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Local-field effects and zone-center phonons in Si, Ge, GaAs, and ZnSe
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We present a microscopic lattice-dynamics calculation of the zone-center phonons in Si,
Ge, GaAs, and ZnSe based on first-principles dielectric matrices. Our results compare
favorably with the experimental data and show that local-field effects are essential to

explain the trends with increasing ionicity.

The calculation of phonon energies by self-
consistent distorted-crystal band-structure
calculations (self-consistent microscopic theory) has
scored in very recent times quite remarkable
success.’? The linear microscopic theory of lattice
dynamics®* on the other side, which is formulated
in terms of dielectric matrices (DM’s), has mainly
been applied in model calculations.*>® Truly
first-principles linear-response calculations reported
to date are only a few”%; they refer to Si only and
give conflicting results on the accuracy obtainable
in this way. Furthermore, according to Ref. 7,
off-diagonal dielectric screening raises the zone-
center TO frequency in Si whereas the opposite
effect is found in model calculations.’ In view of
these facts, a wider first-principles investigation of
phonon frequencies within the linear microscopic
theory becomes necessary. Very accurate
DM’s’~!! have recently been obtained for some
covalent and partly ionic semiconductors. Here we
apply these first-principles DM’s to the calculation
of the zone-center phonon energies. We will
present and discuss our results after having defined
some basic quantities useful in the discussion.
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The dynamical matrix of a zinc-blende crystal is
nonanalytic at =0, and its nonanalytic part is
responsible for the L-T splitting of the optic modes
for G— 0. Its matrix elements at small g are given
by the microscopic theory of lattice dynamics as®
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where the subscripts refer to atoms in the unit cell,
superscripts indicate Cartesian components, {} is
the cell volume, and ¢ is the static electronic
dielectric constant.!? Since our materials are cubic
with two atoms in the unit cell, we only need in
evaluating Eq. (1) the Born effective charges Zg
and the S=£S'’ force-constant tensor 6;5(0) which
is diagonal. In a pseudopotential formulation®’
these quantities are related to the bare pseudopo-

tentials Vs(?j+(_§) and to the inverse dielectric ma-

trix (IDM) as follows:
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where ﬁs is the position of the Sth ion in the unit
cell, Zg is the bare ion charge, and G are
reciprocal-lattice vectors.
Owing to symmetry reasons, the 6 X 6 dynamical
24
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matrix, Eq. (1), factorizes in three 2 X2 blocks, one
for longitudinal phonons and two (identical) for
transverse phonons. These 2 X2 matrices become
very meaningful after transformation to the normal
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coordinates which correspond to the acoustic and
optic modes. Let us define

N=(ZfMc—ZEM)/ (M Mc)? )
wro=—C2(0)/m , 3)

where 1/m=1/M,+1/Mc, and the A4 (C) label
refers to the anion (cation). The quantity 7 is sim-
ply related'? to the macroscopic field E associated
to LO phonons and vanishes by symmetry in the
diamond lattice. The 2X2 dynamical matrices are
then
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where the ® factor assumes the value of O for the
transverse modes and 1 for the longitudinal ones.

The frequencies of the transverse modes are
therefore wrp =0 and wtg given by Eq. (3). For
longitudinal modes the constraint imposed by the
acoustic sum rule (ASR) is very important.® If the
ASR s satisfied we have Z&=—Z{=2Z* and D is
diagonal. The frequencies of the longitudinal
modes are then

wLA=O9

(5

opo=[0to+4m(Z*)/(Qem)]' /2 .

Previous calculations for the diamond structure”*

have proved that it is difficult to satisfy the ASR
in a first-principles calculation without adjustable
parameters. Also in the present calculation the
ASR is not exactly verified, the deviations being of
the same order of magnitude as those found in pre-
vious works. Violation of the ASR results in the
fact that the eigenvectors of the dynamical matrix
correspond to mixed modes and not to pure LA
and LO modes. Such a mixing is not present in
the diamond structure, due to the vanishing of 7.
A further unphysical consequence of ASR viola-
tion, present in both diamond and zinc-blende
structures, is that oy ,50.

The IDM’s of some diamond —'° and zinc-
blende—structure'! semiconductors have previously
been calculated within the empirical pseudopoten-
tial scheme'® both for =0 and §— 0. Bare po-
tentials compatible with this scheme, however, are
not known and we will use the Appelbaum-
Hamann atomic pseudopotentials'®!” in our

TABLE I. Anion and cation Born effective charges
calculated from Eq. (1b).

Si Ge GaAs ZnSe
zr 0.49 0.60 -1.24 -0.96
zX 0.49 0.60 2.19 2.21

lattice-dynamics calculation. A violation of the
ASR is therefore to be expected.

The Born effective charges Zg of Si, Ge, GaAs,
and ZnSe have been calculated including the lowest
113 reciprocal-lattice vectors in the summation of
Eq. (1b). The results are reported in Table I. ASR
violations are comparable to those found in previ-
ous work.!'*!® Their maximum value is 16% in
the case of ZnSe.

The force constants 6,;’3 (0) needed in Eq. (3) in
order to obtain wyg have been calculated following
Eq. (Ic) and using IDM’s obtained from numerical
inversion of =0 DM’s (Ref. 19) of order 113.
Diagonal terms corresponding to 116 additional re-
ciprocal vectors have been added wtih the use of
the free-electron €~ (G, G) values.’ This free-
electron _contribution is well converged; inclusion of
further G vectors contributes less than 1 10%* s—2
to w%o, except for Si where the contribution is
1.9X10* 52, :

The numerical importance of the various terms
in Eq. (1c) contributing to w% is shown in the
upper portion of Table II. The off-diagonal terms,
line (c), are responsible for most of local-field ef-
fects in wpo. We stress that these terms always
give a lowering of the TO frequency with respect to
the diagonal approximation, and that this lowering
is more important in more ionic materials, con-
sistently with the general trend of other local-field
effects within the Ge isoelectronic series.!! The
local-field induced lowering of all TO frequencies
we have found is in agreement with the results of
model phonon calculations in Si,’ and the fact that
the off-diagonal and the diagonal electronic polari-
zation densities are in phase over most of the unit
cell during a TO vibration in Si.!

A calculation analogous to the present one has
recently been reported for Si,” based on a dielectric
matrix of order 59 and on a bare ionic pseudopo-
tential different from the one used here. The main
result of that paper is that off-diagonal screening
increases wto, clearly at variance with our findings.
We have therefore repeated our calculations start-
ing from direct DM’s of order 59 and 89. The di-



24 BRIEF REPORTS 4841

TABLE II. Partial contributions to w%o in Eq. (1c)
(10 s=2%). (a) bare ions; (b) diagonal IDM contribution
up to 113 G vectors; (c) off-diagonal IDM contribution
up to 113 G vectors; (d) diagonal free-electron contribu-
tion from 116 additional G vectors. The lower portion
of the table gives the (b) and (c) contributions resulting
from DM’s of order 59 and 89.

Si Ge GaAs ZnSe

a 415.9 142.1 135.3 108.7
b —137.4 —69.2 —59.5 —33.2
c —14.4 —19.0 —31.5 —64.0
d 329 11.5 11.4 11.6
b(59) —122.3 —63.4 —53.5 —26.3
c(59) 82.1 22.6 13.2 —10.6
b(89) —95.2 —56.2 —46.2 —19.0
c(89) 59.1 11.1 0.9 -22.3

agonal and off-diagonal contributions to wtg are
given in the lower portion of Table II. The off-
diagonal contribution to w%g in Si using a direct
DM of order 59 is + 82.1, a figure close to that of
Ref. 7 (despite the difference in the bare potentials
used), but opposite in sign and very different in
magnitude from that obtained with a DM of order
113. Table II shows that, upon increasing the or-
der of the direct DM, the off-diagonal contribution
to w%o changes considerably also in Ge, GaAs, and
ZnSe. We conclude that large DM’s are needed in
lattice dynamics even when dealing with soft-core
pseudopotentials.!® We remark here that the other
available first-principles calculation within linear
microscopic theory® uses a DM of order 27.

Our final results for the phonon frequencies are
reported in Table III, together with the experimen-
tal data, taken from Ref. 22. The overall agree-
ment is good, considering our first-principles
scheme without adjustable parameters. The most
striking fact is, of course, the nonvanishing of @y 5
-due to the ASR violation discussed above. The
acoustic-optic mode mixing, however, is small:
0.1% in GaAs and 2.9% in ZnSe.

For the optical frequencies we reproduce the ex-
perimental L-T splitting and the trend of the TO
frequencies with increasing ionicity. As discussed
above, the latter mostly results from local-field
contributions. In fact, calculating wtg with the
simple free-electron dielectric function?® we obtain
in THz units 16.52, 8.00, 8.22, and 8.40 in Si, Ge,

TABLE III. Phonon frequencies at the Brillouin zone
center, in THz. For each mode, the first line gives the
result of the present calculation and the second line the
experimental frequency, from Ref. 22.

Si Ge GaAs ZnSe
WTA 0 0 0 0
0 0 0 0
DrA 1.32 0.82 0.74 1.19
0 0 0 0
@70 17.23 8.09 7.47 4.81
15.53 9.11 8.06 6.09
w10 17.23 8.09 8.00 6.51
15.53 9.11 8.75 7.55

GaAs, and ZnSe, respectively. These figures are
quite good for Si and Ge, a fact first noted many
years ago,* but are at variance with experimental
trends in polar semiconductors.

The relative error on the value of wyg is about
10% (20% in ZnSe). The partial contributions re-
ported in Table II suggest that more accurate
values require the use of larger dielectric matrices
(of order ~200). Line (d) of the table shows in
fact that the diagonal contribution due to vectors
beyond the first 113 is non-negligible and therefore
from the same vectors we expect some off-diagonal
contributions which we have neglected here. We
note that available calculations? within the self-

‘consistent microscopic theory have found it neces-

sary to use at least 200 plane waves to achieve suf-
ficient convergence in the total energy.

In conclusion, in this paper we have shown that
lattice-dynamics calculations within the linear mi-
croscopic theory can successfully predict phonon
energies in both covalent and partly ionic semicon-
ductors. This, however, requires the use of larger
dielectric matrices than suspected up to now. The
use of small matrices can even lead to severe quali-
tative errors.
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