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New approach to the x-ray-absorption problem
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We present a simple numerically stable procedure for calculating frequency-dependent

response functions for a fermion system in the presence of localized perturbations over all fre-

quency scales. In the case of the x-ray singularity problem, the asymptotic result of Nozieres
and De Dominicis can be extended to excitation energies comparable to the bandwidth. The
range of this extension depends on the structure of the localized perturbation.

The x-ray singularity problem was originally solved
in the asymptotic limit by Nozieres and De Dominicis
(ND). ' They calculated the absorption spectrum
p, (ro) for the process in which a deep, structureless
core electron is excited to the conduction band by the
absorption of an x ray of frequency co. For co very
close to the threshold frequency, coT, they found that

p, (~) = po
D
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In particular, they were able to calculate for a nonin-
teracting conduction band the exponent n in terms of
the phase shifts of the core-hole potential. For the
case of a single phase shift 5 and spinless fermions, 0.

is given by

discuss the features of the calculated spectra. Figure
1 shows representative results for a Fermi's "golden
rule" calculation of p, (ro). The initial and final states
are many-body eigenstates of

Ho = Xsgck ca + Egd d + X G ( k, k') ck c gdd
k k, k

(3)

where the conduction-electron energy ek, measured
relative to the Fermi level and lying in a band —D to
D, is approximated by vFk where the wave vector k is
measured from the Fermi wave vector. The deep
core state lies at E~. The core —conduction-electro'
interaction, assumed localized [i.e., G(k, k') = Go), is
operative only where there is a core hole and pro-
duces a phase shift tang = —rrGO/D. The interaction
with the x ray is modeled' by

8
O'ND = 2

m'
(2) H„= N (fode '"'+H.c.) (4)

Two recently proposed numerical procedures
have renewed interest in this problem. In the first,"
the conduction band is replaced by a finite set of
free-electron states uniformly distributed in momen-
tum space. Expressed in this finite basis, the Hamil-
tonian can be numerically diagonalized, and the ab-
sorption spectrum is subsequently evaluated. In the
second procedure, 4 the integral equation derived by
ND is solved numerically. Although effective for
ao —co~ =D both these techniques run into computa-
tional limitations when extended into the asymptotic
region.

In this Communication, we present a simple nu-
merical method which is uniformly accurate over the
full frequency range 0 & co —AT & D. For the case of
the problem considered by ND, we find that the
asymptotic form is accurate up to large cu —cur (e.g. ,
deviations of 15% for ru —cur=0 3D) In additio.n.
the coefficient po is evaluated (for the first time)
with an estimated accuracy of 5%, Finally, we show
the effect of a more structured core-hole potential on
the nonasymptotic form of the absorption spectrum.

Before presenting the calculational procedure, we
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FIG. 1. Absorption spectrum for a final-state phase shift
8=0.2m. A straight line with slope eND is drawn through
the last open square on the left-hand side and is continued
into the inset. The first open square on the right-hand side
was calculated with N =5, and the last one on the left with
-N =25. For A=3, p,0=0.84, and for A=2, p,0=0.82.

where ufo = g ck is a conduction-electron state lo-

calized about the core state.
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Figure 1 has several striking features. The overall
agreement between the numerically evaluated spec-
trum and the ND po~er law is remarkable. In the
extreme asymptotic limit, eo —so~ ( 10 D, the ex-
ponent a agrees with aND to 5—'7 decimal places. For
co —so~ & D, there are deviations from the ND law,
but they are small.

The deviations from the universal behavior (1)
depend on specific features of the model. To illus-
trate this, we consider in Fig. 2 a weakly momen-
tum-dependent core-hole potential G(k, k') = Go
+(k+k')G~. For co —cur & 10 'D the absorption
spectrum cannot be visually distinguished from the
asymptotic form (the horizontal dashed-dot line).
For larger ao —cvq the deviations from ND law are a
function of the momentum dependence of the core
hole potential.

Finally, we turn to a description of the method
which we believe should be useful for any problem
where the conduction electrons feel a spatially local-
ized perturbation. Central to the method is a reor-
ganization of the conduction-electron energy term in
(3). This two-step procedure has been described ex-
tensively elsewhere. Briefly put, in the first step the
conduction band is divided on a logarithmic scale de-
fined by a parameter A & 1. For all the conduction
states that could be constructed in any interval
A ' & 1 ski & A, only the one most localized on
the core state is kept. in the second step, a basis
transformation converts the conduction-band term
into g„"~a„(f„f„+t+H.c.)(1+A ')/2, where the f„
are fermion operators, fo being the same operator as
defined after (4). For large n, ~„—=DA ")', it fol-
lows that keeping the first N terms in the conduction-
band Hamiltonian will ensure an absolute accuracy of

D A ~ ' for the single-particle eigenvalues of 00.
Accordingly we define a truncated Hamiltonian

1+A-' " '
Hy = X a„(f„f„ii+H.c.)

Ig 0

+Edd d +2Gofofodd

The numerical diagonalization of H~ leads to the
following results: (a) If there is no core hole
(ddt —=0) then the single-particle levels E~I for both
particles and holes are given by

I
'

I

D(1+A-') (6)

(b) If there is a core hole (dd —= 1) then the single-
particle levels EgF are

qt+i = A' ' ", electrons

D(1+ A ') g~+~
——A'+s, holes

(a) I
)iE

(b) F) F2

), E „E
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The quoted approximate forms for the q 's are accu-
rate to three decimal places for all I, except I =o.

The absorption spectrum is then calculated by
"smoothing" the Fermi's "golden rule" result,

) (~ ~r) =2~w' XI (Elfo41I)l'8(~ ~r ~Fw) .

(8)
Here 11) and 1F) are many-particle states construct-
ed from the single-particle levels as described in Fig. 3.
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FIG. 2. Absorption spectrum normalized by the ND form
(1) for four values of the parameter G~ in the momentum-

dependent core-hole potential. In each case 60 was adjusted
to give the same final-state phase shift. The parameter p,o,
which depends on Gi, was obtained by calculating the ab-

sorption rate for co —co& & 10~D and fitti.ng the result to (1)
with ~ =O'ND.

FIG. 3. Initial (a) and five lowest-energy final (b) states
that are constructed from the single-particle energy levels

given in (6) and ('7). The vertical energy axis is scaled by
2A~+ /(1+ A ). The core state, filled (empty) in the
initial (final) state, is also shown as a level far below the
conduction band. In the initial state, only the levels below

the Fermi level (at 0) are filled. In the final state, at least

one of the levels above the Fermi level must be filled.
However, particle-hole excitations are allowed, as in F3 and

F4.
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0'(Nl ~T)
&

p( f)f('0 Nl, ~T) d in(

where the convolution function f(g, »i) is a box

(9)

In particular, the excitation energy o&F~ (equal to
the final-state energy minus the threshold energy r»r)
is the sum of the energies of the filled levels above
the Fermi level plus the sum of the hole energies.
For example, the configuration F3 has an excitation
energy proportional to q~ + q2 + q~. The matrix ele-
ment in (8) is a determinant involving single-particle
matrix elements amongst the eigenstates of the
single-particle energy levels (6) and (7) comprising
the many-particle initial and final states.

The absorption spectrum calculated through (8) is
a series of 5 functions at all co —~T = cuFN as illustrat-
ed in Fig. 4. Thb magnitude of each 8 function is
proportional to ( (F(H„[I)(' and varies considerably
with eopN, depending on the number of particJe-hole
excitations in the final configuration.

To convert these discrete lines into a smooth ab-
sorption spectrum p(»j —

, cur). , we use a numerically
stable smoothing procedure defined by
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and the energies aNI are given by

namely, at the positive final-state single-particle lev-
els. In Fig. 4 we show what configurations are in-
cluded inside the convolution funtion for three sets
of (N, l) chosen so that (N —I)/2 —I is a constant
(viz. , I). For I =0, I, 2 the convoluted absorption
rate is 4.86, 1.45, 1.43, and hence converges rapidly
for increasing I. Generally I =1 provides p,o values
within 5% of the I ~ limit, as is further evidenced
by the inset of Fig. I where the I =1 (for A =3) and
the I =4 (for A =2 and 1.8) points fall on the same
line.

Perhaps the most surprising aspect of the smooth-
ing procedure is that the width of convolution func-
tion is comparable to the single-particle spacing. In-
tuitively one might expect that a much broader con-
volution function would be required. Two arguments
can be offered in support of the smoothing pro-
cedure. (1) For the phase shift 8=0, we can analyti-
cally calculate (9) and show that it is identical for any
A to a spectrum resulting from the convolution with
a much broader smoothing function. Further, the
identical spectra converge rapidly to the continuum
limit at A 1. (2) For finite 8, no analytic calcula-

FIG. 4. Procedure for calculating the convoluted absorp-
tion for three different I =0, 1, 2. [(F~H„~I)l2 is the matrix
element entering the calculation of p, in (8). From (11) it
follows that to calculate the absorption rate for any energy in
the range 0.047D & co —coT (0.222D we have to use one of
the (N, f) pairs: (3,0), (5,1), and (7,2). We show the ab-
sorption lines calculated from (8) for N =3, 5, and 7 and in
each case the convolution function f((,~), shown as a
dashed line, is centered about the appropriate excitation en-
ergy (g+], g2+, q3+) in units of (1/2) (1 + A ') A

tion exists which would allow the A 1 limit to be
taken. Ho~ever, a numerical study in which various
absorption spectra were calculated for A =2, 3, 5, and
9 showed a rapid convergence to a limiting curve for
A going from 9 to 2. This convergence suggests that
the convoluted absorption rates calculated with A =2
or 3 represent approximations accurate to within a
few percent to the rates in the continuum spectrum.
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