4). The statement " $\ldots \theta_k$ or θ_{r_j} are the angles between the polarization plane and \vec{k} or $\vec{r_j} \ldots$ " should be changed to " $\ldots \theta_k$ or θ_{r_j} are the angles between *the direction of radiation propagation* and \vec{k} or $\vec{r_j} \ldots$ " All calculations reported in the paper utilized the correct definition, and thus all results and conclusions remain as originally stated.

Erratum: Structural phase transitions in the perovskite-type layer compounds NH₃(CH₂)₃NH₃CdCl₄, NH₃(CH₂)₄NH₃MnCl₄, and NH₃(CH₂)₅NH₃CdCl₄ [Phys. Rev. B 23, 5301 (1981)]

R. Kind, S. Plesko, P. Günter, J. Roos, and J. Fousek

We have become aware of an error in Sec. III A. The plausible but erroneous assumption that the principal axes of the time-averaged electric-fieldgradient (efg) tensor should coincide always with the time-averaged orientation of the $NH_3(CH_2)_nNH_3$ groups led to a misevaluation of the data. As a consequence, Eq. (1), which is derived from Fig. 3 and thus gives the correct relation between the order parameter η and the timeaveraged orientation of the molecule, cannot be applied for the angular shifts of the deuteron NMR-NQR rotation patterns. The correct relation for the high-field case between the order parameter and the measured angle ϕ according to Fig. 2 is

$$\eta = \tan(2\phi_{\text{meas}})/\tan(2\phi_0)$$
.

For $\eta = 0$ and $\eta = \pm 1$ the efg tensor axes coincide with the time-averaged orientation ϕ_{mol} of the molecule, but in between the difference between ϕ_{meas} and ϕ_{mol} goes up to 8° for the value $\eta = 0.5$ since $\phi_0 = 35^\circ$. Accordingly, the critical exponents β of the order parameters had to be redetermined. The new values are 2C₃Cd, $\beta = 0.21 \pm 0.02$; 2C₄Mn, $\beta = 0.34 \pm 0.02$; and 2C₅Cd, $\beta = 0.26 \pm 0.02$. The values in Table I: β third column and μ/β last column should be replaced. With the new values the faintness index μ/β becomes 2 for 2C₃Cd and 2C₅Cd so that the problem mentioned in item (iv) of the Conclusions is solved for these two compounds. These corrections have, however, no consequences for the major part of the paper.

4

24

4910