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Improvements in the signal-to-noise ratio of surface extended x-ray-absorption fine-structure
spectra of chemisorbed low-Z atoms allow for the first time precise determination of complete
adsorption geometries. For ¢(2 %2) S on Ni(100) the first-nearest-neighbor distance is
2.23 +0.02 A and the adsorption site is the fourfold hollow as independently derived from either
the second nearest S-Ni distance, amplitude ratios for three polarization directions, or the abso-

lute S coordination number on the surface.

The structural determination of adsorption
geometries on surfaces has been limited to low-
energy electron diffraction (LEED),! photoelectron
diffraction (PD),? and surface extended x-ray-
absorption fine structure (SEXAFS).>* The reliabil-
ity of LEED and PD analysis critically depends on
comparison of experimental data to complicated mul-
tiple scattering calculations which for LEED has pre-
viously lead to discrepancies with SEXAFS data.’
SEXAFS has the advantage that it can be analyzed in
a theory-independent fashion. However, in the past
SEXAFS measurements have often suffered from
signal-to-noise problems which have limited the in-
herent high accuracy of the technique® for structure
determinations. Experimental problems were most
severe for the technologically most important low-Z
atoms where amplitude analysis has previously been
unreliable or failed altogether.** Here we present
SEXAFS results on the low-Z adsorbate sulfur on
Ni(100). Besides being the first EXAFS measure-
ments on this important element the present S
SEXAFS data exhibit bulklike signal-to-noise ratios
and allow the precise determination of the chemisorp-
tion site as well as the S-Ni nearest-neighbor dis-
tances on the surface. The ¢(2 %2) S on Ni(100)
system was chosen because it is regarded as one of -
the best understood chemisorption systems in surface
science with high-quality photoemission,” LEED,%°
and photoelectron diffraction!® data as well as
theoretical calculations!! being available. The present
SEXAFS data thus allow a critical assessment of the
reliability and accuracy of the various surface struc-
tural techniques in use and demonstrate convincingly
that SEXAFS yields the most precise structural infor-
mation for adsorbate complexes.

We find a S-Ni first-nearest-neighbor distance of
2.23 £0.02 .f\, the accuracy being limited only by the
EXAFS technique itself. For normal x-ray incidence
the second-nearest-neighbor distance to Ni atoms in
the (100) surface plane is clearly observed, and its
distance of 4.15 +0.10 A determines the adsorption
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site to be the fourfold hollow. This site is indepen-
dently confirmed from analysis of the polarization-
dependent nearest-neighbor SEXAFS amplitudes (re-
lative amplitude ratios) and thirdly from determina-
tion of the absolute S coordination number on the
surface by comparison with a bulk NiS standard.
Experiments were performed using synchrotron ra-
diation from the double crystal monochromator Jum-
bo'? at the Stanford Synchrotron Radiation Laborato-
ry. With Ge(111) crystals this ultrahigh-vacuum-
compatible monochromator transmits radiation in the
2000—4000-eV range with ~1.5-eV resolution and a
flux of ~10'! photons/sec at the sulfur K edge
(~2472 eV). Spectra were recorded using a cylindri-
cal mirror analyzer (CMA) in the nonretarding mode.
The kinetic energy window of ~—30-eV width was
centered at 2100 eV, the S KLL Auger energy. This
allowed measurement of the SEXAFS signal for
~400 eV past the K edge before the Ni2p photoelec-
trons swept into the CMA energy window. The SEX-
AFS spectra were flux normalized by a reference
monitor consisting of a Cu grid and a spiraltron elec-
tron multiplier.!® Data were taken at room tempera-
ture at x-ray incidence angles 8 of 90°, 45°, and 10°
with respect to the surface. The Ni(100) crystal
(~%-in. diameter) was cleaned using Ar* bombard-
ment and oxygen heat treatments to produce a sur-
face with less than 1% of C, O, and S. The clean
annealed surface was dosed with H,S and was charac-
terized by Auger electron spectroscopy and LEED.
Figure 1 shows the raw S K-edge SEXAFS spec-
trum taken at room temperature and # =45° and the
background-subtracted SEXAFS oscillations under-
neath. The oscillations are visible with good signal-
to-noise contrast out to 400 eV past the edge (2472
2V). The beating in frequency due to the second-
nearest-neighbor shell is also visible. 'The amplitude
envelope of the oscillations is indicative of the Z of
the backscattering Ni atoms. Before Fourier transfor-
mation, the EXAFS x(k) signal was multiplied by k2,
and each spectrum was normalized to its edge jump,
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FIG. 1. Sulfur K-edge SEXAFS spectrum for ¢(2 x2)
(half monolayer) S on Ni(100) recorded at 45° x-ray in-
cidence. The SEXAFS oscillations after background subtrac-
tion are shown in the lower half.

to give a basis for the amplitude comparison. In Fig.
2 both the magnitude and the imaginary part of the
Fourier transform are shown for normal x-ray in-
cidence (8=90°). Peak A corresponds to the S-Ni
nearest-neighbor distance and peak B to the S-Ni
second - nearest-neighbor distance for Ni atoms in the
(100) surface plane.

For distance analysis we used a phase shift ob-
tained from bulk NiS EXAFS spectra taken in the to-
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FIG. 2. Absolute value (solid line) and imaginary part
(dashed) of the Fourier transform of the SEXAFS signal for
¢(2%2) S on Ni(100) recorded at §=90°.

TABLE 1. S-Ni nearest-neighbor distances for ¢(2x2) S
on Ni(100).

S-Ni nearest- S-Ni second-
6 neighbor distance nearest-neighbor
(deg) (A) distance® (&)
10 2.24 £0.02
45 2.23 £0.02
90 2.23 £0.02 4.15 £0.10

2 See Fig. 1.
b For Ni atoms in the surface plane.

tal yield mode. The S-Ni distance in NiS (NiAs
structure) is accurately known to be (2.3944
+0.0003) A.14 Table I summarizes the results of the
neighbor distance determinations for three angles of
incidence. All three SEXAFS spectra yielded a S-Ni
nearest-neighbor distance within 0.01 A using both
the analysis methods of the Lee and Beni'® and Mar-
tens et al.'® Including all sources of errors we con-
servatively quote the S-Ni distance on the surface to
be 2.23 £0.02 A, or 0.16 +0.02 A shorter than for
bulk NiS.

The S chemisorption site can be determined from
the observed second-neighbor distance alone. For
0=90° we observe a second-shell distance at
4.15£0.10 A (cf. Fig. 2). This value can now be
compared to that expected for different chemisorp-
tion sites. Using 2.23 A for the nearest-neighbor S-
Ni distance we can calculate where the most pro-
nounced higher-neighbor peak should fall. We ob-
tain 4.17 A for the fourfold hollow, 3.34 A for the
bridge, and 3.34 A for the top sites, respectively.
Furthermore, the top site, because the first-nearest-
neighbor Ni atom is directly below, should show no
EXAFS at normal incidence (8=90°), in conflict
with experiment. Therefore, the prominent second-
nearest-neighbor peak at 4.15 £0.10 A unambiguous-
ly determines the fourfold hollow as the adsorption
site.

The fourfold site is independently determined from
comparison of experimental and calculated
polarization-dependent SEXAFS amplitude ratios.
The ratio of the amplitudes obtained from the back-
transformed filtered first-nearest-neighbor-shell peak
A (Fig. 2) for different angles @ directly yields the ra-
tio of effective coordination numbers for S on
Ni(100). Since the same sample is measured in all
cases, all problems with amplitude transferability!”-!8
between chemically inequivalent systems are elim-
inated. For K edges the effective coordination
number N* of the absorbing atom is given by*

N
N*=3 3 cos’a; , 1

i=1
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TABLE II. Experimental versus calculated coordination numbers and ratios for ¢(2 x2) S on

Ni(100).

Incidence Fourfold Twofold Onefold
angle Expt. hollow bridge atop
(deg)

10/90 1.16 £0.10 1.20 431 )

10/45 1.15 £0.10 1.09 1.59 1.94
10 442 £1.04* 4.49 4,03 291
45 3.77 £0.792 413 2.53 1.50
90 3.94 £0.752 3.75 0.94 0

2 Relative to N =6 for bulk NiS.

where N is the number of neighbors in a given shell_
and a; is the angle between the electric field vector E
and a vector pointing from the absorbing atom to the
ith atom in that shell. SEXAFS studies on K edges
offer the distinct advance over L, 3 edges'® that the
anisotropy in N* is considerably larger.® Thus, in
most cases the chemisorption site can be determined
solely by comparing measured and calculated N* ra-
tios for different E vector orientations (angles of in-
cidence 9).

For our data analysis a Fourier window function
was chosen which yielded a constant nearest-neighbor
distance and a constant amplitude ratio as a function
of k. The derived experimental amplitude ratios are
shown in Table II, along with the calculated effective
coordination numbers and their ratios for the three
most likely models for S on the (100) surface. The
atop site is ruled out since no EXAFS should be ob-
served for #=90°. The twofold bridge model can
also be eliminated since the EXAFS should be more
than a factor 4 larger at 10° than at 90° incidence.
The experimentally determined ratio for N*(10°)/
N*(90°) is 1.16 £0.10, less than 4% from the
theoretical value for the fourfold site. The accuracy
of our relative amplitude determination was found to
be better than £10% by comparing each two sets of
data taken at 10°, 45°, and at 90°. This is compar-
able to the accuracy with which bulk EXAFS data can
be analyzed.!”-18

Finally, we can compare the SEXAFS amplitudes
to that obtained for our bulk NiS standard for which
each S atom is known to be surrounded by six Ni
atoms. Using standard analysis procedures,* we can
derive an absolute effective coordination number
N*(9) for S on Ni(100) which can then be compared
to'the N*(8) value calculated for an assumed site
from Eq. (1). As'shown in Table II, this procedure,

as a third independent determination, again favors
the fourfold hollow site. These last results strongly
support the conclusions on amplitude transferability
drawn previously!? for the high-Z atom iodine on Cu
surfaces. Our absolute coordination numbers deter-
mined from experiment are all within 10% of the cal-
culated N* values for the fourfold hollow. Because
of phase-shift transferability limitations between bulk
and surface the experimental error bars are, however,
about twice (~20%) as large as for the relative am-
plitude ratios of the surface spectra.

The present Communication demonstrates the
state-of-the-art reliability and accuracy of SEXAFS on
low-Z adsorbates on surfaces and of SEXAFS as a
technique in general. Our results are in good agree-
ment with theory,!! LEED.%? and photoelectron dif-
fraction!® but are superior in that they provide better
accuracy for the S-Ni bond length (2.23 +0.02 R).

In comparison the LEED value®® of d,=(1.3 £0.1)
A corresponds to a S-Ni distance of 2.19 +£0.06 A 1t
appears that the present study points the way for pre-
cise structure determinations of the important low-Z
atoms on surfaces.
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