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New correlated-effective-field theory in the Ising model
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A new method incorporating the effects of many-body static spin correlations into an

effective-field theory is discussed. The method is based on the introduction of a differential

operator and the concept of the correlated effective field into two exact Calien identities of the

Ising model. The resulting statistical theory is shown to have an accuracy equivalent to that of
the Bethe-Peierls method. It is shown that the correlated-effective-field parameter at the transi-

tion temperature has a universal function of I/(z —I), where z is the number of nearest neigh-

bors.

The Ising problem has been one of the most ac-
tively studied problems in statistical mechanics.
Rigorous solutions have been given for the simple
model for one-dimensional and certain two-dimen-
sional lattices. There is also the series-expansion
method which is valid for temperatures either very
high or very low compared with the transition tem-
perature. '

On the other hand, the first step in the interpreta-
tion of the magnetic properties of solids is usually the
application of an effective-field theory. The theory
can be relied on for an appropriate description of the
major aspects of the phenomena being studied. How-
ever, the theory has some deficiencies, such as the
neglect of the effects of short-range order. Improve-
ments in this respect have been sought by many
methods. 3

A method of incorporating the effects of many-

body static spin correlations in the effective-field
theory has been discussed by Lines, in which he in-
troduced the concept of a correlated effective field. 4

The correlated-effective-field parameter is determined
at the end of the calculation by imposing consistency
of the theory with a sum rule for the susceptibility.
The correlated-effective-field approximation
developed by Lines has been applied to a number of
problems in magnetic systems. ' However, the
method gives an accuracy essentially equivalent to
that of the spherical model, and unfortunately the
sum rule is valid often only in the paramagnetic
phase and in the absence of strong fields.

In this Communication we show a new approach
for an effective-field theory with correlations, includ-
ing the concept of the correlated effective field. Our
method is based on the introduction of a differential

where J;, is the exchange interaction with J„=O.
Formally, Callen6 obtained an exact spin-correla-

tion function as follows:

with

(p, ;) = (tanh(PE;) ) (2)

where ( ) indicates an ensemble average
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In previous papers, ' we introduced the method of dif-
ferential operator into Eq. (2) and discussed a new

type of effective-field theory. The formalism has-
been applied to several problems of crystalline and

operator into two exact Callen's identities of the Ising
model, which gives a better result for a transition
temperature than Line's method and is expected to
have wide applications for problems in crystalline and
disordered Ising magnets. In contrast with Line' s
results the resulting statistical theory is shown to
have an accuracy equivalent to that of the Bethe-
Peierls method, ' although the principle and approach
of our formulation are very different from the
Bethe-Peierls method. It is shown that the correl-
ated-effective-field parameter at the transition tem-
perature has a universal function given by 1/(z —1),
where z is the number of nearest neighbors.

The system consists of N identical spins, p, ; = +1,
arranged on a lattice. The Hamiltonian is given by

g Jig' iPj
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(p;) = exp D Xttpt tanhx]„s
t

with

+[cosh(Dt&) + ptsinh(Dt t)] tanhx~„s
J

(3)

J;
k, r '

where

disordered Ising magnets. Therefore, let us introduce
the differential operator into Eq. (2) as follows:

reduces to, upon using the relation (7),

(r = A cr+Bo.3

with

= 4K1 + 12K2A. 8K2I][t.

and

B =4K (1 —3h.~+2k.')

from which the magnetization rr is given by

1/2
1 —3

8

(8)

(9)

(10)

D= 0
gX

In order to clarify here how the concept of the
correlated field is introduced into the present formu-
lation, we restrict the discussions to the simple case
of a square lattice with nearest-neighbor interactions
J. Then, Eq. (3) reduces to

(p) =Kt $ &p;+s)

+
3, X X $ &P+sP+sP;+s), (4)
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1 =a (T, ) =4K, (T, ) +12K,(T,) ),'
—8K'( Tc) &~ (12)

In this way, in order to calculate the magnetization
and the transition temperature within the approach,
we need to evaluate the correlated-effective-field
parameter A. .

For this purpose, let us use another Callen identi-
ty;

(p;p. ;~s) = (p, ;+,tanh(PE;) )

It is easily proved that magnetization o- is well de-
fined at T =0, or o-=1 at T =0. The transition tem-
perature is determined from

and

K t
= sinh(Dt) [cosh(Dt) ]3 tanhx

~ „0
=

s [tanh(4t) +2tanh(2t)]

K, = [sinh(Dt ) ]' cosh(Dt) tanhx
~ „s

= —[tanh(4t) —2 tanh(2t) ]

(5)

(6)

DPE.= (p, ;+se ') tanhx
~ „p . (13)

from which for a square lattice with nearest-neighbor
interactions J we have

(p p +s)

=Kt+Ki(&p;+s, p;+s, )+(p;+s,p;+s, )+(p +s,p;+s, ))

+K~((p, +s,p;+s, ) + & p+sp, +s, ) + & p;+s, p +s, ) )

where t =JjksT Amathematica. l relation, e af (x)
=f (x + a) was used.

In previous papers, ' the decoupling approxima-
tion or

(p;+s, p;+s, p;+s, ) =-
& p;+s, ) (p;+s, ) & p;+s, )

+ K r (p i+st p t+s&pt+s3 p i+s4)

For a ferromagnetic system, Eq. (14) reduces to,
upon using relation (7) for nearest neighbors of a
particular site i,

o +&(1 —a ) =Kt+3(K +K ) o +Kqa.

(14)

has been used, which corresponds to the Zernike ap-
proximation in a crystalline Ising ferromagnet. ' In-
stead of using the decoupling approximation, let us
introduce the concept of a correlated effective field
into the many-body correlation functions of neigh-
boring spins of a particular site i;

p;+s= (p;+s) +&(p —
&p )) (7)

where A. is a temperature-dependent static correlation
parameter.

For a ferromagnetic system with o. = (p, ;), Eq. (4)

+3 (K) + K) +2K' a~) (1 —a~) g~

—8K' a.~(1 —o.~) X3

+K,(1+3~')(1—~')t' . (15)

Thus, magnetization and the correlated-effective-field
parameter can be determined by solving the coupled
Eqs. (11) and (15).

Now, let us clarify how the transition temperature
is elaborated in this formulation in comparison with
that of Lines's method. At the Curie temperature,
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Eq. (15) reduces to

h., = K)( Tc) +3 [K&( Tc) + Kz( Tc) ] le + K2( Tc) Xe

(16)

0.3

Then, the Curie temperature Tc and the correlated-
effective-field parameter at the transition point A., can
be evaluated from Eqs. (12) and (16). For the nu-

merical evaluation of the Curie temperature it is con-
venient to apply the Sylvester's determinant method
to Eqs. (12) and (16).~ We found that the Tc for the
square lattice is given by

0.2

O. I
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I I

ke T/J
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ln2

which is equivalent to that of the Bethe-Peierls
method. Substituting the result (17) into Eq. (12),
the X, is given by

1

c 3
(18)

In Fig. 1, the behavior of P as a function of tempera-
ture is given.

In this Communication, to clarify our method we

have discussed a simple case of a square Ising fer-
romagnetic system. The approach can be easily ex-
tended to any dimensional lattices. For example, we

can easily prove that for one-dimensional Ising lattice
with nearest-neighbor interactions J the transition
temperature is given by Tc =0. Then, the temper-
ature-dependent correlated parameter X(T) is given

by

(19)

with

(20)K(T) = —, tanh(2t)

from which we can easily understand that the X( T) is

the function of decrease from A. =1 at T =0 as tem-
perature increases. In the same way as the square
lattice, we have evaluated the Tc and A., for simple
cubic, body-centered cubic, and face-centered-cubic
ferromagnetic systems with nearest-neighbor interac-
tion J. We found that the Tc and A., are given by

FIG. 1. Temperature dependence of A. for a square lattice.

where z is the number of nearest neighbors. The
result (21) is essentially equivalent to that of the
Bethe-Peierls method, It is interesting that P, is

given by the universal function of z.

Within this method we can easily formulate the
susceptibility, internal energy, and specific heat; the
specific heat of a ferromagnetic lattice with nearest-
neighbor interactions J is given by

=2t'(I —Z) o. + (I —o') t'
C'p Bt 9t

(23)

with

A'Zkg
Cp=

2

For the one-dimensional lattice, the specific heat is
given by, upon using Eq. (19),

C z BX 2tzsech'(2t)
Nks fit I + sech (2t )

Finally, it is important to remark that the advan-
tage of our method is its conceptual and mathemati-
cal simplicity. This new type of correlated-effective-
field theory is expected to have wide applications for
the problems in crystalline and disordered Ising mag-
nets. ' A detailed discussion of the method is

planned to appear in a forthcoming paper.

and

kq Tc 2

J ln [z/(z —2) ]
(21)

(22)
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