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The evaluation of carrier densities from the Hall effect depends very sensitively on the
values of the Hall factors r„and r~. This sensitivity is particularly pronounced in the inter-

mediate temperature region of p-type silicon crystals. This is due to the fact that there are
generally two different carrier concentrations which lead to the same Hall coefficient. A
general theory of Hall factors is presented, taking details of the band structure and

phonon-scattering mechanisms of silicon crystals into account. A somewhat more stringent

approach to the solution of the Boltzmann equation is used in this paper than that of taking
the relaxation-time ansatz for granted. Of special importance is the third split-off valence

band, which introduces an additional temperature dependence to the Hall factors. Prob-
lems connected with interpreting the solution of the Hall formula are examined and

resolved. The theory is applied to measurements on lightly doped n- and p-type silicon sin-

gle crystals with doping concentrations of about 10' cm ' in the temperature. region
between 90 and 450 K. The deformation-potential constants are determined and are found

to be in fair agreement with previously published values.

I. INTRODUCTION

The concentration of free electrons n and free
holes p are important parameters for the characteri-
zation of a semiconductor such as silicon, which is
one of the most commonly used materials in
modern solid-state electronics. In addition, from a
theoretical point of view, silicon is one of the best-
understood semiconductors and therefore an ap-
propriate material for testing the current state of
semiconductor theory.

The standard method for determining carrier con-
centrations is the measurement of the Hall coeAi-
cient R~ and the calculation of the carrier densities

from this experimental quantity by use of the Hall
formula'

] b r„n —r&p
Ra ————

2e (bn+p)

where e is the electronic charge, r„and rz are the
Hall factors for electrons and holes, respectively and
b =@~"'Ip&~' is the ratio of electron drift mobility
pd"' to hole drift mobihty p~ '.

In the extrinsic temperature region this formula
reduces to the well-known and widely used form
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for n-type and p-type materials, respectively. In
principle, the Hall factors r„and r& are temperature
dependent and involve the details of band structure
and scattering mechanisms. In practice, the Hall
factors r„and rz are usually assumed to be indepen-
dent of temperature and values such as r„=r&

——1

or r„=r~ =3nlg .are used. Since in Eq. (2), the
Hall factor appears only as a multiplicative factor,
one finds an acceptable carrier concentration in-

dependent of the accuracy of r„and r&. However,
if one attempts to use the Hall formula, Eq. (1), for
mixed conduction in the intrinsic and intermediate
temperature region, one finds no satisfactory solu-
tion for the carrier densities. This has been previ-
ously pointed out by two of the authors. They
showed that the constant values r„=rz

——3~/8 as
well as the temperature-dependent Hall factors
given by Messier and Flores lead to a surprising
discontinuity in the temperature dependence of the
hole density close to the intrinsic temperature re-
gion. Their result is shown in Fig. 9 of this paper.
The reasons for this discontinuity are discussed in
Sec. IV, where it is shown that the evaluation of
carrier concentrations in this temperature region
depends very sensitively on the correct values of the
Hall factors. In addition, the difficulty connected
with finding the true solution of the Hall formula,
Eq. (1), is considered. This problem arises from the
fact that in general two different carrier concentra-
tions lead to the same Hall coefficient R&. These
considerations are similar to those discussed in the
monograph by Putley' and are represented in

graphical form similar to the well-known Dunlap el-

lipse. '

With respect to the problem of acceptable Hall
factors r„and r&, a complete solution is still not yet
available. Well-known treatises such as those by
Beer and Conwell and the review articles by
Rode and Wiley treat the principal aspects of
transport theory and galvanomagnetic effects at a
fundamental level, but they do not give the Hall fac-
tors in a sufficiently detailed and explicit form so
that they can be used in routinely solving Eq. (1).
Furthermore, compilations of silicon data, such as
those by Wolf, ' give no relevant information on the
Hall factors. Thus, appropriate theoretical formula-
tions for obtaining Hall factors in the intermediate
and intrinsic temperature region are still necessary.
Such calculations are considered in this paper and
are given in Sec. II.

In Sec. II we shall calculate the transport coeffi-
cients for silicon for both the conduction and
valence bands. In the simplest approach for spheri-

cal energy bands, electrons and holes are scattered
by acoustic phonons with small wave vectors only,
from which r„=r& ——3m/8 results. ' In fact, in
lightly doped silicon crystals (doping concentration
& 10' cm ), impurity scattering is ineffective and
phonon scattering is the main scattering mechanism.
We consider two kinds of electronic transitions in
the conduction band (cf. Herring and Vogt, "Her-
ring, ' and Conwell ): (a) intravalley acoustic-
phonon scattering and (b) intervalley phonon
scattering. In the valence band we consider the
scattering of holes by acoustic and optical phonons.
The transition probabilities resulting from these
electron-phonon interactions are obtained by the
deformation-potential method introduced by Bar-
deen and Shockley' and Meyer. ' With respect to
the specific band structure of silicon, we use for the
conduction band the model of six equivalent ellip-
soids in the Brillouin zone. The valence band is
considered to consist of three spherical bands with
different effective masses, one of which is split off
by spin-orbit coupling. The coupling of the degen-
erate valence bands is also taken into account.

With these transition probabilities, the transport
coefficients are obtained from the distribution func-
tions as solutions of the Boltzmann equations. A
somewhat more stringent approach to the solution
of the Boltzmann equation is used in this paper than
that of taking the relaxation time ansatz for granted.
The integral equations which result from the
Boltzmann equations are solved by expanding the
distribution functions in terms of spherical harmon-
ics. By taking only linear terms into account, these
solutions may be written in terms of the relaxation-
time formalism.

Our method leads to new results for the Hall fac-
tors r„and rz. The Ha11 factors become tempera-
ture dependent because of temperature dependent
scattering mechanisms. For the valence band the
temperature dependence is enhanced due to the
split-off band.

The deformation potential constants are deter-
mined by fitting the theory to experimental results
in Sec. III. Experiments have been performed in
the temperature range 90—450 K at a magnetic in-
duction 8, . = 1.3 T for two single dislocation-free
crystals with doping concentrations less than 10'
cm . The deformation potential constants thus ob-
tained are in fair agreement with values given by
Murase et al., ' Costato and Reggiani, ' and Wiley
and DiDomenico. ' With these deformation poten-
tial constants, the Hall factors r„and rz are calcu-
lated. It is shown that with these new values of r„
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and rz it is still not possible to obtain a continuous
carrier concentration in the intermediate tempera-
ture region. The fundamental underlying problem
is discussed in Sec. V. It is hoped that this paper
will contribute to a better understanding of a prob-
lem which at first sight appears to have been solved
but which by closer examination is revealed to be
largely unsolved in point of fact.

II. THEORY OF TRANSPORT COEFFICIENTS

0
0123

R~ ——

((r) i)'
(4)

The total homogeneous current density j in the sum
is

of the partial contributions j"of the various energy
bands l,

In order to calculate the transport coefficients, we
shall treat the conductivity tensor as a coupling
parameter between current density j and electric
field E. In weak external fields, it is appropriate to
expand the conductivity tensor with respect to the
magnetic induction:

3 1,2,3

j,= goj)&(+ g ~j'imam+
1=1 l, m

Here B is the applied magnetic induction. The
Hall coefficient RH, with the cubic symmetry of
the crystal taken into account, ' may be written for
small magnetic fields in the form given by Lax and
Mavroides':

If the bands are coupled, as in the case of the light-
and heavy-hole band of Si, one has to solve a system
of coupled Boltzmann equations. ' ' The field term
is given by

(
~

)+ —E+—v
' XB V-f"(k),

and the collision term is given by

(i)

, g f [ W,,(k,k)f(J)(k )
(2m )

—W(J.(k,k')f"(k)]d k' .

For the case of the conduction band, the indices i
and j are irrelevant, since this is an isolated band.
The transition probability from the initial state k of
band i to the final state k' of band j is denoted by
W~(k, k'); 0 is the volume of the crystal. In the
collision term, the influence of the Pauli principle
has not been taken into account. This is permissible
under those conditions in which Boltzmann statistics
can be applied. The transition probabilities and
the solution of the Boltzmann equation depend on
the band structure.

In the following, we first consider the conduction
band (Sec. IIA) and then the valence band (Sec.
II B). For each band, we first give the transition
probabilities as taken from the literature and then
use these transition probabilities to solve the
Boltzmann equation and obtain the distribution
function. Finally (Sec. II C), we present formulas
for the various transport coeAicients of interest.

with

j "'=+e v "(k)f"(k)dk,
(2')

v '(k)= —V),e"(k),k

Qf (I) gf (()

+ =0.
field l co11

where v '( k) is the carrier velocity, e"(k ) is the
energy of the band i, 2/(2ir) is the density of states,
and e is the electronic charge (+ sign for holes, —
sign for electrons).

The central problem in transport theory is the
determination of the distribution function f"(k ) as
a solution of the Boltzmann equations

A. Conduction band

The constant-energy surfaces for each of the six
equivalent ellipsoids of the conduction band in Si
are given by

2 2 2 2

e(k)=—,+, +
m 1 m2 m3

(10)

where m;*, i = 1,2,3, are the effective masses my or
m ~~, depending on the ellipsoid considered, with the
numerical values given by Costato and Reggiani. '

1. Transition probabilities

The main scattering mechanism in pure Si is the
phonon scattering. In the conduction band this
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mechanism produces three kinds of electronic tran-
sitions (cf. Herring and Vogt, "Herring, ' and
Con well:

(a} intravalley acoustic-phonon scattering,
(b) intervalley phonon scattering, and
(c) intravelley optical-phonon scattering.

where Ft(8) are the following functions:

F,( 8}=Ed +E„cos8cos8,

F2(8)=Eg cos8 Sll18,

F3(8)=E„cos8sin8 .

(12)

It has been shown by Harrison that process (c) is

negligible in zeroth order. Furthermore in pure Si,
impurity scattering is ineffective and shall be
neglected.

The transition probability for acoustic-phonon
scattering W (k,k') is given by

3
W"(k,k') = g Ft (8)5{@(k')—e(k)),

~=i AQpv

E~ and E„are the deformation potential constants
for dilatation and uniaxial strain, respectively, as in-
troduced by Dumke, the polar angle 8 is that
between the phonon wave vector and the main axis
of the energy ellipsoid, u is the average sound veloci-
ty as defined by Wiley, and p is the crystal densi-

ty. The term cos28 as a function of the azimuthal
angles P,P' and the polar angles a,a' of the wave
vectors before and after the scattering process is
given by Herring and Vogt":

2 = (cosP' —cosP)cos 8=
2 tit ilt 2{cosp' cosp)—+(my jm

~~
)[sin p'+ sin p —2sinp'sinpcos(a —a')]

By the selection rules of Lax and Hopfield, the following three scattering processes contribute to the. interval-
ley phonon scattering:

LA g type with T~-307 K,
LA f type with T2-540 K,
TO f type with T3=680 K,

(14)

where T; is the temperature corresponding to the phonon energy fico; as given by Costato and Reggiani. ' New
selection rules have been given by Lax and Birman and by Streitwolf which take into account only high-
energy phonons; however, as discussed by Norton et al., there is experimental evidence that low-energy pho-
nons also contribute to the intervalley scattering, and we therefore have used the selection rules of Lax and
Hopfield. We introduce a common coupling constant D, for all three of these processes. The transition
probabilities for intervalley scattering W "'( k, k') are then given by

W~'"'(k, k'}= D, I n(co;)5(e(k') e(k) ——fico; ) + [n (co;)+ 1]5(e(k')—e(k )+fico; )I, i = 1,2,3
Qpco)

(15)

where

fico;
n (co;)= exp

B
(16)

is the occupation number for phonons and Z; is the number of equivalent valleys into which the electrons can
be scattered: Z& ——1, Z2 ——Z3 ——4.

2. Distribution function

In order to get the distribution function from the Boltzmann equation, Eq. (7), we use the well-known
method by (a) linearizing the Boltzmann equation with respect to the electric field E in order to exclude hot
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electron effects and (b) expanding the distribution function with respect to the magnetic induction B and ob-
tain

f(k)=fp(&(k))— P(k).E,
Be

(17)

{18)

Inserting Eq. (1S) into Eq. (17) and f(k) into Egs. (7)—(9), we can solve the Boltzmann equation successively
in ascending powers of the magnetic induction 8 as suggested by Fogarassy

where fp{e(k ) ) is the Fermi-Dirac distribution function describing the undisturbed states, and the components
of the still unknown function P( k ) are given by

QJ(k)=pj(k)+gpj~((k)8(+, j,1=1,2,3 .
I

8 k'——[V km(k)]J. —— g f 8' "'(k,k')QJ (k) —W, '"'(k', k)pq(k')g

Be

&fp(&(k )) dk'

8 k'
f 8'"(k,k') P-(k) —P (k') Bfp(e(k )) dk', j =1,23

Be
(19)

3

&I[pj(k—)]= g f 8'm(k, k')$J((k) —8' "'(k',k)pj((k')
i=1 Be

Bfp(e(k)) dk'

n, -„-„, , -„. ..-„,,
&fp(~(k')) Bf,(e(k))

Se Be
dk', j=123 (20)

where Q is the operator

II=V~k(k)x Vg.

As shown by Beer, the operator 0 commutes with any function which is a function of energy only.
The integral equations, Eqs. (19) and (20), are solved by expanding PJ (k ) and Pz&(k ) in spherical harmonics.

If the expansion is carried out up to I = 1 only, the resulting algebraic system of equations reduces to the well-
known relaxation-time formalism. The details of the calculation are presented in the Appendix. Insofar as
this approximation is justified, this method oA'ers the possibility for calculating the relaxation time not only
with all details of the band structure included but also directly from the deformation potential constants. The

p + perror introduced by neglecting all terms with 1 & 2 of the expansion of PJ ( k ) and PJ~(k ) causes an incorrect
influence of the deformation-potential constants. Comparison of the deformation-potential constants, derived

by fitting transport coefficients to experimental data, with those obtained from pressure experiments makes it
possible for testing the approximations introduced. This comparison is given in Sec. III B.

%e obtain the distribution function

2

pJ (k) = ——[V km(k)]jrj(e), p~((k)=, [V-„e(k )]„rj(e)r„(e)E„~(, (22)

where e„JI is the e tensor defined by e&23
——e23] ——e3i2 ——1, e&32 ——e32i —e2$3 ——1, and all other e„JI ——0.

rj(e) is an energy-dependent function which is given by

=123.1 1 1 1
int + wnt + int + ac

'T2 'T3 'Tg

(23)

rj(e) has the dimension of seconds and is the well-known relaxation time. The terms of Eq. (23) are the fol-
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lowing.
(a) Relaxation time of intervalley phonon scattering:

Z;(m
~~

m ' )'~ v'2
D, I n (co; )(e+ fico; )' + [n (cog ) + 1](e fta);—) '~ I, i = 1,2,3r "'(e) A'p2mn);

(24)

where the meaning of i = 1,2,3 is explained by Eq.
(14}.

(b) Relaxation time of acoustic-phonon scattering:

1

r(('(e)

(m'm* )' v 2ksTv e

cpm U'

(m'm")("v 2k, rv &

E2
cpm

(25)

2
Eu Eu

E2 Eg 1+g1
——+ rig E,'

(26)

where j= 1,2 applies to the l components and j= 3
applies to the

~ ~
component, as given by Eq. (10).

The components E~ and E2 depend on the
deformation-potential constants Ed and E„,as intro-
duced in Sec. II A 1, and on numerical constants g((,
g((, gg, rig in the following way:

2
u uE, =Eg 1+~ll + )II z

those given by Herring and Vogt, "who used a
somewhat different approximation. The value of
these constants depends on the degree of approxima-
tion used in solving the Boltzmann equation. The
exact value of these constants has not yet been
determined.

B. Valence band

The valence band of Si consists of three atomic
p-type bands3' of which two, the heavy-hale band,
denoted by the index i = 1, and the light-hole band,
denoted by the index i =2, are degenerate at k =0.
The third band, denoted by the index i =3, is
separated from the first two bapds by the energy 6,
6=0.044 eV, due to spin-orbit coupling. In the
intrinsic temperature region a considerable fraction
of the holes occupy the third band, which therefore
has to be taken into account and gives a contribu-
tion to the transport coefficients. For the calcula-
tion of the transport coefficients, the following sys-
tem of Boltzmann equations has to be solved:

The numerical constants are given in the Appendix @r(i)

Bt g

=0, i =1,2,3 . (28)

g(= 1.62,

g//
= 1+32

$1=0.83,
(27)

gg=0.68 .
These values differ by a factor as large as 1.3 from

In order to overcome mathematical difficulties, we
approximate the warped energy surfaces by spheres
with effective masses given by Costato et al. As
poirited out by Wiley, the consequence of this is
that the scattering of holes between the split-off
(i =3) and the other bands (i = 1,2) is omitted.

1. Transition probabilities

The two relevant scattering mechanisms are the hole —acoustic-phonon scattering and the hole —optical-
phonon scattering. We treat both scattering processes by the deformation-potential method introduced by Bar-
deen and Shockley' and Meyer' and obtain the following for the transition probabilities.

(a} Acoustic-phonon scattering:

W~"(k,k'}=
2 EQ~GJ(k, 7k')5(e( ~(k') —e('~(k }), i, j =

cpu
(29)
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(b) Optical-phonon scattering:

W (k,k')=
2 ENpoGi(k, k')I'n(cop)5(e I (k'}—e (k) fi—co())

pU

+ [n (cop)+1]5(e(J)(k')—e('(k)+ficop)], ij = 1,2,3 . (30)

The overlap integrals G,J (k,k') are taken from Wi-
ley33,

G»(k, k') =G22(k, k') = —„(1+3cos y),

G,2(k, k') =G2, (k,k') = —, sin y,

1

rp (e)

(,.) „,&Zk Tv
ri4pmr2

-(m )
3 2ENPO

—(i) 3/2 P 2

A' p2mY

G)3(k, k')=G3)(k, k')

=G32(k, k') = G23( k, k') =0,
633( k, k') = 1

(31}

with

X I n (cop)(e+ fuup)'

+ [n (cop)+ 1](e—ftcop)'/2I, (35)

2. Distribution function

Since the transition probabilities of acoustic- and

optical-phonon scattering are momentum randomiz-

ing, the in-scattering term of the Boltzmann equa-

tion, Eq. (9), does not contribute to the collision
term. As a consequence, originally coupled equa-
tions of the light- and heavy-hole band are decou-

pled,
' and the Boltzmann equations are solved in the

same way as that for the conduction band. We ob-

tain for the distribution functions

$~ "(k)=—[V),e"(k)]i%;.(e),

2

(()Jt"(k )=, [V ),
e"( k }]„r((e)e„jt,

Am;*

(32)

where the index j denotes the spatial component
and i = 1,2,3 the three diA'erent bands. We have

where i =j refers to intraband and i' to interband
transitions. The angle y is that between k and k',
coo is the frequency of the optical phonon. The
quantities Eo and EN' are the deformation-

potential constants. Since the pressure dependence
of the valence band exhibits a rather complicated
behavior, these constants have a mere phenomeno-

logical meaning.

(~(1))3/2 (
—(2))3/2 )

(
e3/2+ e3/2)=-, m) m2

(36)

(
—(3))3/2 e3/2—m3

In our calculation, the relaxation times for light and

heavy holes are identical. Brown and Bray as-

sume that light and heavy holes are predominantly
scattered into the heavy-hole band where the density

of states is much higher than that in the light-hole

band, and they assume that scattering into the light-

hole band may be neglected. They conclude that
the relaxation times for light and heavy holes must

be identical. Our calculations show that their con-
clusion is, in fact, correct even if scattering into the
light-hole band is allowed.

C. Transport coefficients

In n-type material it is permissible to neglect the
influence of the valence band up to the intrinsic
temperature region, since the mobility of electrons is
much higher than that of holes. From the theory of
anisotropic scattering in crystals with many-valley
structures as formulated by Herring and Vogt" and
Ohta and Sakata, two basic temperature-dependent
transport coefHcients are obtained.

(a) The Hall factor r„:

1 1 1

i.;(e) r;"(e) r "(e)
(33)

where the acoustic- and optical-phonon relaxation
times are given by

+—
3 )Ic2 3mg

1 (r~~~ 2+—
3 m

II
3

mg m I*I

(rg)

mg

(37)
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(b) The drift mobility )Md"'.

(.)
pd =e +

mll m
(38)

If the holes in the valence band are neglected, the
Hall coefficient RH is

r„
RH ———

en

and the conductivity o0 is

(n)
oo—enpd

(39)

(40)

A quantity often determined experimentally is the
Hall mobility p~ ', defined as

vH"'=~ vd"'= IRH I I
~0

I
(41)

BfJ r(e) e3~ de
( )

o Be
" fo „,

ae

(42I)

which is not explicitly dependent on the carrier den-

sity and, as discussed in Sec. III, is useful only in a
rather limited temperature region.

The angular brackets in Eqs. (37} and (38)
represent an appropriate averaging integral defined

(43)

0(n) 0(y)0=~i& +oif
where the indices (n) and (p) refer to electrons and

holes, respectively. For the valence band, the com-
ponents of the conductivity tensors are the sums of
the contributions of the three subbands. Inserting
Eqs. (32} and (17}into Eq. (6} we get, according to
Eq. (3),

()( )
Ple (rl) P2e (r2& P3e (r3)

mi m2 m3
(45)

z2e (~2& P3e (r3&
«2 + «2 + «2mi m2 m3

From these, we obtain the following expressions for
the Hall coefficient R~ and conductivity (r0, respec-
tively,

In p-type material the contribution of the electrons
to transport coefficients is not negligible over a wide

temperature region. Therefore, we write the trans-

port coefficients as a function of both carrier types.
According to Eq. (4), the Hall coefficient RH and
the conductivity o0 have the following form:

0(n)+ Og()

( 0(n)+ 0(p))2

(««) 2 («r() )

ml mmmm

ne —,+— +pe y&
m~) 3 mJ

42 +y2 42 +y3
mi m2 m3

(r2& (r3&
+y2 y +y3

m) m2 m3

2 (46)

2 («&
(70= ne +

~0= e(nod"'+ppd , '),

(ri ) (r2) (r3)
+pe yi, +y2, +

m~ m2 m3
(47)

(48)

where the y;, i = 1,2,3, are fractional carrier densities defined by

pi
y)

—— —— 1+
p

3/2
m2

m)

m3

m&*

3/2 —1
—To/T

e

P2
y2= = 1+

p

P3 1+
p

m2

m)

' 3/2 3/2
m3 —To/T

e

' 3/2

+
m2

' 3/2
m2

e
m3

To/T
e

(49)

With p =p i+p2+p3 and y~ +y2 y3 ——1. To ——510
K is the temperature connected with the spin-orbit
splitting of the valence band 5=44 meV. These
fractional densities are temperature dependent due

I
to the split-off valence band.

By rearrangement of Eq. (46) and by comparison
with the formula for the Hall coefficient, Eq. (1), we
obtain the Hall factor r&..
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2 +~2 2 +~3 *2
mi m2 m3

(50}
&-;)

, +72, +'V3
m2 m3

The Hall mobility of holes pg' can be expressed in

a form similar to Eq. (41) and is given by

pg'=p j'r~ . (52)

The temperature dependence of the Hall factors is
basically due to the temperature dependence of the
scattering mechanisms. In the valence band, there
is an additional contribution due to the temperature
dependence of the fractional hole densities in the
three subbands. A third contribution arises if dif-

ferent temperature dependences of the effective
masses are assumed, but this effect is not considered
here.

III. APPLICATION OF THE THEORY
TO EXPERIMENTAL RESULTS

A. Experimental

The Hall coefficient R~ and the conductivity oo
were determined experimentally in the temperature
range 90—450 K by using a conventional Hall-
effect apparatus. Experimentally, the Hall coefFi-

cient R& is given by Kubo and Nagamiya as

Uyd
R~ —— (53}

where Uz is the Hall voltage, i„ the current, 8, the
magnetic induction, and d the sample thickness.

In order to measure the temperature variation of
R~ and uo, a constant nitrogen-gas stream in com-
bination with a special proportional integrating dif-

ferentiating regulator was used. This arrange-
ment allows us to vary the temperature of the sam-

ple with an uncertainty smaller than S K. The
magnetic field used was B, =1.3 T, with an inho-

mogenity of less than 10 as determined by pro-
ton resonance.

The silicon samples were cut from single crys-
tals, of dislocation-free Wacker material in the

By comparing Eq. (47) with Eq. (48), we obtain the
drift mobility of the holes pg'

( &1 ) ( r2 ) ( &3 )
pd =e )'i, +1'2, +)'3, . (Sl)

mi m2 m3

direction of the (111)plane, and had dimensions
11)&2.S)&0.8 mm . Electric contacts were applied

by discharge bonding with the gold wires doped
in accordance with the crystal doping. The current

i„, supplied by a constant current source, was
chosen such that the electric power remains small-

er than 1 pW.
Before each measurement, the zero-field Hall vol-

tage was compensated and measurements were tak-

en for both directions of both the current and the

magnetic induction. The uncertainty of the Hall
coefficient was determined by the uncertainty in the
electrical measurement (about 1%) and the uncer-

tainty in the sample thickness (about 3%). The un-

certainty in the conductivity was about S%%uo.

B. Comparison of experimental
results arith theory

E~ ———9.41 eV,

E„=+12.97 eV,

De ——3.54&(10 eV/cm .

The so called K parameter

(54)

RC(~)
E= '.. (55)

't'('}
is the only parameter which cannot be fitted by this
method. We therefore take K = 1.1 as obtained by
Stradling and Zhukov from cyclotron-resonance
experiments. It may be noted that the deformation-
potential constants Ed and E„are rather sensitive to

In order to obtain carrier concentrations from the
Hall coefHcient, Eq. (1},the temperature depen-

dence of the Hall factors and the mobilities must be
known. By using Eqs. (37) and (SO) for the Hall
factors and Eqs. (38) and (51) for the drift mobili-

ties, it is gnly necessary to know the deformation-

potential constants.
For n-type material, the best way to obtain the

unknown parameters is to use the Hall mobility,
which is the product (A~era), pg of the experimen-

tal Hall coefficient and experimental conductivity.

Up to the intrinsic temperature region, the Hall

mobility p~ ' of electrons is independent of the car-

rier concentration. Fitting the theoretical curve
pII"' [Eq. (41) in combination with Eqs. (37) and

(38)] to the experimental values of Fig. 1 and using

the material constants m z ——0.19mo, m
~~

=0.91mo,
p=2. 33&(10 kg/m, and v=9.04)&10 m/s of Si
as given by Costato and Reggiani, ' we obtain the

following deformation potential constants:



24 DETERMINATION OF CARRIER DENSITIES IN LIGHTLY. . . 4675

10'

(cm'/ Vs)

PH 103

10

(/i

105

102

101

2

I I I I I

6 8 10

1000/7 (K'}

5~ 10

FIG. 1. Hall mobility of an n-type sample as a func-
tion of temperature. Circles: experimental values. Solid
line: best-fit curve according to Eq. (41}.
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a slight variation of the E parameter. However, the
theoretical Hall mobility pH"' is rather insensitive to
a variation of E. Deformation-potential constants .

Ed ———6.0 eV and E„=9.0 eV obtained by Murase
et al. ' are 30% smaller than our values. Our cou-
pling constant D„which has been introduced for all
three processes of intervalley phonon scattering, Eq.
(14},agrees well with the result of Costato and Reg-
giani, ' who used two different coupling constants

D, I ——3 X 10 eV/cm and D, s ——4.5 X 10
eV/cm.

For the valence band, the product (RHtro) has no
physical meaning except in a rather limited tem-
perature range. Therefore the procedure used for
the conduction band is not applicable here. The ex-
perimental Hall coefficient (RH ),„„,and experimen-
tal conductivity (oo),„„,must be fitted independently
under the condition that the same set of
deformation-potential constants be used for both
quantities. In performing the fitting, we use Eq.
(46) for R~ and Eq. (47) for oo. For the
deformation-potential constants of the conduction
band we take those given in Eq. (54). The
temperature-dependent carrier concentrations in Eq.
(46) for the Hall coeAicient and Eq. (47) for the
conductivity have been expressed by the density of
negatively charged acceptors N~ and n;, by use of
the following equations for p-type crystals:

p = , &2+[( ,—NZ}'+n-]'",
(56)

n = ,'N„+—[(—-,'N„-)'+ n, ']'-" .

The effect of deionization of the acceptors is negligi-
ble in the temperature region considered and we can

'

safely assume Nz N~, where Nz is the densit——y of

FIG. 2. Hall coeAicient as a function of temperature.
(a) n-type sample; (b) p-type sample. Circles: experimen-
tal values. Solid line: best-fit curve according to Eqs.
(39) and (46).

acceptors. For the intrinsic carrier density we use
the equation

n; =1.5X10 T exp( —14028/T), (57)

as given by Wolf, ' where n is expressed in units of
cm, and T is the temperature in units of K. The
equations are applicable for crystals with low con-
centrations of shallow impurities and for tempera-
tures high enough that all acceptors are ionized.

Fitting the theoretical RH, Eq. (46), to the experi-
mental values [Fig. 2(b}] and simultaneously the
theoretical cro, Eq. (47), to the experimental values

[Pig. 3(b)], we obtain the deformation-potential con-
stant

Eo——18.42 eV

and the optical "strength" parameter

(58)

(59)

where the material constants have been taken from
Costato et al. and the best doping concentration to
be used is Xz ——1.66 /10' cm . Wiley and Di-
Domenico' determined the deformation potential
constant from conductivity measurements to be

ED=7.9 eV .

This result was obtained by fitting the theoretical
drift mobility to the experimental Hall mobility and
assuming rz ——1. In addition, they did not include
the exact form of the overlap function G;~(k,k').
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FIG. 3. Conductivity as a function of temperature.
(a) n-type sample; (b) p-type sample. Circles: experimen-
tal values. Solid line: best-fit curve according to Eqs.
(40) and (47).

For n-type crystals, instead o ~.f ~~. (56), we use
the corresponding equations an d obtain the Hall

ff '
t R from Eq. (39) and the conductivitycoefficient H rom

Eq (40). The result is shown in Figs. ao() from ~.
and 3 a . The best ftt it obtained with a donor con-
centration of ND+ ——3.27 X
f t rs r and r are calculated from Eqs. 37 and

Eq. (50) by using the deformation-poten i

stants, Eq. (54), for the conduction band and Eqs.
(58) and (59) for the valence band. The results are
shown in ig.in Fi . 4. From this figure it is seen t at in

the temperah t rature range under discussion, r„varies
een 1.0 and 1.2 and r& between 1.5 and 2.0.between . an

The temperature dependence of the Hal acall factors is
due to interv ey

'
t alley and optical-phonon scattering.

The much stronger variation of r~ compared to r„ is

2.4

caused by the temperature variation of the fractional
densities in eth three subbands. The dependence of

andrz on the splitting of the separated valence band an
th tical phonons expressed by the optical

. 59) isstrength parameter r), as defined in Eq. (, is
shown in ig.F' 5. Without optical-phonon scattering,

=0, the Hall factor rz is constant for 5 =0 e
For a large split off energy, i.e.,. 6 =1 eV, there is
only a ne igi e e~' 'bl dependence on temperature. For
an interm iate energy,ea' t rgy 6 =0.03 eV, even without

=0 t e Ha11 factorop ic -pt' al- honon scattering, g =0, t e H
r 0, theredepends s)rongly on temperature. For r)

isa etemperature dependence for all split-off ener-
gies. n eI the calculation of r for sihcon ( ig.

5 =0.044 eV and g =2.20 have been
used, which correspond approximately to the t ir
curve of the set 5 =0.03 eV of Fig. 5.

It is well known that in the case of only one
sp eric eneh al energy band and only acoustic-phonon

allscatterin, t e a, h H 11 factor is constant and the Hal
mobility and drift mobility follow a T law wit P
= 1.5. If one includes for the valence band the tern-
perature variation o e

' t' f the fractional densities in the
three subbands, the temperature dependence of the

at the same time the temperature dependence of the
mobilities becomes smaller, 1.5.

For comparison with experimen results the
drift mobilities of electrons and holes calculated
with Eqs. (38) and (51) are approximated by an
aT ~law:

pg"'=940X 10 T

(P) 6 59 X 106T —1.s0
p~

2,4

eV

1.8
, 03eV

1.4—
1.2

+h, =1eV

1.0-

0.6
2 4 - 6 8 10 12

1000/r(K')

FIG. .4. Hall factors as a function of temperature for
the conduction and valence bands.

I

12

I I

2 4 6 8 10

1000/ r (& )

FIG. 5. Temperature dependence of thef the Hall factor r
for different values of the optical strength parameter g
and the energy 6 of the split-off valence band. For each
value of t e energyn 6 there is given a set of five values

10.Going upwards, these are g
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with {tt in units of cm /V s. In the temperature re-

gion 160& T & 400 K the following laws are given

by Ludwig and Watters

p'"'=2 1&(10 T

wher'e po ~bn; is a normalization factor for the
hole concentration. We obtain from Eq. (1) an

equation of fourth order in x:

(61) f(x)=x —x—+2x +—x+1=0.
r r

(63)

p~
' ——2.3)&10 T

again in cm /V s. The temperature dependence of
these experimental mobilities is much stronger than
that of our calculated mobilities. However, compar-
ison of our calculated curves with the experimental
points in Figs. 2 and 3 shows that our formulas do
fit our experimental results rather well.

This general agreement does not hold for the Hall
coefficient of the p-type sample [Fig. 2(b)]. Here
there is a serious discrepancy; in particular, in the
extrinsic temperature region, the slope of the experi-
mental points is opposite in sign to that of the
theoretical curve. In crystals with small concentra-
tions of shallow impurities, the carrier concentration
in the extrinsic temperature region can safely be as-
sumed to be a constant.

The negative slope of the experimental Hall coef-
ficient results, therefore, from a negative slope of the
experimental Hall factor rp. This negative slope is
not only a result of our experiments, but has also
been observed by Long. ' From the experiments of
Long it is seen further that the slope is not due to a
rather high magnetic induction, since the experimen-

tal points are identical for a magnetic induction of
0.3 and 1.3 T. The contradiction of the slope. of the
theoretical rz values (Fig. 4) with experimental
results cannot be explained in the frame of our
model and needs further investigation.

dr(x) . x(x —a)=0 withrx=
dx (x2+ I)~

(64)

Inserting the two solutions
I

x i,~ = —,(a+1)+—,(a'+ —,a+1)'" (65)

mto r (x), Eq (64), we get r (x i 2) or r as a function
of a for which we have z =1. This is shown in the
root diagram (Fig. 6) which shows the different re-

gions belonging to z =0 and 2 for all relevant pairs
(a,r). On the dividing line between these regions,
the pairs (a,r) lead to a double root (z = 1). Evi-

dently, the root diagram expresses the condition on
a and r for obtaining physically meaningful solu-

tions of Eq. (63). For the case of two different

roots, z =2, the corresponding two different carrier

Only real positive solutions of this equation have a
physical meaning. Since for n-type material the
hole concentration can be neglected even up to the
intrinsic region, we consider in the following p-type
material only.

From a theprem pf Budan-Fpurier it follpws
that the number z of positive real roots of Eq. (63) is
z =0, 1, or 2. The case of a double root orz =1
can be found from Eq. (63) by solving

IV. STRUCTURE OF THE HALL FORMULA

Once the ratio of mobilities b and the Hall factors
r„and pp are known, the carrier concentrations n

and p can be obtained from the experimentally
determined Hall coefficient RH by solving Eq. (1)
and using the condition np =n; . We define the
dimensionless quantities

pX =
po

z=0
no real solution'.10 .

z=~
one real solution

-0.5

no real solution

r„a= —b,
rp

eRH
po=

rp

eRHv'b n;

rp

(62)

FIG. 6. Root diagram. Dependence of the number of
real positive roots z of Eq. (63) on the pairs (a,r) as de-
fined by Eq. (62).
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concentrations give rise to the same Hall coefficient.
In order to understand this somewhat surprising

result, the Hall coefficients as a function of tempera-
ture for different doping concentrations are shown
in Fig. 7. With respect to a special doping concen-
tration Nz, the curves with concentrations Nz & Az
cross the curve with Ez on the right-hand side of
the encircled area. The curves with concentrations

Xq &Nq cross the curve with Nz at the left-hand

side of this encircled area. In approaching the
curve Eq from lower and higher concentrations, the
crossing points of the lower and higher concentra-
tions coincide at one unique point at the tempera-
ture T = To. At this point, only the concentration
N„r esultsin the Hall coefficient RH(To). This
means that at each point in the (RH, I/T) diagram,
there exist two different solutions corresponding to
two carrier concentrations, except for certain points
which form a continuous line for which there exists
only one solution. The line for only one solution in

Fig. 7 (which is not shown explicitly) corresponds to
the upper dividing line, z = 1, in the root diagram
(Fig. 6). A sinular line for negative RH values cor-
responds to the lower dividing line, z = I, in the
root diagram. The total (RH, 1/T) plane, except
the two lines for one solution, Fig. 6, is mapped into
the area z =2 between the two dividing lines of the
root diagram. For any doping concentration there
exist necessarily two temperatures, where only one
carrier concentration is a solution of the Hall for-
mula. At these temperatures the corresponding
(a,r) points necessarily lie on the upper and lower
dividing line, respectively. This implies an addition-
al condition between a and r for the temperature

points with only one solution of the Hall formula.
The question is as follows: What happens if one

tries to solve Eq. (1) for an experimentally deter-
mined R& and does not have available the correct
material parameters b, r„, and r&? The answer is

given by Fig. 8(a): It is not possible in this case to
obtain a continuous carrier concentration as a func-
tion of temperature. This difficulty has been recog-
nized before as shown in Fig. 9, which is taken
from Neubert and Schlief. In this case the authors
have tried to evaluate the experimental curve for the
Hall coefficient [Fig. 9(a)] by using three different

3
sets of transport parameters: (A) r„=rz ———,ir, (B)
r„and rz as given by Messier and Flores, ' (C) by
using a heuristic set of r„and r&, which was chosen
such that the carrier concentration becomes continu-
ous in the intermediate temperature region. Howev-

er, no theoretical explanation of the Hall factors r„
and r& obtained in this way was attempted.

Comparison of Fig. 8(a) with Fig. 9(b) makes it
clear that the evaluation of carrier concentrations as
given in Fig. 9(b) does in fact agree with the predic-
tions of the theoretical solutions of the Hall formula
for the case in which the transport parameters are
not correctly known. . The case for which the trans-

port parameters are assumed to be correctly known
is shown in Fig. 8(b). This figure was obtained by
calculating the Hall coefficient for agiven carrier
concentration with a postulated set of transport
parameters and then recalculating the carrier con-
centrations from this artificial Hall coefficient. In
principle, a rule for selecting the correct solution for
the carrier concentration, can be deduced from Fig.
7. For practical purposes, such a rule is illustrated

by Fig. 8(b): Starting from low temperatures, choose
the higher solution, after the first crossing point

PH 0

I

Incr easing
Doping Loncentrotion

NA
0

1P17

I

I

I

I

I I I

I I I

I I I I I I

10'

10

FIG. 7. Temperature dependence of the Hall coeffi-
cient for p-type silicon with different doping concentra-
tions (schematic drawing). For the concentrations indi-

cated by dotted lines, RH is shown only in that tempera-
ture interval, in which R~ & 0.

I I I

4 6 2 4

~()ooir (v ')

FIG. 8. Solution of the Hall formula by utilizing (a)
incorrect transport parameters, and (b) correct transport
parameters.
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FIG. 9. (a) Hall coefficient of a lightly doped p-type silicon sample as a function of temperature. Circles: experimen-
tal points. Solid line: interpolating curve. (b) Calculated carrier concentrations as a function of temperature with various

3transport parameters. (A) r„=r~= —m; (8) r„and r~ as given by Messier and Flores (Ref. 5). (C) r„and r~ as given by
Neubert and Schlief (Ref. 4).

choose the lower solution, after the point R~ ——0,
where there is a singularity in the solutions, choose
the higher solution, and finally, after the second
crossing point, choose the lower solution.

Even though this rule is not very sophisticated, in

practice it must be applied in order to obtain the
carrier concentration from the Hall coefficient for a
given crystal. As seen clearly from Fig. 8, there is
the risk that one may choose the wrong solution in

evaluating Hall measurements. This holds especial-

ly for the case of materials with deep traps, such as
dislocations, where there does not exist an extrinsic
temperature region with a constant carrier density.

V. DISCUSSION

In this paper we have shown that the evaluation
of carrier densities from Hall-effect measurements
depends very sensitively on the Hall factors r„and
rz, since there is a discontinuity in the temperature
dependence of the carrier densities if the Hall fac-
tors are not correct. It is to be noted that a specific
physical model, on which the calculation of r„and

rz is based, should at the same time correctly
predict not only the Hall coefficient RH, but also
the conductivity 00. In the literature, it is rather
common to report experimental results not for R~
and 00 independently but for their product, the Hall
mobility p~ ——ooRH. Correspondingly, models are
constructed to explain only this quantity. Conse-
quently, these models have not been general enough
to calculate the accurate Hall factors necessary for
deducing carrier concentrations from the Hall coef-
ficient. In this paper we have considered explicitly
besides the Hall mobility also the Hall factors.

For the conduction band, the assumption of six
energy ellipsoids with acoustic- and intervalley pho-
non scattering as the only scattering processes can
be used to describe the Hall mobility with sufficient
accuracy. However, there are more then one set of
selection rules of intervalley phonon scattering and
coupling constants which lead to the same tempera-
ture dependence for the Hall mobility. It has been
shown by Ohta and Sakata that each of these sets
leads to a different temperature dependence of r„.
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We have taken the selection rules gf Lax and Hop-
field and have obtained with our coupling constant
a. Hall factor which is in agreement with experi-
ment. However, it should be noted that the Hall
factor is rather insensitive to selection rules and cou-
pling constants. Therefore it is possible that some
other set of selection rules and coupling constants
may also give agreement with experimental Hall-
eAect measurements and that our particular choice
is not unique.

With respect to the valence band, it has been
shown in this paper that the model of acoustic- and
optical-phonon scattering with the assumption of
spherical energy surfaces is appropriate for explain-
ing the temperature-dependent Hall mobility of
holes. But within the framework of this model, it is
not readily possible to explain the experimental neg-
ative slope of the temperature dependence of the
Hall factor rp.

In the search for possible refinements of our
model, some additional factors reported in the
literature may be considered. By taking into ac-
count the warping of the energy surfaces as has
been done by Lax and Mavroides, ' one can obtain
a decrease of r~ by a constant factor independent of
temperature. The inclusion of the temperature
dependence of eA'ective masses as given by Costato
et al., does not help to resolve this question, since
this leads to an actual increase of the positive slope
of the theoretical Hall factor rz. Roizes and
Schuttler have also taken into account, in their
calculations of.Hall factors, the cubic symmetry of
hole —acoustic-phonon scattering. This change
from spherical to cubic symmetry results (from
their numerical evaluation) again in a temperature-
independent contribution. There is one eAect,
which has been called "shape evolution" by
Allgaier, which might resolve the discrepancy
between theory and experiment. Shape evolution in

metals describes the manner in which a Fermi sur-
face changes shape with the Fermi energy, a similar
eAect may be important for the valence band of sil-

icon. The inclusion of shape evolution requires that
one must solve the system of coupled Boltzmann
equations not for spherical but for cubic symmetry
(of the bands and of the scattering processes). This
has been done so far only for the valence band of
Ge -by Lawaetz. It seems of interest to perform
such calculations also for Si in order to see if shape .
evolution is suAiciently strong to change the slope of
the temperature dependence of r~.

Finally, it has been pointed out in this paper that
even if r„and r& are known exactly, one should be
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APPENDIX

In order to solve Eqs. (19) and (20) we use the
following new coordinates in k space for each of
the six ellipsoids (ma ——electron mass)

1/2
mp

P1 y k1 ~
m~*

1/2
mo

k2,
m2

' 1/2
mp

k3,
m3

(A 1)

so that the constant-energy surfaces, Eq. '(10), are
given by

ft pe(p)=
2mo

(A2)

With these new coordinates the operator 0, Eq.
(21), now reads

(A3)

and we have terms in spherical coordinates p,P,a of
the form:

——[V' ke(k )]J.=gj(e)hJ(pa),

j=1,2,3 (A4)

with

gj(e) = —e

' 1/2
8~@

3m~
(A5)

The terms hj. (P,a) are real spherical harmonics.
For j =1,2,3, we have

very careful in selecting the right solution of the
Hall formula. This point becomes especially impor-
tant in those cases where there exists no temperature
range over which the carrier density is constant.
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' 1/2
3 P1

h1 ——

p

' 1/2
3

sinp cosa,
4m

p~(p) = g q,„(e)h„(p,a),
(AS)

h2 ——

h3 ——

' 1/2
3 p2

4n. p
' 1/2

3 P3
4r p

1/2
3

sinP sina, (A6)

' 1/2
3

cosp .
4m

PJ'l(p}= g v Jt.(E}h.(»a) .
n=1

Multiplying the integral equation, Eq. (19), by
hk(p, a)d Q, integrating, and using the orthogonality
condition,

In terms of spherical coordinates d k now reads

(2 42 4 )1/2
dk= v ededQ,f3 (A7)

fhj(pa)hk(pa)dQ=51k, (A9)

the integral equation can be rewritten in the form

and dQ=sinPdPda.
We can expand the distribution function in terms

of the real spherical hartnonics h„(P,a)

gj.(e)5,k Q——R~k(e)qr;~ (e)
n=1

with

(A 10)

R„k(q)= f (e')'/2g W "'(e,e')de'5„k
2 A' i=1

(2mj mal)
/ k&? 2 2 2+&@ f f (Fi +Fi+Fi )[h„(pa) h„(p',—a')]hi, (pa)dQdQ',

g4 —2
(A 1 1)

where Eqs. (15) and (11) have been used. Ft (8) are given by Eqs. (12) and (13). In case the expansions, Eqs.
{AS),are restricted to n = 1,2,3, the second term of Eq. (Al 1) can be shown to be of the form

—(2m j m ~'~
}' ka T

e 4 2 f f (Fi+Fz+Fi)[h„(pa) —h„(p',a')]hk(pa}dQdQ'
4 t}1 pu

1
5„k for n =1,2,3 . (A12)

r„"(~)

(m~*~mj )' v'2k&TVe

A'pmv'
2E

X d +g'(( +g(( E
(A13)

with the numerical constants

g'ii
——1.62,

II
= 1'32

(A14)

Here we have used the group-theoretical argument

that the transition probabilities and therefore I'1
+E2 +E3 are invariant under the symmetry
transformations of the group C4„of p space, and

therefore the integral is zero except when h„and hk

transform as the same basis function of an irreduci-

ble representation of the group.
Equation (A12) now defines the relaxation times

for acoustic phonon scattering rn'(e) for n = 1,2,3.
Numerical integration of Eq. (A12) gives the relaxa-

tion times. For n =3, relating to the
~ ~

component,
one obtains

f

For n = 1,2 relating to the J. components, the two

relaxation times are identical and are given by

rj'(e) A pmv

2
EN Eu

X&~ I+gjE +nj E„
(A15)

with the numerical constants

g'j=0.83,

I

gj =0.68 .

(A16)

R„k(e)= 5„k
r„(~)

(A17)

The integration of the first term of Eq. (Al 1) gives

the relaxation times of intervalley phonon scattering,

Eq. (24}. Equation (Al 1) may then be written in

the form
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with [see Eq. (23)]

1 1

&„(&) &i (E) &q" (&)

1 1
lilt

) SC( )

Inserting Eq. (A17) into Eq. (A10), we get

(A18)

Eqs. (A3) and (A20)

——Qipj (k)

ml

mJ m~~

1/2

rj.(e)gj (e)h„(P,a)etj.„,
(A22)

tp k(e) =rk(e)g (E)& k

and finally

(A19)

(A".0)

where ejfp is 0, 1, or —1 as defined in Sec. IIA 2.
Equation (20) is now solved by the same procedure
as used to solve Eq. (19) and the result is

or

(A21)

which is the first of Eqs. (22). Turning now to Eq.
(20), the left-hand side of which becomes, by use of

X [V ke(k)]„ejt„,

which is the second of Eqs. (22).

(A23)
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