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Nonlinear screening of positive point charges in diamond, silicon, and germanium
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In the present paper we have formulated a variational principle for obtaining approxi-

mate analytical solutions of a nonlinear differential equation established by Cornolti and

Resta- for the potentials of positive point charges embedded in pure diamond, silicon, and

germanium. We have considered the cases of charges Z=+1, + 2, + 3, + 4 (in atomic

units) in these semiconductors, while Cornolti and Resta considered the cases of Z =
+ 1, + 4. We find that our approximate analytical results for the spatial dielectric func-

tions of diamond, silicon, and germanium, depending on Z, are in excellent agreement

with the numerical results of Cornolti and Resta, who have presented their results in the

form of graphs.

I. INTRODUCTION

The spatial dielectric function of a semiconduc-
tor is of importance in a variety of problems. ' In
general, the calculation of this quantity proceeds as
follows. First, the wave-vector-dependent dielectric
function e(k) is obtained in a given direction in k
space, in tabular form. Second, this quantity is ap-
proximated by some conveniently chosen analytical
function. Third, the analytical function selected is
used in a Fourier inversion to obtain the corre-
sponding spatial dielectric function e( r).

Recently, Resta has formulated a Thomas-
Fermi (TF) approach for obtaining an isotropic
e(r). The attractive feature of this approach lies in

the fact that all considerations are made in direct
space instead of in reciprocal space. The linearized
version of Resta's theory leads to a quite simple
analytical formula for c(r). Rests's result, for the
potential energy of a screened positive point
charge Z, can be stated by

ZV(r)=-
re(r)

where the spatial dielectric function et(r), associat-
ed with the linearized theory, is given by

60)e~ti[sinhe(~t r)+m], «~l-
e(0), r )Rt

In Eq. (2), e(0) is the static dielectric constant of
the semiconductor, RI is a screening radius, and q

is a constant defined by

q =(4kF z~)'",
where kF stands for the valence Fermi momem-
tum. The above quantities, for diamond, silicon,
and germanium, have been tabulated by Resta. '

In another paper, Cornolti and Resta have
solved numerically Resta's nonlinear TF equation
for the potential of point ions, and presented
graphical results for e„(r), the spatial dielectric
function associated with the nonlinear theory, for
point charges Z= +1, +4 in pure diamond, sil-
icon, and germanium. Their graphs of e„(r) versus
r show important deviations from the Z =0 linear-
ized results, i.e., from the graph of et(r) versus r.
Some aspects, of the consequences of the lineariza-
tion have been discussed by Csavinszky.

The goal of the present work is to obtain e„(r)
analytically for point charges, Z=+1, + 2, + 3,
+ 4 in pure diamond, silicon, and germanium.

This we accomplish by obtaining an approximate
solution of the nonlinear TF equation ' by an
equivalent variational principle. In what follows,
as in the preceding equations, all quantities are
written using atomic units.

II. THEORY

The nonlinear TF equation, solved by Cornolti
and Resta' is
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a[EF [E—F+A —V(r)) ], r(R„
0 r)R (4)

where a and A are constants, defined by

a =2 /3n.

one recovers Eq. (4). 'In addition, we must also
find a quantity 6 such that

5G= —,5$, g
aF

, 5$ „p F„—a 5R„. (12)
aF

A =V(R„), (6)

respectively. In Eq. (4}, V is the potential of the
point charge embedded into the pure semiconduc-
tor, and EF denotes the valence Fermi energy
which is related to the valence Fermi momentum

kF by

R„
5 I Fdr+G =0. (13)

We shall first find an expression for F. Let us
introduce the function

With F and 6 chosen according to the above re-
quirements, our variational principle can be stated
by

R„
5I= I" d aF aF

d. al('+ al{

Ep —kF /2 e

In Eq. (6), R„denotes a Z-dependent screening
radius beyond which the screened potential due to
a positive point charge Z is given' by

V(r)= — r)R„.Z
E(0)r

Our goal is to solve Eq. (4) in an approximate
analytical form by an equivalent variational princi-
ple. For this reason, we shall consider the (first)
variation of the integral

R„I=I F(P,g', r}dr,

where the variable g(r), its derivative t/r'(r), and the
function F(g', f,r) will be discussed later. We note
here that, in the terminology of Courant and Hil-
bert, our variations problem is of the "variable
domain" type since not only the function P(r} but
also the upper limit R„ is a variable. The (first)
variation of the integral I is given by

Q(R„)=0,
-Z5$ r=s =—
e(0)

—r5 1

R„ r=R
n

Z 5R„
e(0} R„

Z
e(0)R„

Equation (16) follows from Eqs. (6) and (14}.
Equation (17}follows from Eq. (15) upon con-
sideration of 5(1/R„) = —5R„/R„. Equation
(18}follows from Eq. (1S).

Using Eq. (15},one finds that Eq. (4) can be
brought to the form

g(r) =r [V(r) A], —

which, upon consideration of Eqs. (6)—(8) be-

comes, for r &R„,

g(r) = [—Z/e(0)](1 r/R„) . —

We note here that for r )R„ the following rela-
tions are satisfied:

(14)

(15)

(16)

(17)

(18)

5$ „ ii —,5$ „p+F „ ii 5R„,aF
r=

(10)

' 3/2

—a rEF —r EFsn
r

=0, r &R„.

wliere the second, third, and fourth terms are due to
the variation of the domain.

We also note here that F must be so chosen that,
upon its substitution into the Euler-Lagrange equa-
tion

Choosing the integrand F in Eq. (13) as
5/2

F= ——,(Q ) —a rEF 1('+ , r EF—1 sn i2

d aF as
d. 51('+al(

= ' differentiation shows that Eq. (11) becomes

(20)
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3/2
d dF dF

, + =f a—rEF —r EF
dr Bg' Bg r

With the result embodied in Eq. (26), the quantity
G appearing in Eq. (13}can be taken to be

2

(21)
6=—1 Z 1 2 5/2 3+—aEF Rn .

2 e(0) R„
(27}

which is recognized as Eq. (19).'

We shall turn now to the task of finding an ex-
pression for G. For this purpose Eq. (12), with the
aid of Eqs. (17) and (18), is written as

(22)

We note here that in arriving at this expression,
Eq. (20) has been considered, from which

(23)

We also note here that the term
—(5F/5i)'j') 5itt

l
„p=f 51jJ

l „p present in Eq, (12),

does not appear in Eq. (22) since this term is zero
on account of the lim„~r V(r) = —Z boundary con-
dition.

I-et us work out now the first term on the right-
hand side of Eq. (22}. Considering Eqs. (17}and

(18), one finds that

Z
r=R P I r=ii:

(0)
5Rn

e(0)R„

(24a)

Using Eqs. (16), (18), and (20), one finds that the
second term on the right-hand side of Eq. (22) be-
comes

1 Z—F„RMn
2 e(0}R„

'2

5Rn+ 5 aRnEF 6Rn ~

(24b)

With the aid of Eqs. (24a) and (24b), one also
finds that Eq. (22) can be brought to the form

2

5G= —'
e(0}R„

(26)

Recognizing that 5R„/R„= —5(1/R„) and
R„5R„=—,5(R„),Eq. (25) can be expressed as

r

5G =— 5 + aEp 5(R„) . —1 Z 1

2 e(0) R„

With possession of the quantities F and 6, the fi-
nal task consists now in making a choice for the
trial function P(r} and finding the extremum of the
quantity

R„J= f Fdr+G
0

(28)

X [—Z sinhq(R„—r )/sinhqR„], (29)

where A, and r0 are variational parameters, it is
easy to see that the function in Eq. (29} satisfies
the

P(0)= —Z (30)

boundary condition at the origin, and the match-
ing condition at r =R„ that is stated by Eq. (16).

The motivation for the choice of this trial func-
tion is the following. For A, =O it reduces in form
to the solution of the linear case. The prefactor

[(1—A, )+le '] distorts this form for small r (in
the region 0 & r & rp); this is the region in which a
departure from the form of the linear case is to be
expected.

As to matching of g'(r) at r =R„,one finds
from Eqs. (18) and (29) that

[(1—A, }+le " '][Zq/sinhqR„]

=Z/E'(0)R„. (31)

Equation (31) can be solved for A, , yielding the ex-
pression

A, = [1—sinhqR„/e(0)qR„]

X[1/(1—e " ')] . (32)

Equation (32) gives the parameter A, in terms of the
parameters Rn and r, . These quantities will, from
now on, be considered as the variational parame-
ters.

To evaluate the integral in Eq. (28), a new vari-
able defined by

with respect to the parameters in the trial function.
The finding of the extremum of Eq. (28) is, of
course, equivalent to the demand expressed by Eq.
(13).

Choosing the trial function by

1(I(r) = [(1—A)+A,e ']
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TABLE I. Parameters entering into the spatial
dielectric function of diamond. R„and r p are measured

in atomic units (Ref. 8 ).

TABLE III. Parameters entering into the spatial
dielectric function of germanium. R„and rp are mea-
sured in atomic units (Ref. 8).

R„ rp rp

0
1

2
3
4

2.76
2.68
2.62
2.56
2.53

0
0.079
0.132
0.182
0.205

0.16
0.17
0.19
0.18

0
1

2
3
4

4.54
4.40
4.27
4.20
4.14

0
0.125
0.220
0.267
0.304

0.21
0.26
0.25
0.25

Z
e„(r)=-

rV(r) ' (35)

which, by making use of Eq. (14},can be written as

Ze„(r)=-
f(r)+rA

Q =Pl/2 (33)
I

is introduced. With the new variable u, the singu-

larity in the integrand is eliminated and the in-

tegral assumes the form

R„ R

f Fdr = —f u(P') du —2a f E u du

&"n——,a f u (EF fu ) —rdu. (34)

The integrals involved in Eq. (34) have all been
evaluated by numerical integration.

The parameter values R„and ro, at which J in
Eq. (28) assumes its extremum for point charges
Z=+1, +2, +3, +4 in pure diamond, silicon,
and germanium, are given in Tables I—III. These
tables also list the parameter values for A,.

Finally, the spatial dielectric function e„(r},as
defined by Eq. (1), is

sinhq(R„r)—
e„(r)= [(1—A, )+he ']

sinhqR„

+
e(0)R„

(37)

which is the central result of this paper. The spa-
tial dielectric function e„(r) for charges Z = + 1,
+ 4 in silicon, is illustrated in Fig. 1. The figure

also shows the Z =0 result of the linearized
theory.

III. DISCUSSION

Inspection of Fig. 1 shows that the Z = + 4
curve deviates more significantly from the Z =0
curve than does the Z =+1 curve. This has al-
ready been established by Cornolti and Resta.
The Z=+2, + 3 curves are not shown in Fig. 1,
to avoid overcrowding the illustration. They both
lie in the area bordered by the Z =+ 1 and Z =
+ 4 curves, with the Z = + 2 curve closer to the

Z =0 curve than the i=+3 curve.

Using Eqs. (6) and (31},Eq. (36) can be brought to
the form

TABLE II. Parameters entering into the spatial
dielectric function of silicon. R„and rp are measured in
atomic units (Ref. 8).

l8

l6—

12

io

I
I

8 ILI CON
~ Z=0
+ Z=l

Z=4

0
0

0 O 9

o p ~

p ~

0 + ~

0
1

2
3
4

4.28
4.12
4.00
3.91
3.85

0
0.141
0.225
0.282
0.317

rp

0.24
0.26
0.27
0.26

0
4 9 +

0 +
0

2
0

0
0

r (a.u.)

Fig. 1. The spatial dielectric function of silicon [Eq. (37)]
versus the distance (in a.u. ) from the charge.
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Finally, it is mentioned that the corresponding
e„(r) versus r curves in diamond and germanium
are quite similar to those shown in Fig. 1. For

the purpose of saving space, they are not given
here.
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0
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