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Transition rates for acoustic-phonon —hole interactions in Si are calculated using the
deformation-potential scattering theory of Tiersten. No assumptions of band parabolicity
have been made. The transition rates incorporating the full nonspherical-nonparabolic na-

ture of the Si band structure have been calculated numerically. As a result, the transition
rates are strikingly dependent on energy as well as on incident and scattered directions.
We have also found for intraband scattering, as Tiersten did for Ge, that light holes

scatter more strongly in the forward direction and heavy holes scatter more strongly in

the backward direction when the forward scattering direction is chosen from the (100) or
(111)symmetry set. We have also considered the (110) symmetry set aud have found

here that as energy increases the trend mentioned above for intraband scattering is no

longer true. As a check on our computational procedure we have calculated transition
rates for Ge and compared our results to those of Tiersten. The two sets of values are in

close agreement.

I. INTRODUCTION

In calculating electronic transport coeAicients of
semiconductors, it is necessary to obtain transition
rates for carriers scattered by various mechanisms.
At low temperatures scattering processes are dom-
inated by acoustic-phonon interactions. In the
present work we investigate the scattering rates of
holes by .acoustic phonons in the long-wavelength
limit for p-type Si. Although the problem of
acoustic mode scattering in the diamond structure
has been dealt with in great detail in the past, '

detailed comprehensive results have mostly been

applied to Ge (Ref. 9) in which the valence-band
structure is approximately parabolic. Band non-

parabolicity, if accounted for, was usually included
in the density of states' or in energy correction
factors in the calculation of transport coeAicients.

However, the transition rates themselves were all

calculated based on the scattering between parabol-
ic bands. This is justifiable for Ge in which the
valence spin-orbit splitting is relatively large (0.3
eV} and the coupling between the spin-orbit split
and the two top valence bands is weak and may be
neglected. This approximation is not valid for Si

in which the spin-orbit splitting energy is small
(0.044 eV). The coupling is strong and should not
be neglected.

Wiley '" did consider the efFects of band nonpar-
abolicity in the calculation of transition rates and
displays the results for Si. But, he concerned him-
self mainly with the direct-gap III-V compounds.
Wiley used the wave functions of Lane' which
were calculated for narrow-gap materials such as
InSb, in which the coupling between the conduc-
tion and valence bands is very much stronger than
the coupling between the spin orbit and the two
top valence bands. Consequently, the latter cou-
pling was neglected. Also, in that work the
heavy-hole band was treated as parabolic and
decoupled from the other bands. This, however, is
not the situation in Si. The light and heavy
valence bands in Si are coupled to the spin-orbit
band much more strongly than they are to the con-
duction band because the direct gap is large (4.185
eV} relative to the split-off energy. ' Also, the
heavy-hole band can be quite nonparabolic espe-
cially in the (110) directions. Thus, the applica-
tion of the narrow-gap wave functions is not war-
ranted for Si.
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Furthermore, Wiley used an expression for the
transition rates given by Ehrenreich, ' which was
derived just for intraconduction-band scattering of
longitudinal-optical modes coupled to electrons by
polar interaction. This expression he then modi-
fied to accommodate p-type conduction involving
both intra- and interband transitions. An essential

part of Wiley's analysis was based upon an overlap
integral which arises as a distinct factor in the in-

teraction Hamiltonian given by Ehrenreich. The
overlap was taken between the periodic parts of the
initial and final Bloch states having the same ener-

gy. Wiley assumed acoustic mode scattering to be
modulated by the same overlap factor. This Costa-
to explicitly states. In the more complete theoreti-
cal models of acoustic-phonon scattering anoth-
er type of overlap integral occurs. This overlap is
not taken between the initial and final Bloch states
since they are mediated by a deformation operator.
What does occur is an overlap between the initial
(final) Bloch states and a complete set of intermedi-
ate virtual states at different energies.

In order to evaluate the overlap, Wiley (and Cos-
tato) assumed the incident wave vector parallel to
any one principal axis to be representative of any
other incident direction. As a result, their transi-
tion rates depend only on the scattering angle be-

tween the incident and scattered wave vectors and
not on the details of the incident and scattered
directions relative to the Brillouin-zone axes.
Vassell et al. ' show this assumption to be valid for
the Ehrenreich overlap integral in III—V narrow-

gap semiconductors by using the symmetry proper-
ties of the associated Lane wave functions. How-

ever, it is quite clear from Tiersten's ' treatment of
acoustic mode scattering in Ge that the transition
probabilities are highly dependent on the incident
and scattered directions relative to the axes of the
Brillouin zone as well as the scattering angle. The
same should be particularly true of Si in light of
the high anisotropy of its valence band structure.

Finally, Wiley's results of the overlap analysis
for interband scattering are in contradiction with
those of the more complete theories of acoustic
mode scattering, ' since the former predicts zero
forward and backward scattering. The work on Ge
by Ehrenreich and Overhauser' and Tiersten clear-
ly shows nonzero transition rates for forward and
backward interband acoustic-phonon scattering.
Ehrenreich and Overhauser used both a rigid-ion
model and a deformable-ion model, while Tiersten
used a deformation-potential model.

In this paper we use the deformation-potential

scattering theory of Tiersten, and apply it to Si.
Tiersten's theory is reviewed in Sec. II.

Because of the complicated nature of the wave
functions away from k = 0, they were generated
numerically. As we will show in Sec. III, the in-
corporation of band nonparabolicity results in tran-
sition rates which are strikingly dependent on ener-

gy as well as on incident and scattered directions.
Also, in Sec. III, we have applied our computation-
al procedure to Ge and have compared the results
to those of Tiersten. The two sets of results are in
close agreement.

II. A REVIEW OF THE THEORY

3

D= QD~~e,
q

. (2.1)

Here, the sum is over the Cartesian coordinates
x, y, and z. D ' is an element of the tensor defor-
mation potential operator and is discussed by
Whitfield. efJ is an element of the strain tensor t.

The operator D arises by requiring the potential
of the strained crystal to have the same periodicity
as the potential of the unstrained crystal. Conse-

quently, the Bloch modulating functions also have
the same periodicity, which is desirable if perturba-
tion theory is to be used. When the appropriate
coordinate transformation ' r '=(1—7) r, which
assures the periodicity condition, is substituted into
the k.p Hamiltonian, it causes

H~H+D .

In particular, for Si

(2.2)

H =Ho+Hk. -„+Hso ~ (2.3)

where Ho is the unperturbed Hamiltonian operator
made up of the kinetic energy part plus the period-
ic lattice potential. The eigenvalue equation for Ho
is satisfied by the functions

~
ei ),

~
e2), and

~
e3)

at k = 0. These functions transform as a basis of
the T'zz representation of the cubic group. ' In-
cluding spin, the top of the valence-band structure
is sixfold degenerate. The next term, H k. , is duek p~

to the k p perturbation. This term splits the de-

The theory of phonon-hole interactions in sem-
iconductors is directly connected with the theory of
strain-induced effects. The operator D which ef-
fects the transition between Bloch states is precise-
ly the operator that arises when considering the ef-

fect of a small homogeneous strain. ' It is
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BQJ.
S,,=

Bx.
(2.5)

That is, S,J is the change in the jth component of

generacy, away from k = 0, yielding three twofold
degenerate bands. Lastly, Hso is the k-
independent part of the spin-orbit interaction. Its
effect is to split oA' one of the degenerate bands at
k = 0 by an amount b, ( =0.0441 eV for Si). The
k p theory, including the effects of a spin-orbit
perturbation, for Si is discussed thoroughly by
Kane. ' Once the eigenfunctions of H are known,
the calculation of the probability of transition of an
electron between states due to the perturbation D
may be carried out.

The transition matrix element for phonon-hole
scattering between Bloch states of bands n and m,
wave vectors k and k', and phonon states charac-
terized by occupation numbers X and X', as given

by Tiersten [Eq. (3.1)], is

&nk, N
~

r
I
mk, N &

3
= —, g &nk, N

~

SJD~'+DJ'S,J ~

mk', N'),
(2.4)

where S,J is an element of the displacement tensor
and can be written as

the local lattice displacement u with respect to the
ith direction. The insertion of SJ into Eq. (2.4)
comes about since the strain tensor e;J in Eq. (2.1)
can be written as the symmetric part of the dis-
placement tensor S;J. Also,

~

nk, N) =
~

g„-„)e'" "~ N), (2.6)

6

~
g„-„)=g A„„(k)

~
e, ) . (2.7)

The expansion coeAicients A«are obtained directly
by diagonalization of H in Eq. (2.3). These are the
quantities that we treat numerically throughout the
calculation. The first index n on 3„, labels the
band, the second index r labels the spin state,
r =1,2, 3 t, r =4,5,6 &.

Inserting a complete set of states between the
first pair of operators SJ and D~' of Eq. (2.4) and
noting that DJ' does not operate on phonon states
we get

where
~

N ) is a phonon state, which can be written
as a product of quasistationary-phonon states

~
N-, ) of wave vector q and polarization s, each

satisfying the harmonic oscillator equation.
~ g„k )

is the periodic part of the Bloch state. It may be
expanded in terms of the original unperturbed de-

generate set of eigenfunctions of Ho, then becoming

&nk, N ~SJDJ'~ mk', N') =g g &nk, N
~ SJ ~

n'k', N') &n'k'~ DJ'~ mk'), (2.g)

since DJ' is diagonal in k', but not in the band index.
The matrix element for just S,J is

& n k N
~
S1 ~

n'k', N') =fd r & N
~

SJ ~

N') exp[ —i( k —k') r]g+ r )g, „,( r ) . (2.9)

The displacement field u of Eq. (2.5) can be Fourier analyzed into phonon states, and thus S;J may be writ-
ten as

SJ i gpj(q, s)q;Q——(q,s)exp(iq r} .
q, S

(2.10)

Here pj is the jth component of the phonon polarization vector p and Q(q, s) are the Fourier-Euler coeAi-
cients. Inserting Eq. (2.10) into Eq. (2.9) we obtain

&nk, N ~Sij ~n'k', N)=i gpj(q, s)q;&N
~
Q(q, s) ~N')fi - -„,I,(k, k'),

q, s
(2.11)

where I, (k, k') = &g„k ~ g, -„, ) is the overlap integral between the periodic parts of the Bloch states. Be-

cause we are considering long-wavelength phonons umklapp processes are comparatively uncommon and
have been neglected in the Kronecker delta.

Lastly, &N
~ Q ~

N') must be evaluated. This can be accomplished by quantizing the Fourier-Euler coeffi-
cients Q(q, s } in terms of a normalized set of creation and annihilation operators. When this is done the
only surviving terms are
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(N
i Q(q, s)

i
N') = .

iii(N+1)
for emission

2p Vco( q, s )

1/2

for absorption,
2pVco(q, s)

(2.12)

where p is the mass density of the crystal, V is its
volume, and co( q, s ) is the angular frequency of the
elastic wave. fi is Planck's constant divided by 2m,

Now,

fico( q, s)
exp

k~T

—1

kgT

fico( q, s )

(2.13)

with k~ being the Boltzmann constant and T the
absolute temperature. We assume that
fico(q, s) « ks T, which is valid for all but the
lowest of temperatures and hence the equipartition
of energy among phonon modes. With this as-
sumption N+1 N, and emission and absorption
may be considered to have equal weight.

The same analysis can be carried out on the
second pair of operators in Eq. (2 4) with similar
results. Then, for either emission or absorption,
the transition matrix element for a particular
branch of polarization becomes

6

1=(e;+ iD" ie;+),
m=(e, +~D ~e, +),
n = 2(e;+ )D"

) e;+),
(2.18)

where the + and —signs indicate spin up and
spin down, respectively.

By using the symmetry properties of the
~
e„)

(Ref. 17) and those of the operator DJ' Eq. (2.17)
reduces to

(2.17)

Recalling that
~
e„) and

~
e,+i), r =1,2, 3, have

the same transformation properties except for spin
we write the deformation potentials'

l(kg T) qcpj( q, s )

2(pV)'; J qc, (q)
(2.14)

where c,(q) [=co(q,s)/q] is the speed of an elastic
wave with polarization s, and

BJ' (k, k')= +[I,(k, k')(g, -„, ~DI'~g „, )
n'

D", =F", I+(F~~ +F, )m, i' Qk

with

F", =A *, . ( k')A;( k')+A, , ( k')A;

(2.19)

(2.20)

6I,(k, k')= g A„q(k)A, (k'},
p=l

while the matrix element for DJ' becomes

(2.16)

+(g„k JDJ'[g, -„)I, (k, k')] .

(2.15)

Note that the sum over n' is, in principle, over all

the bands at k (and k') but for Si we choose
1 & n' & 6, corresponding to the doubly degenerate
set of the top two valence and one spin-orbit bands.
These are coupled to each other much more
strongly than to other bands as k and k'~0.

With the aid of Eq. (2.7}BJ' may be rewritten in
terms of the original unperturbed degenerate set of
eigenfunctions. The overlap integral takes the form

D„",.=[A„',(k')A. , (k')+A*,,„(k )A, „(k }

+A', ,(k')A J(k')+A*, . i(k')A~j~i(k')] —"

i'
(2.21)

It is convenient at this point to change notation
slightly. Since each band is twofold degenerate, we

group the band indices into degenerate sets. Thus
for the spin-orbit bands n =1,2~N =S, the light-
hole bands n =3,4 =N =L, and for the heavy-hole
bands n =5,~N =H. Now the transition proba-
bility per unit time is written as
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3

wNM(k, k')=2 2 l
T+M(k, k') l'

s=1

X( „k—~k, ),

where I stands for longitudinal and t& and t2 refer
to the two transverse polarization branches.

Isotropic phonon velocities c, may be obtained
from spherically averaged elastic coeAicients. They
are given by Wiley" for Si as

(2.22)
C44 ——pc, = 6.804, C] i

——pc) ——17.262 (3.2)

III. CALCULATION OI MATRIX ELEMENTS
AND DISCUSSION

In order to calculate the matrix elements T we

require the phonon polarization vectors p(q, s ).
Since we are concerned with the long-wavelength

limit we assume the solid can be treated as elasti-

cally isotropic, so that longitudinal and transverse

waves will be independent of direction, but in gen-

eral are not equal to each other. The set of polari-

zation vectors we use are those given by Ehren-
reich and Overhauser. ' They are

p(q, l) =—
q„

1

9z

Qy

w -+ 2 2 —i/2p(q, r i ) =(q.+q, ) qz 9

0

(3.1)

P( q~r2) q (qz+qy )

9'x6'z

0yCz

—(q +q~)

where the initial factor of 2 arises because emission
and absorption have been given equal weight and
both processes have been included in Eq. (2.22).

If 8'NM is to be used in transport calculations
we must recognize that the collision term of the
Boltzmann equation does not distinguish between
degenerate states. This means that

l
T~M l

is not
just

l
T„'

l
summed over the degenerate states as-

sociated with X and M. What must be done is a
sum over the degenerate final states and an average
over the initial states, ' '" thus yielding.

l
T~M(k, k')

l
= —, g g l

T„' (k, k')
l

n(N) m(M)

(2.23)

It is Eq. (2.22), along with Eq. (2.23), whose

evaluation will be the focus of the next section.

in units of 10" dyne/cm .
Two sets of other quantities are needed to com-

plete the calculation. They are the valence-band
parameters' (in a.u. )

L = —6.53, M = —4.64, E=—8.75

and the deformation potentials' '" (in eV)

(3.3)

a =2.1, b = —2.2, d = —5.3 . (3.4)

We now have the necessary ingredients to calcu-
late the transition rates W of Eq. (2.22). To illus-

trate the effect of band nonparabolicity on the tran-
sition rates, the transition rates are plotted as a
function of energy for several sets of directions in

Figs. 1(a), 1(b), and 1(c). Some insight into the
structure of these plots may be obtained by simul-

taneously viewing the energy-band diagram of Fig.
2. There we have plotted energy versus wave vec-

tor squared for the valence bands, so that regions
of nonparabolicity may be readily identified.

Figure 1(a) shows both intra- and interband
scattering between the [100] and [001] directions
with forward scattering being in the [100] direc-
tion. We first note that the heavy-hole to heavy-
hole (H~H) scattering is constant as a function of
energy. The band diagram shows that the heavy-

hole (HH) band for the (100) set of directions is
parabolic. As a conset[uence of band parabolicity
the eigenfunctions of H depend only on the direc-
tion of k and not its magnitude. It may then be
expected that transitions between two bands which

areyarabolic would depend only on the directions
of k and k' and not on their magnitudes. This
kind of behavior is clearly evident in Tiersten's
work in which he treats the valence bands of Ge as

purely parabolic; consequently, he displays single-
valued transition rates for all sets of directions.

On the other hand, the light-hole (LH) band for
the (100) set exhibits a very slight nonparabolicity
over a broad range of energies. For very small k
or very large k the LH band approaches the para-
bolic limit, which is reflected in the I.~L scatter-
ing of Fig. 1(a). At the lower energies the curve
tends to flatten out indicating parabolicity. As we

go out to larger energies the plot rises gently, curv-

ing upwards owing to the slight nonparabolicity at
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these energies. Further out in energy, not shown
on the plot, the transition probability will bend and
tend to be flat as parabolicity becomes stronger.

The effects of nonparabolicity are most pro-
nounced in Fig. 1(b). Here the scattering occurs
between the [110]and [110]directions in which
both the HH and LH bands exhibit regions of non-

parabolicity. It is quite clear that the HH band
has a sharp nonparabolic structure at the lower en-

ergies then quickly becomes parabolic. Con-
currently the transition rate for H~H scattering
responds in a fashion reflecting the sharp nonpara-
bolicity and the quick transition to a region of par-
abolicity.

However, the LH band does not behave in such
an abrupt manner. As with the (100) set, it is
slightly nonparabolic over a broad energy range.
The contrast between the LH and HH bands in. the
(110) directions is brought out in the L &H—
scattering in Fig. 1(b). In the lower-energy range,
the strong nonparabolic nature of the HH band is
dominant causing the curve to bend sharply. At
slightly higher energies the HH nonparabolicity at-
tenuates while that of the LH band grows. The
result is a weak bending of the curve. Eventually,
at the higher energies, the LH band becomes more
parabolic and the L—+H transition rate begins to
flatten out.

In Fig. 1(c), we show interstar transition rates
for scattering between the [001]~[111]and

[111]~[110]directions. These may be analyzed in

a similar manner to that of Figs. 1(a) and 1 (b)

with reference to the band diagram. It should be
mentioned that not all the transition rates involv-

ing the spin-orbit band can be found on the plots
given. This is simply due -to the fact that the
S~I. transition probabilities are of larger magni-
tude than the scale plotted, and the S~S transi-
tions are of smaller magnitude. Also, for the sake
of completeness, we have included Fig. 3. It shows
the contributions of the longitudinal modes, ( ) L,
and transverse modes (both branches), ( ) T, to the
scattering for the [110]~[110]set given in Fig.
1(b).

In our second set of plots, Figs. 4,—6, we illus-

trate the anisotropy of the transition rates as a
function of direction in the Brillouin zone as well

as energy. Each plot has reflection symmetry
about an axis parallel to the forward scattering
direction. We have concluded, as did Tiersten, for
the (100) and (111) intraband scattering that
LH's scatter much more strongly in the forward

direction than in the backward direction, and HH's

scatter much more strongly in the backward direc-
tion than in the forward direction. This can clear-

ly be seen in Fig. 4. Note also that the bulk of the

1.75—
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1.25—
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O

050

0.25

0.0 I 1-——t — I

5 6 7 8

E (0.0045eV)

I I
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I I

12 13
I

14

FIG. 3. These plots show the contributions of the longitudinal modes, ( ) L, and the transverse (both branches)
modes, ( ) T, to the transition rates displayed in Fig. jI(b).
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FIG. 5. Normalized intraband transition probabilities per unit. time versus scattering angle (see Fig. 4 caption).
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FIG. 6. Normalized interband transition probabilities per unit time versus scattering angle (see Fig. 4 caption).

scattering of HH's is in the backward directions,
while the bulk of the scattering of the light holes is
in the forward directions. This trend maintains it-
self as energy is increased, and is found to be true
for all forward directions of the (100) and (111)
sets.

But, unlike Tiersten, we have also considered the
(110) set of directions. We have found that only

at the lower energies do the intraband scattering
probabilities of light and heavy holes respond in

the same fashion as described above for the (100)
and (111)directions. As can be seen in Fig. S(a),
as the transition rates evolve in energy the predom-
inance of backward scattering for HH's is reduced
relative to the forward scattering. Also note that,
in general, as energy is increased there arises a
preponderance of scattering in the forward direc-
tions. The LH's on the other hand, Fig. S(b), re-

verse the trend almost immediately. With small

increments in energy the LH's then scatter more

strongly in the backward direction, but there still

appears to be a tendency for the bulk of the
scattering to be in the forward directions. Only at
the higher energies (-6) do we see the backward
directions becoming more dominant.

Figure 6 shows interband scattering between

light- and heavy-hole bands for the indicated direc-
tions. Forward and backward scattering rates are
equal in both 6(a) and 6(b). As energy is increased
they stay equal but reduced in magnitude. There is
no overall preponderance of scattering in the for-
ward or backward directions in either (a) or (b).
However, at higher energies the curves do become
slightly skewed, favoring the forward scattering
directions.

Finally, as a check on the accuracy of our com-
putational procedure we have calculated the transi-
tion rates for Ge and compared our results with
those of Tiersten. Both sets of results are listed in
Table I. Two comments are, however, in order.

Firstly, unlike Tiersten we did not assume Ge to
be purely parabolic. We included the coupling be-
tween the SO, LH, and HH bands. Formally this
manifests itself in Eq. (2.1S). The sum over n' is
taken over the three doubly degenerate bands in-

stead of the two doubly degenerate valence bands.
As a result our transition probabilities reflect what-
ever nonparabolicity that may be present in the
band structure of Ge. In order to compare our
results with those of Tiersten we chose values cal-
culated at E=0.0045 eV which should be in the
parabolic limit.



24 TRANSITION RATES FOR ACOUSTIC-PHONON —HOLE. . . . 462i

TABLE I. 8'z~(k, k')2Vfi/mk~T (units of 10" eV cm /erg) for Ge: a comparison of
Tiersten's results with our results. The top set of values are those of Tiersten. The bottom
set of values are ours calculated at E=0.0045 eV.

H~H

(heavy-hole band)

I.~I.

(light-hole band)

I.—+H

(interband)

[100]~[100] 0.25
0.24

2.56
2.40

14.29
16.84

[100]~[10 0) 5.15
4.40

0.003
0.000 65

14.29
16.84

[100]~[001] 8.74
9.89

7.68
8.84

7.52
7.09

[001]~[111] 6.74
6.76

5.80
5.56

9.85
9.23

[001]-+[1I 1] 8.65
9.00

4.49
4.97

9.73
9.57

[111]~[111] 0.0001
0.0001

4.06
4.15

10.04
8.66

[111]~[11 1] 8.71
9.55

0.99
0.97

10.04
8.66

[111]-+[11 1] 6.07
6.80

6.07
6.92

9.34
9.86

[111]~[11 1] 7.82
7.40

3.73
3.15

9.38
10.11

[111]~[001] 9.15
10.13

[111]~[001] 10.09
12.01

Secondly, Tiersten did not assume, as we have,
the phonon spectrum to be elastically isotropic.
Instead, he obtained his polarization vectors and
sound velocities exactly from the secular equation
for elastic waves. Therefore any variation between
the two sets of values can more than likely be attri-
buted to the two difFerences mentioned above.
Nevertheless, the two sets of calculations are in

good agreement.
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