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Structural-energy calculations based on norm-conserving pseudopotentials
and localized Gaussian orbitals
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The total energy, equilibrium lattice constant, and bulk modulus are calculated for dia-
mond, silicon, and GaP. These ground-state calculations are carried out in a localized
Gaussian basis (20 orbitals per atom) using a real-space formalism devised for defect crys-
tal studies. High-precision norm-conserving pseudopotentials simulate the interaction of
the valence electrons with the atomic cores. The results are typically within 1 —4% of
experiment, which is not good enough to determine absolute cohesive energies but should
be suAicient for studies of structural deformations and elastic properties. An analysis and
comparison with other calculations show that the errors arise predominantly from the use
of a minimum local-orbital basis and not from pseudopotentials.

I. INTRODUCTION

The newest first-principles pseudopotentials, '

derived and used within the local-density-
functional (LDF) approximation for exchange and
correlation, have recently been used to calculate
the ground-state total energy of periodic crystals
with sufficient accuracy to predict lattice constants,
compressibilities, cohesive energies, phonon fre-

quencies, and even to account for crystal struc-
tures. The calculations were carried out in a
plane-wave basis using a momentum-space formal-
ism. This representation makes optimal use of the
three-dimensional periodicity of the solid. There is
interest, however, in systems such as surfaces and
localized defects in solids where the full periodicity
is absent. Although periodicity can be artificially
restored to such systems by the device of the large
unit cell, i.e., a periodic array of surfaces or de-

fects, it is not evident that this is the best way of
studyirig such systems. Indeed, recent progress has
been made using the Green's-function technique
in which the advantages of periodicity are traded
for the advantages of a smaller volume of crystal
over which calculations have to be made.

There are computational difficulties in using the
Green's function constructed from states expressed
directly in a plane-wave basis. As a consequence,
virtually all of the recent work has used a Green's
function described either in terms of matrix ele-
ments with respect to some localized and necessari-
ly incomplete basis, in terms of a decomposition
using such a basis as an intermediary construct, or

P„(k,r)= gc, (n, k)P, (r), (1.2b)

where BZ denotes Brillouin zone. Before such a
Green's function can be used with any confidence
in calculating the total energy of some defect, it is
necessary to verify that the orbital set is sufficiently
complete to calculate the total energy of the perfect
crystal.

In this paper, we present calculations of the total
energy, lattice constant, and compressibility of the
crystalline semiconductors silicon, gallium phos-
phide, and diamond which verify the completeness
of a local orbital set. They are carried out using
Hamann-Schliiter-Chiang (HSC) pseudopotentials, '

employing only localized Gaussian orbitals in the
basis set. Using far fewer orbitals per unit cell
than the number of plane waves reported in the
momeritum-space calculations and using the same
potential, we obtain comparable accuracy. This is
not a claim that the Gaussian orbitals are inherent-

in terms of a direct expansion with respect to such
a basis, e.g.,

GE(r r )= QP, (r)G b(E)gb(r )
ab

Such an expression is obtained directly when the
Green's function is expressed in terms of the Bloch
waves of the perfect crystal while the Bloch waves,
in turn, are expressed in terms of these same local-
ized orbitals as a basis:

d3kg„(k,r)f„(k,r')*
GE(r, r') =

sz (2n. ) E+ig E„(k)—
(1.2a)
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ly more eAicient in the perfect crystal calculation.
Indeed they are not: the real-space formalism we
use (because it is better adapted to the localized or-
bitals) is more cumbersome for the perfect crystal
than is the momentum-space formalism. The lo-
calized orbitals and real-space formalism have de-

finite advantages when defect crystals are being
studied, as we shall show elsewhere.

In the second section of this paper, we describe
the real-space formalism used for these total-energy
calculations. In the third section we briefly discuss
some characteristic features of the HSC pseudopo-
tentials and describe a method of fitting Gaussian
functions to the numerically derived potentials.
The last section contains a discussion of the calcu-
lated structural parameters.

As a result, it can also be written as

E«&= ge;+Vr 4—+ f p(r)(e„, p„—,)dr .

(2.4)

The HSC form of the bare-ion pseudopotential' can
be regarded as being made up of three components:
a short-range nonlocal l-dependent component, a
short-range local (i.e., I-independent) component,
and a long-range Coulomb component

UJ'(r, r') = g Ug (
I
r R—g I

)Pi(r —R„)
l

(2.5)

II. REAL-SPACE FORMALISM
FOR THE TOTAL ENERGY

E«, T+ V+4——+ Vr+ f E"'(r)dr,

T= g f g;(r) ( —,'V )P;(r—)dr,

(2.la)

(2.1b)

The total-energy functional in local-density pseu-

dopotential theory,

P~ is the projection operator for angular momen-

tum l with respect to the center at RA. Both
short-range components are fitted to Gaussian
functions. The Coulomb part Pq arises from a
smeared Gaussian distribution of charge with
center at RA, Gaussian decay constant aA, and to-
tal charge Qq.

(2.6)

V= g f f g;(r)'g UJ'(r, r')g;(r')dr dr', p„(r)=f, gx(r')—
I
r r'I— (2.7a)

6f

Q~Qa

~ a~~

(2.1c)

(2.1d)

(2.1e)

(Qz /r)erf(ra& },
where

2erf(x)—= f e "du .
7T 0

(2.7b)

E"'(r)=p(r)e„,[p(r)],

p(r).—= g P;(r)'g;(r),

(2.1fl

(2.1g)

It is convenient to define an "ionic charge distri-
bution" pz(r) by means of

pr«)= gs'~(
I
r —R~—I

) . (2.8)

(2.2)

where

is made stationary if the wave functions satisfy the
Schrodinger-type equation

[ , V'+ P(r)+ U~(r)+—p„,(r) e(]gg (r) =0, —
We can then write the Coulomb terms in Eq. (2.4)
as

Vz —@=—, f Vr(r)[pz(r) p(r)]dr—

and

p(r)=f, p(r'),

P (r)P;(r)= g f UJ'(r, r')f;(r')dr', (2.3b)
A

where

A 8+A A

(2.9)

(2.10a)

(2.3c) is the Hartree potential generated by an overall
neutral distribution of charges and where
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QA QB 1/2
JAB = erfc(RAByAB )

Rzz
(2.10b)

(2.10c)

In deriving (2.9} and (2.10},the following in-

tegrals are used:

gA(r —RA
~

)gB(
~

r' RB
~

)—f dr dr

where

QA QB
erf(RAByAB ), (2.11a)1/2

R~a

|AB =erBQB l(QA +EXB ) (2.11b)

—Qerfc(x)=1 —erf= f e "dig .
X

(2.1lc)

The term —Cz arises because in the Coulomb in-
teraction of pI(r) with itself, core A interacts not
only with all other cores B but also with itself.
This self-interaction does not occur in Eq. (2.1e)
and must be subtracted out. The term Jzz arises
because cores A and 8, being smeared distributions,
do not repel each other as strongly as the point
charges in Eq. (2.1e) do. JAB is the difference
between the repulsion of the point charges and the
smeared charges. It vanishes very rapidly with
separation Rq~.

The potential Vr(r), defined by Eq. (2.10a) is
also part of the interaction P(r)+ Ui"(r} which ap-
pears in the Schrodinger equation (2.2}. In an in-
finite crystal, the definition Eq. (2.10a) is incom-
plete because there is no unambiguous way to as-
sign a reference level for Vr(r) This is no.t a real
problem since one is free to regard the crystal as
being a large but finite molecule with surfaces.
The reference level for the potential Vz (r), which
appears both in Eq. (2.2) and [via Eq. (2.9)] in Eq.
(2.4), is in that case zero as reap. Note that a
constant potential, Vp, can be added to VT(r)
without affecting E„,for a neutral crystal. Such a
potential shift in the Schrodinger equation (2.2)
shifts every eigenvalue e; by Vo. This produces a
shift of amount VON, where N is the number of oc-
cupied states, in the first term in Eq. (2.4}. There
is a compensating shift in the term VI —4? arising
from the fact that, in using Eq. (2.9), we have

I Vp[pl(r) p(r) ]dr = —VpN—.

The point is that any reference value can be used
for Vr(r} One has to b. e certain only that the
eigenvalues e; and the Coulomb term VI —@are

both evaluated using the same definition of VT(r).
We go to the limit of an infinite crystal and, for
convenience only, set the additive constant Vo
(whose value is not really known) by the condition

(2.12}

Finally, we rewrite Eq. (2.4) to be the energy per
unit cell. All spatial integrals are restricted to a
single unit cell and all single sums over A are con-
fined to the atoms within a single unit cell. All
double sums over A and B have B running over the
whole crystal and A confined to a single unit cell.
Since the potential VT(r) in Eq. (2.10a) arises from
a neutral unit cell, the integral in Eq. (2.9) over the
whole crystal converges rapidly. If the electronic
charge distribution p(r) is fitted to Gaussian orbi-
tals, ' this integral is analytic and consists of
terms of the form given in Eq. (2.11a). Similarly
all integrals of Hamiltonian or total-energy matrix
elements, with the exception of those involving e„,
or p„,can be evaluated analytically involving on-,
two-, or three-center integrals with Gaussians and
error functions. Among those, the three-center
Hamiltonian matrix elements connecting two
Gaussians orbitals with a nonlocal I-dependent
Gaussian pseudopotential are most involved. Their
evaluation, though analytic, is sufficiently involved
that it shall be described elsewhere. ' The exchange
correlation integrals in Eqs. (2.2) and (2.4) involve
nonlinear functionals (e„,—p„,) as, e.g., p' in the
simple Slater form. They are most conveniently
numerically evaluated by summing over fine space
grids covering the unit cell. '

III. GAUSSIAN FITTING OF
NORM-CONSERVING PSEUDOPOTENTIALS

The recently propos'ed HSC pseudopotentials are
derived from self-consistent first-principles atom
calculations. The pseudopotentials are constructed
to reproduce the chosen atomic reference state ex-
actly, i.e., all valence eigenvalues are identical and
all valence wave functions agree identically outside
the core region. The pseudo-wave-functions are
nodeless and normalized and are used to self-
consistently screen the pseudoatom. Through the
relation

R—2rr (rg) (in')' =4m f r g dr,
r=Z,

(3.1)

the exact norm conservation guarantees that first-
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energy derivatives of the logarithmic derivatives
(in))' are identical for pseudo- and full-core wave
functions. This implies that for radii r yR„the
phase shifts 4(E) for pseudo- and full-core atoms
agree in their value and their slope at eigenener-
gies. For energies deviating from these atomic
eigenenergies, the error in phase shift is small be-
cause the slopes agree at the eigenenergies. This
phase-shift relationship, a consequence of norm
conservation, guarantees optimum transferability of
the pseudopotentials to different chemical environ-

ents. Various calculations '" employing the
HSC potentials confirm this essential property.

The procedure, outlined in Ref. 1 to produce
these potentials, is purely numerical and yields l-

dependent bare-ion pseudopotentials in terms of
numerical values on a chosen grid of atomic radii.
Typical curves for the elements C, P, Si and Ga
are shown in Fig. 1. This figure illustrates the
short-range nature of the nonlocality of I
dependence and simple —Z/r behavior at large
distance. The potentials can thus be regarded as
being made up of three components, a long-range
Coulomb component, a short-range I-independent
component, and a short-range I-dependent correc-
tion, as suggested in Eq. (2.5). The Coulomb part
is chosen to arise from a smeared Gaussian distri-
bution of charge, yielding the form given in Eq.
(2.7b). It smoothly approaches (1/n)4~op a. s
r~0. The Gaussian decay constant ao can either
be chosen to minimize the remaining short-range
pseudopotential components or be determined oth-
erwise, e.g., by considering the size of the underly-

ing atomic cores.
In practice we choose one particular l com-

ponent, e.g., Io ——O, as the local potential and con-
sider all other (V~ —V~ ) components as nonlocal

corrections. The diA'erences between the smeared
Gaussian Coulomb potential and the chosen local
component and the nonlocal corrections are fitted

by nonlinear least-squares procedures to a series of
Gaussian functions (five in the present case). The
pseudopotentials thus have the form
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FIG. 1. Norm-conserving pseudopotentials for C, Si,
Ga, and P. The potentials are derived according to the
procedure outlined in Ref. 1.
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TABLE I. Fitting parameters (in a.u.) for l-dependent pseudopotentials of C and Si. The
errors introduced by the fitting as reflected in eigenvalues and total energies are indicated.

a;
Vi p(local)

Ci a; Ci ci

C
ap ——2.S

0.968 03 0.289 38
2.04000 —6.757 15
3.78000 40.61345
5.52000 —42.285 21
7.26000 14.335 95

2X 10-4
Sx10-'

0.50441 —0.11834
2.04000 13.107 70
3.78000 —98.256 30
5.52000 130.422 09
7.26000 —51.73041

—3X 10-4

1.692 00 —0.262 74
2.04000 —0.39033
5.17200 —75.684 83
5.622 88 83.56471
7.26000 —10.348 38

—1X10-'

Si

ap ——2.S

a~ (a.u. )

~Etot ~Etot

0.92600 23.376 90
1.10000 —S7.127 10
1.77000 157.079 00
2.239 00 —168.91500
2.81700 52.656 200

—4X�1-'
06x�-'

0.926 00 —21.71600
1.10000 51.928 00
1.77000 —127.10800
2.23900 136.71400
2.81700 —41.928 00

—1X10-4

0.788 00 —35.055 00
0.941 00 81.09700
1.562 00 —175.208 00
2.20400 198.861 00
2.93600 —74.287 00

—1X10-4

The quality of the fits is monitored by re-
assembling the Gaussian expanded pseudopoten-
tials, using it to solve Schrodinger's equation for
the atom self-consistently and comparing eigen-
values, eigenfunctions, and atomic total energies to
the original values. Calculated fitting parameters
and associated errors are given in Table I for the

elements C and Si and in Table II for Ga and P.
Note that the local component is chosen to be the s
potential for C and Si and the p potential for P and
Ga. This choice is not necessary. Since angular
momenta I & 2 are described by the local com-
ponent, it may be advantageous to use the higher I
(the p or d potentials rather than the s potential) as

TABLE II. Fitting parameters (in a.u. ) for l-dependent pseudopotentials of Ga and P.

a;
Vi i(local)

a;
aVi=p

Ci a; Ci

Ga
ap ——2.5

he (a.u.)

EE„t/E„t

0.97446 26.833 334
1.25004 —105.984 920
1.805 62 244.569 894
2.361 19 —257.147758
2.91677 94.603 675

1X10-4
8X 10-4

0.473 25 3.S19321
0.704 10 —33.S46 745
0.93495 86.145 629
1.165 81 —81.372 113
1.396 66 29.460 517

4x 10-4

0.426 34 1.084243
0.767 742 4.698 937
1.10849 11.617661
1.449 57 —13.730063
1.790 64 5.607 739

—SX10-'

P 1.796 30 —32.273 329 1.038 26 —1.201 421 1.038 27 130.003 518
ap 2 5 2.271 62 91.074 584 1.868 86 14.560 759 1.147 32 —217.828 930

3.281 22 —120.711236 2.69947 = 15.526091 1.657 24 186.707 831
4.290 83 98.242420 3.53008 10.077 443 2.167 18 —147.714424

5.30044 —33.069 725 4.36068 —1.978 122 2.677 08 47.183376
he (a.u.) 2x10-4 1x10 4 SX10-'

8X10
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TABLE III. Gaussian decay lengths (in a.u. ) em-

ployed in the minimum basis set for valence states. The
values approximately minimize the total crystal energy.

0.35
1.40

Si

0.2
0.5

0.2
0.6

0.3
0.8

/gw ~
~lvi

/(fbi'it&

local component. An exception of course is carbon
which has no p-like core electrons. The nonlinear
fitting parameters in Tables I and II are by no
means unique and similar quality fits can be ob-
tained with different sets of parameters.

GaP

IV. CHARGE DENSITIES, BAND STRUCTURES,
AND TOTAL ENERGIES

As outlined in Sec. I, it is of considerable in-
terest to represent electronic valence wave func-
tions by a minimal local basis. Based on the ex-
perience gained in recent Green's function defect
calculations, we expand the crystal wave function
as superposition of atom-centered Gaussian orbitals
with two decay lengths each:

II((C

P=gf (r —R ), (4.1)

with

These two decay lengths should approximately cor-
respond to (i) the short-range decay of f in the
core region to account for features in the pseudopo-
tential, and (ii) the longer-range formation of bond-
ing charges. For example, we found for Si that
a~-0.6 a.u. corresponding to an effective core ra-
dius of r, =1.3 a.u. and that a2-0.2 a.u. corre-
sponding to one-half of a bond length d/2=2. 2
a.u. While the structural quantities to be discussed
below depend only weakly on a~ 2, we nevertheless
optimize their values by minimizing the total ener-

gy per unit cell. The employed values of a are
given in Table III. For each decay length a total
of 10 angular functions KI(r ) are considered, viz. ,
s, p, d, and the s-like "trace" of d states, r. This
amounts to 20 orbitals per atom or to a 40X40
secular system for diamond and zinc-blende crys-
tals. This is considerably smaller than the —170
plane waves used by Yin and Cohen.

To obtain the total energy E =E(a) as a func-

FIG. 2. Charge-density contours of diamond, silicon,
and GaP. The bond-charge maxima are 0.30, 0.08, and
0.11 a.u. , respectively, and the contours are subdividing
these maximum values into 20 steps.

tion of an assumed lattice parameter a, self-
consistent band-structure calculations are carried
out at each step. The Hartree-exchange screening
potential is evaluated in Fourier space in analogy
to plane-wave or mixed-basis calculations. ' In
analogy to Yin and Cohen's calculations on Si we
use 10 special k points in the irreducible wedge of
the Brillouin zone for k-space sampling. Figure 2



24 STRUCTURAL-ENERGY CALCULATIONS BASED ON. . . 4751

TABLE IV. Band-structure eigenvalues calculated from HSC pseudopotentials using plane waves or local orbitals as
bases. For silicon, comparison is also made to a pseudopotential LAPW calculation. LAPW full-core results are shown
for diamond and silicon. All calculations are self-consistent using Wigner exchange and correlation. (LO denotes local
orbital).

Diamond
Pseudopotential

PW's 40 LO's
full-core
LAPW

Silicon
Pseudopotential

170 PW's K) LO's LAPW
full-core
LAPW

GaP
Pseudopotential

40 LO's

I )

I 2s.
I is.
I2,
X)
Xg
X)
X4
L2,
L)
L3,
Li
L3

—21.45
0
5.40

13.38
—12.65
—6.22

4.63
16.73

—15.57
—13.35
—2.81

' 8.92
8.31

—21.68
0
5.59

13.21
—12.90
—6.43

4.65
16.87

—15.79
—13.73
—2.86

8.90
8.47

—21.36
0
5.66

13.34
—12.61
—5.82

4.78
17.30

—15.53
—13.27
—2.44

8.90
8.56

—11.95
0
2.54
3.39

—7.80
—2.92

0.62
9.99

—9.57
—7.01
—1.23

1.52
3.37

—11.72
0
2.64
3.51

—7.66
—2.74

0.83
10.32

—9.43
—6.85
—1.13

1.64
3.42

—12.01
0
2.53
3.13

—7.84
—2.81

0.59
10.32

—9.65
—7.04
—1.15

1.40
3.41

—12.02
0
2.49
3.18

—7.84
—2.82

0.55
10.32

—9.64
—7.06
—1.16

1.40
3.37

I )

I &s

r,
I~s
X)
X3
Xs
Xl
Li.
L2
L3
Li
L3

—13.10
0
1.40
4.07

—10.60
—6.80
—2.58

1.43
—11.35
—6.65
—1.06

1.91
4.78

shows valence charge density contour plots for dia-
mond, Si, and GaP. The charge maxima in the
bonding region are 0.30, 0.11, and 0.08 a.u. for dia-
mond, GaP, and Si, respectively. For silicon the
charge contours can be compared quantitatively to
calculations employing a converged plane-wave
set' and to full-core linearized augmented, plane-
wave' (LAPW) calculations. Deviations of —1%
appear between the two calculations (40 Gaussians
versus 170 plane waves) employing the HCS pseu-
dopotential, while errors of -3' outside the core
region occur with respect to the full-core results.

Qualitatively, the charge contours exhibit the
characteristic two-peak structure in the bonding
charge for diamond and exhibit the elongated form
for silicon.

In Table IV we compare calculated band-

structure energies at some selected high-symmetry
k points. As can be seen, the local orbital and
plane-wave pseudopotential results deviate from
each other by less than 0.25 eV for diamond and
silicon. This confirms the adequacy of our Gauss-
ian basis set. No plane-wave results are currently
available for GaP using HSC pseudopotentials. We

TABLE V. Comparison of calculated and measured structural properties of diamond, sil-

icon, and GaP.

E;„{Ry) ao (A) B (10' erg/cm )

Diamond
Local orbitals
Plane waves (Ref. 12)
Experiment (Ref. 14)

Si
Local orbitals
Plane waves {Ref. 3)
Experiment {Ref. 14)

—11.107(3%)
—11.366
—11.384

—7.734(2%%uo)

—7.909(—0.1%)
—7.919

3.69(3%)
3.60
3.57

5.52(2%)
5.46(1%)
5.43

4.56(4%)
4.41
4.42

1.02(3%)
0.97(—2%)
0.99

GaP
Local orbitals
Experiment (Ref. 14)

—8.790(1%%uo)

—8.836
5.16(—5%%uo)

5.45
0.92(4%%uo)

0.89
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also have compared the C and Si results with the
full-core LAPW calculation of Hamann. ' The de-
viations are typically within -0.3 eV, except for
some high-energy bands where errors of up to 0.6
eV can occur. The deviations from the full-core
LAP% results arise from the combination of the
pseudopotential approximation on one hand, and
the difFerent numerical techniques used to solve
Schrodinger's equation on the other hand. These
two efFects have been studied separately for sil-
icon, " for which LAPW results are given using
identical HCS pseudopotentials. A comparison of
the values in Table IV clearly shows that the
difFerence in numerical treatment introduces the
larger error (-0.2 eV) while the pseudopotential
approximation is only responsible for errors of
-0.05 eV.

The total energies are calculated for several

(3—5) lattice constants ranging from 0.95 to 1.1
ao. The minimal total energy, the equilibrium lat-
tice constant, and the bulk modulus are determined
from quadratic fits to the calculated total-energy
values. The results are given in Table V and com-
pared to Yin and Cohen's ' plane-wave results
and experimental values. The experimental values
for the minimum total crystal energy are calculated

from the sum of atomic valence ionization ener-

gies, ' the cohesive energy, ' and the zero-point vi-
bration energy. ' The agreement between our calcu-
lated values and experiment is generally good
(1—4%), but not as good as the converged plane-
wave results of Yin and Cohen. ' In particular,
our energy parabolas are shifted upwards, almost
rigidly, by about 2 —4 eV as a consequence of the
limited variational freedom available with 20
Gaussians per atom. While this shift, which
amounts to only 2 —3% of the total energy, does
not allow us to determine cohesive energies, it does
not afFect adversely the computation of lattice con-
stant and bulk modulus. This is the key result of
our study and demonstrates that norm-conserving
pseudopotentials (e.g., of the HSC type) combined
with a reasonably sized Gaussian basis can success-
fully be used to self-.consistently calculate structural
properties. This result is a prerequisite for at-
tempting structural total-energy studies of recon-
structions at surfaces or around defects.
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