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Electronic structure of the unreconstructed 30' partial dislocation in silicon
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The electronic structure of the unreconstructed 30' partial dislocation in silicon is calcu-
lated using a local pseudopotential and a minimal basis set. The minimal basis set con-
sists of s- and p-symmetry orbitals and is augmented by five d-symmetry orbitals. The
model-core geometry is determined by high-resolution electron microscopy. The calcula-
tion indicates the existence of a one-dimensional band of dangling-bond states which pro-
pagate along the dislocation line. This band is half filled, implying metallic properties.

I. INTRODUCTION

The recent resurgence of interest in the electron-
ic structure of dislocations in semiconductors since
the early pioneering work of Shockley' and Read
can be traced to several factors. First, through the
development of the weak-beam electron microscope
technique, it has become clear over the past de-
cade that the majority of dislocations in tetra-
hedrally coordinated semiconductors is dissociated
into partial dislocations. Thus, many early con-
clusions must now be reconsidered. Second, im-
provements in techniques for computing the elec-
tronic structure of defects and surfaces now allow
large clusters of atoms to be considered, and final-

ly, new techniques such as cathodoluminescence,
temperature-dependent electron beam-induced con-
ductivity, and scanning deep-level transient spec-
troscopy now offer the hope that energy levels may
be measured directly from well-characterized and
isolated dislocation segments. For a review of all
this work, see Ref. 4.

The low-temperature deformation of Ge or Si
produces predominantly dissociated screw disloca-
tions (consisting of two 30' partials) and dissociated
60' dislocations (consisting of one 90' and one 30'
partial), each with a total Burgers vector of the (—,)

[110] type and lying on the (111) slip plane. Dislo-
cations running in other directions in the lattice
are to be thought of as kinked segments of these

types. Thus, it is generally accepted that the im-
portant elemental defects (other than point defects)
which control the mechanical and electronic prop-
erties of tetrahedrally coordinated semiconductors
at low temperatures are the 30' partial, the 90 par-
tial, and kinks. These dislocations may also lie on
either the closely spaced (111)glide planes or on
the more widely spaced (111) "shuffle" planes.
Recent evidence, ' while not conclusive, favors the
glide model. The shuffle and glide configurations
of the 30 partial differ in the presence or absence
of a single column of atoms along the dislocation
core. The possibility of bond reconstruction along
the core also exists, and the implications of this for
electronic structure have been considered by several
authors. ' Since recombination, luminescence,
and lattice friction all depend on the details of core
structure, the effects .of reconstruction on all the
partials and kinks and on the number of dangling
bonds thereby created are important. The closely
related problem of the dependence of dislocation
velocity on doping also depends on the reconstruc-
tion schemes chosen. "

Thus, there is considerable interest in the prob-
lem of determining the band structure of disloca-
tions in order to determine the likely sites of dan-
gling bonds and their associated deep-level recom-
bination centers and to clarify the nature of the
conductivity along the dislocation core, which in-
cludes the possibilities of donor or acceptor bands,
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hopping conductivity, and a one-dimensional
metal-insulator transition. Two calculations exist
in the literature for the electronic structure of the
30' partial based on empirical extended-Huckel
theory and on the continued-fraction Green's-
function expansion method. ' These calculations
are in broad agreement. Since we believe that the
phase-dependent chemical orbital pseudopotential
method' possesses certain advantages for problems
of this type and because of the success of the close-

ly related pseudopotential method in predicting the
bulk properties of elemental crystals' and their
surfaces, ' we have recently completed the calcula-
tion reported below of the electronic structure of
the unreconstructed 30 partia1 dislocation in sil-

icon. The encouraging agreement found with the
results of other workers leads us to believe that
these preliminary calculations can now be applied
with confidence to kinks and other line defects in
semiconductors and eventually used to investigate
the efFect of impurity decoration.

II. ATOMIC MODELS

The atomic coordinates used for our calcu1ation
were taken from near-atomic resolution computed
electron micographs which were found to give a
good fit with experimental near-atomic resolution
electron images of an end-on dissociated 60' dislo-
cation in silicon. By comparing computed images
of the shuffle and glide cases with the experimental
image, it was found that the experimental image
clearly favors the glide model for the core of the
30' partial in this particular case. It cannot be

claimed, however, that these experimental high-
resolution images are sufficiently well resolved to
provide accurate core atom coordinates. A11 we
have done is to distinguish between the two most
probable structures for the core. The sub-angstrom
details of the core charge distribution on which the
electronic structure depends are not resolvable us-

ing current electron microscopes, which at best re-
0

veal structural detail down to about 2 A and have
images depending sensitively on the electron-
optical parameters and specimen thickness.

Figure 1 shows a diagrammatic sketch of the 30'
partial. The experimental electron micrograph is
shown in Fig. 2. The analysis and interpretation of
this image has been given elsewhere. In this im-

age, each black blob is an unresolved pair of atom-
ic columns in the diamond structure seen end-on in
the [110]projection, and white areas are tunnels
through the structure. Figure 3 shows the comput-
ed image which was found to give the best match
for Fig. 2 if based on the glide-type 30 partial.
This image was generated from a full numerical
solution of the time-independent Schrodinger equ'a-

tion for the problem of the coherent multiple
scattering of a fast (100 kV) electron by a thin foil
and image synthesis by electron optics. Numerical
solution of the high-energy electron scattering
problem and the solution of the band structure
both require a model which is periodic and which
contains no unphysical bonds introduced by the
periodic continuation implied by the. use of Fourier
series. This was achieved by introducing two 30'
partial dislocations separated by a strip of stacking
fault into an orthorhombic unit cell (ap ——-26.9S A, -

bp =9.41 A cp:3.84 A, a =P=y= 90' ) with op-

FIG. 1. Diagrammatic sketch of a 60 dislocation in silicon dissociated into an unreconstructed 30 partial on the left
and a 90' partial on the right. The dislocation line runs in the [110]direction and joins the dangling bonds shown at A

and 8. These are bonded in pairs in the 30' partial reconstruction scheme. The partials are connected by an intrinsic
stacking fault of which only a portion is shown.
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FIG. 2. Experimental high-resolution electron micrograph (lattice image) of a dissociated 60 dislocation in silicon.
Each black blob in the image is an unresolved pair of atomic columns seen in the [110]projection. The crystal thick-
ness in the projection direction is 61 A.

posite Burgers vectors. The directions of the axes
of this artificial superlattice cell are x = [112],y =
[111],and z = [110] (the dislocation line direction)
when referring to the conventional diamond cubic
unit cell. This structure is three-dimensionally
periodic, contains a center of symmetry, and for a
sufficiently large unit cell, contains no unphysical
bonds since by St. Venant's principle' the strain is
then zero at the cell boundaries. Our cell contains
48 atoms including those whose positions are relat-
ed by the center of symmetry. A projection of the
atomic positions onto the xy plane is shown in Fig.
4. The coordinates of the atoms are shown in
Table I. The maximum bond-length distortion in-

troduced at the cell boundary is —17%, which
produces some gap states which are not intrinsic to
the dislocation. In the real crystal, the structure
(for a dissociated 60' dislocation) is periodic along

the dislocation line direction, and the stacking se-

quence of planes normal to this direction is ABA-
BAB as for the perfect crystal.

, III. CALCULATIONAL PROCEDURE

V(r)= g v(r —R—r&), (la)

2 b
v(r) = ga;e

where R is a lattice vector and the a; and b; are
determined from a nonlinear least-squares fit to a

The electronic structure calculations are based
on the approximation that the pseudopotential may
be represented in real space as a sum of atom-
centered Gaussians,
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FIG. 3. Computer-simulated electron micrograph of the dislocation shown in Fig. 2. This image was computed for

the dissociated glide dislocation structure by numerical solution of the Schrodinger equation using measured values of
all the relevant electron-optical parameters. A point resolution limit of 3.8 A was used as well as an "information reso-
lution limit" of 2 L (Ref. 15).

Atom

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25.47
18.70
12.94
6.32
0.15
6.32

12.63
18.90
20.99
14.47
7.85
1.63
4.74

10.70
17.47
23.03
21.24
14.93
7.23
1.12
5.04

10.85
17.22
23.18

—6.51
—6.88
—7.24
—7.09
—6.58

6.21
6.19
6.47
5.25
4.78
4.86
5.16

—5.46
—5.74
—5.47
—4.93

0.44
0.21
0.53
0.60

—1.12
—1.60
—1.05
—0.68

TABLE I. Atomic coordinates (a.u.).

3.63
0
3.63
0
3.85

—0.22
3.63
0
3.63
0
3.63

—0.91
4.35
0
3.63
0
3.63
0
1.72

—1.81
—2.03

0.94
3.63
0

self-consistent crystalline pseudopoteritial. ' Ex-
pressed in Ry a.u. , the parameters are

a& ———7.744, a2 ——10.362, b) ——0.38, b2 ——0.76. It
is assumed that the a; and b; do not change for
any atomic site when one passes from crystalline
silicon to dislocated silicon. This assumption is
tested by calculating the electronic structure of the
silicon (111)surface and comparing the results
with a self-consistent calculation. The energies of
the surface states are found to be within -0.2 eV
of the self-consistent results. 'The lack of self-
consistency is likely to induce errors of similar
magnitude for the dislocation.

The basis functions are of the form

R

where ~z locates the atomic sites in a unit cell and
v indicates the orbital types. The f„areof the
form

where the g„arepolynomials of s, p, and d sym-
metry. There are two s-like, three p-like, and five
d-like functions per atom. e is set equal to 0.186,
which is near the value suggested by Lane. ' With
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FIG. 4. A projection of the atomic positions onto the xy plane of the unit cell. Atom n is related to atom -n b in-
version through the origin O. Atom 22 ( —22) is the dislocation core atom which terminates the extra plane (22, 14,3)
of atoms in the crystal.

E(2a, 2b, k~)

30' Partial Dislocation —Silicon

this real-space representation of the potential and
basis functions, we are able to calculate the Hamil-
tonian matrix elements for the dislocation without
recourse to empirical scaling formulas.

With 10 orbitals per atom and 48 atoms per unit
cell, the dimension of the Hamiltonian matrix is
480. In order to reduce t size of the matrix
while still retaining some of the variational content
of the d-symmetry orbitals, we employ Louie's
method of phase-dependent chemical orbitals. '

Louie has shown that by properly preparing the s,
p, and d orbitals, one may treat the d orbitals in a
modified- form of Lowdin perturbation theory. In

this method, the variational content of the d orbi-
tals is included implicitly in an effective Hamil-
tonian whose dimension is determined by the
number of s and p orbitals. This procedure reduces
the dimension of the matrix by a factor of 2.

IV. RESULTS

The calculations indicate the existence of a half-
filled band of dangling-bond states associated with
the dislocation core. The energy spectrum of the
dislocation states together with the crystalline pro-
jected band structure is shown in Fig. 5. The crys-
talline band structure has been projected onto the

p;Like Danglkrg

Bond State at k, =—",

EF —————————-
0—

CS
0)
C

LLI

islocation core

—3
0

kz
c

I'XZl Crystalline projected band structure

Dislocation states

FIG. 5. Energy spectrum of the dislocation states and
crystalline projected band structure. The occurrence of
two dislocation bands arises from the presence of two
dislocations in each unit cell. The energy splitting of
these two bands is a measure of the interaction between
the two dislocations. The Fermi level is indicated by the
dotted line.

FIG. 6. Charge density of a dislocation state with
k, =m/c. The state is predominantly p, in character
and is confined to the atoms near the dislocation core
which is indicated by the dotted line. One unit of
charge density corresponds to e/0 where 0=6S71.7az.
The contour. spacing is 2.0 units. The dislocation core
line is parallel to the [110]direction of dislocation-free
silicon. The plane shown contains atoms number 22 and
14.
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I -to-K direction of the diamond Brillouin zone,
since this is the only direction for which the
translational symmetry of the crystal is not broken

by the dislocation. Two dislocation bands appear
in the spectrum because there are two dislocations
per unit cell. The two bands are split in energy by
about 0.3 eV. This splitting arises from the in-

teraction between the two dislocations.
At k, =0, the dislocation states lie in the bulk

conduction-band continuum where they interact
strongly with bulk conduction-band states. At this

point in k space, the dislocation-state wave func-

tions are, therefore, not strongly localized to the
core region. In the region of k space where the
dislocation states are occupied, the energies are
well outside the bulk projected band structure and

are, consequently, highly localized to the disloca-
tion core.

The charge density of a dislocation state with

k, =m/c is shown in Fig. 6. The character is
predominantly p-like pointing in a direction almost
parallel to the dislocation line, and the charge is

strongly localized to the dislocation line. The
dislocation states may, therefore, be modeled by a
one-dimensional array of p, orbitals which interact
with their nearest neighbors to form a band with a
dispersion relation of the form

E (k, )=Eo+2t cos k,c, (4)

where t is the nearest-neighbor hopping matrix ele-

ment. Since the pseudopotential is attractive in the
region between the core atoms, where the p, orbi-
tals have a large negative overlap, the matrix ele-

ment t is greater than zero. This crude model ac-
counts qualitatively for the dispersion shown in

Fig. 5. The width of the dislocation band is —1.8
eV. Marklund has obtained a p, -like band of
dangling-bond states of roughly the same width.

In order to test the adequacy of the size of the

unit cell, we have calculated E(k„,k„,k, ) for two
sets of (k„,ky). For a very large unit cell, the ener-

gy of a dislocation state for a given k, will not
depend on (k„k„).For a given k„wefind the
difference in energy for the dislocation states with

(kx, ky ) equal to (0,0) and (n/2a. , tr/2b) to be less

than -0.2 eV, which indicates that the interaction
between dislocations in adjacent cells is relatively
small. In addition, we find that the charge densi-

ties for the two dislocation states at (0,0,sr/c) and

(sr/2a, sr/2b, sr/c) are essentially identical. We
conclude that the unit cell is large enough to calcu-
late successfully the properties of core-localized
states.

It is generally believed that the electronic struc-

ture associated with the 30' partial dislocation in

silicon consists of a full donor band and an empty
acceptor band. It is, therefore, unlikely that the
unreconstructed core geometry is the true geometry
since it implies, if spin correlation effects are
neglected, a single half-filled band. If the core un-

dergoes a reconstruction in which the translational

period along the dislocation line increases by a fac-

tor of 2, one empty and one full band separated by
one energy gap will be obtained. ' Marklund has
considered one reconstruction pattern for the core
atoms and finds an energy gap of -0.8 eV separat-

ing the filled and empty bands.
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