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Phase-shift analysis of the impurity problem in cubic metals. I.
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The original phase-shift analysis of the impurity problem in metals, done first by Friedel, was

confined mainly to crystals having spherical energy band. The present paper extends the phase-

shift approach to any band of a cubic metal. At the first step the band of states s is considered
but then the method is generalized to states p and d. The electron wave functions are the non-

Bloch linear combinations of atomic orbitals extended throughout the crystal volume which is a

large but finite sphere. It is shown that the electron density of a crystal perturbed by an isolated

impurity can be represented by the wave functions of the perfect crystal whose coefficient func-

tions are changed in their argument by a phase shift, The approach done in terms of phase

shifts is shown to be equivalent to the Green's-function approach. For an impurity potential
which is weak and confined to one lattice site the phase shift of any wave function is equal to
the density of states contributed by this function at the position of the impurity times the poten-
tial strength. Therefore phase shifts depend on the position of the impurity. An analog of
Friedel's sum rule can be derived also in the present theory. The total number of charge dis-

placed in the crystal is proportional to the total density of states at the Fermi level. The scatter-

ing cross section due to an impurity can be expressed with the aid of phase shifts and in terms
of parameters which define the unperturbed coefficient functions.

I. INTRODUCTION

The phase shifts introduced to the crystal wave
functions by Friedel' are important because they al-
lowed the prediction, or explanation, of several ex-
perimental effects in solids which are due to the os-
cillations of the perturbed crystal charge. Most of
these effects are connected with the nuclear magnetic
resonance in alioys (the Knight shift, the quadrupole
effects), the lattice dilatation in alloys, the interaction
between impurities and the ordering effects at short
distances, the coupling effects with phonons (Kohn's
anomaly), and the accumulation of defects in com-
pact structures. When the spin density is considered,
the charge oscillations due to an impurity cooperate
in the formation of the local magnetic moments and
lead to the interaction between impurities which is
characteristic for spin-glasses. 2

The use of the phase shifts is convenient in any
problem in which we like to calculate the change of
electron number per energy interval. In principle this
task requires us to sum the contributions coming
from any perturbed wave function which is extended
over the whole crystal. Then any state within the en-
ergy interval has to be taken into account. In a for-
malism which does not use phase shifts, e.g. , the
method of the linear combination of atomic orbitals
(LCAO) by Koster and Slater, 3 ' this means that the
Green's function for any pair of the lattice vectors,
one of which points to a site within the impurity area
and the other to a site outside this area, has to be

calculated. This makes the formalism enormously
complicated. Even assuming that only large distances
from the impurity give important contributions to the
change of the density of states, the calculation of the
Green's function for these distances remains tedious'„
see Sec. II.

Friedel's original approach was based on the free-
electron approximation. ' Though there exist at-
tempts towards incorporating phase shifts in the
methods where the periodic potential of the matrix is
taken into account, their success seems to be rath-
er far from being complete. The purpose of the
present paper is to make a step in this area, Our con-
siderations are limited to electron states, but they can
be generalized to phonons and spin waves. The for-
malism applied to the pure crystal taken as a starting
point is different from Bloch's. The present electron
wave functions are nonitinerant (standing) waves
classified according to the symmetry species of the
crystal point group. If the impurity potential has the
point-group symmetry of the matrix, the selection
rules between the potential and the wave functions
can be easily established. The wave functions of this
kind were proposed before, but their calculation has
been limited to a small area composed of few lattice
sites. The present approach resembles that given
originally by Friedel because the wave functions are
delocalized over the whole crystal volume which is
assumed to be a large, but finite, sphere. In effect,
the phase shifts can be obtained more easily than on
the basis of Bloch's wave functions. At the first step
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the cubic crystals having only s-like electrons on each
atom are thoroughly examined; next the formalism is

extended to crystals having p- and d-like atomic
states.

II. LCAO METHOD AND THE FRIEDEL'S
APPROACH

The present approach is a fusion of the LCAO
method and Friedel's method. The LCAO approxi-
mation is a very useful tool in the. calculation of the
electron properties of solids, especially transition met-
als. ' But the main object of the method was pure
materials. This is so because of the difficulties in-

volved in the application of the method to the impur-
ity problem. In fact, for the nonspherical energy
band of the host metal the calculation has been
completed only for one special case characterized by

(i) a single band of s electrons; (ii) the simple cubic
structure of the lattice having the nearest-neighbor
atomic interaction; and (iii) the potential of the sub-
stitutional impurity restricted to only one lattice site. "
The other approach usually assumes a special, prefer-
ably spherical, shape of the energy band of the rna-

trix or confines the calculation to the distances very
far from the impurity center. But also for these dis- .

tances, if the band is not spherical, the question
arises which is the wavelength and the amplitude of
the oscillation of the perturbed part of the original
Bloch's function. The question cannot be answered
unless the curvature of the Fermi surface for a given
energy is calculated at the cross-section points of this
surface with the vector which is parallel to the lattice
vector entering the Green's function. ' ' Then the
perturbed wave function usually becomes a very
complicated function of the components of Bloch's
wave vector and the lattice vector "'"although the
method assumes only a very limited expansion of the
exponent of the Green's function into the Taylor
series. 4 "'4

Friedel's approach, restricted to free electrons, as-
sumes very convenient geometric conditions for the
crystal. The crystal is a large sphere and the impurity
potential, which is also of spherical symmetry, is lo-
cated near the sphere center. Then instead of the
plane waves the unperturbed wave functions are

II. OUTLINE OF THE PRESENT METHOD

A. Perfect crystal

The well known way of solving the impurity prob-
lern is to satisfy the set of the linear homogeneous
equations for the coefficients U(R() with which the
localized orbitals (t(( r —R() combine into the
LCAO wave function of the perturbed crystal

(i(e= X U(R()$( r —R()
Ri

(3)

Vectors Ri label the positions of the lattice sites. At
the first step we assume that only one kind of (t, for
example those of spherical symmetry (type s), are
present in the crystal. The sum (3) is extended over
all sites of the lattice.

For the perfect crystal (the perturbation potential
Ve-O)

and

U(R() A (R()

(4)

In the case of the Bloch's wave functions

~ (R, ) =X-'~'e' (6)

provided (t((r —R() form an orthonormal set; k is

the wave vector and N is number of atoms in the lat-
tice. The set of the linear homogeneous equations
for A (R() can be transformed into the differential
eigenequation" "

15) we obtain phase shifts. The coefficient with
which Eq. (2) combines is dictated by the strength
and the size of the perturbation. If this size is small,
the coefficient of Eq. (2), hence the phase shift,
tends to zero for any 1 )& 0.

Clogston' combined the LCAO and the Friedel's
approaches into one method, however, his method

~was restricted only to spherical bands. Furthermore,
the impurity potential has been confined to one lat-
tice site. In subsequent sections we try to extend the
models by Friedel and Clogston to metals having the
nonspherical energy bands.

P( (cos8) e' 4'j((((r ) HA =eA (7),

P( (cos8)e' ~n(((rr) (2)

where ni is a spherical Neumann function. Because
of the asymptotic form ofj( and n( for large r (Ref.

8 and $ are angular coordinates, P( (cos8)e' & is a
spherical harmonic, and ji is a spherical Bessel func-
tion. If the impurity potential is added, its effect out-
side the potential area is that Eq. (1) has to be com-
bined with

This is satisfied at any lattice site which is far from
the crystal boundary. 8 is the differential operator
dependent on the structure of the (perfect) lattice
and the strength of the atomic interactions and ~ is
the energy parameter. Equation (7) can be obtained
independently of the symmetry and the boundary
conditions imposed on A (R,).'8 In particular, Eq.
(7) is satisfied by A (R, ) of Eq. (6).

To meet Friedel's boundary conditions we try to
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satisfy Eq. (7) with the aid of the combinations of Eq. (1). We are led to a secular problem which is simplified if
Eqs. (1) are replaced by their projections on the rows p, of the irreducible representations 1'; of the point group.
These are called lattice harmonics. Taking the cubic point group as an example we can solve the secular problem

((H), ,","j,, (nR ) ] W](H), j,, (nR ) ) —e,

((H),«'"„j,«(nR ) I Wl(H), j,, (KR ))
I

((H},, l' „j „(nR ) i Wi(H), ,l'"„j „(trR ) ) —E ~ ~ r 0 (8)

A ' '
(tr R) = X XCi,' ' (n)(H} r" j (KR )

l

and the wave function of the perfect crystal

(9)

separately for any I;. The radial coordinate r in Eq.
(1) is replaced by R because A (R} is calculated in

I', p,
the space of the lattice sites; tr =

] k]. The (H)t,'
are cubic harmonics, index t labels the harmonics
which belong to a given I"; and p, and have the same
I Solvi.ng Eq. (8) we get the coefficient function

I

providing that Rq —R, is large in comparison with the .

period of sine and cosine. In a perfect crystal the func-I,p, Jl, I', p, A,

tions A ' (n, R) and B ' '
(n, R) do not combine

because the matrix elements of W between these
functions vanish. The coefficients (12) for different
cubic lattices have been calculated elsewhere. " ' It

I', p„X
has been shown that A ' '

(n, R) and the corre-
r, ~

sponding eigenenergies e ' (K} can reproduce the
density. of states in the matrix metal. '

y(r ) =XA '"'
(K, Rt)d (r —li/)

RI

(10) B. Crystal perturbed by an impurity

Because Q( r —R, ) have spherical symmetry, any

Q(r) is, hke A ' (K, R), a basis function of I';,
and p, . The index A. labels different solutions of the
secular problem. Outside the area of the impurity
potential (R = 0) Eq. (7) can be satisfied also by

B "" (n, K)='XXD, (""' (K)(H)„" n, (nR) . (11)
l f

If the crystal is large we have

%e approach the problem of the perturbed crystal
on the basis of solutions given in Sec. III A. In gen-
eral

U(K) = ~~I VP(R;„p)Gs(R, R; p) U(R; p) dR; p

(17)

Gs(K, K, ,) is the Green's function of a crystal, R;,
is the position of the impurity, and V (K;„,) is the
perturbation potential at R = R;,. %'e have

owing to the equality

((H ), ", n, , (trR ) i Wi(H), l'
n, „(trR ) )

(12) I', p, A, r(, p, A,

( ) yxgx A (K, R)A ' '
(Kp R&~p)

I',. p, A, « e ' (n)-E

(18)
= ((H),', j,(zR )] W](H.),", "„j„(zR)), (13)

which holds for any I', t', I", and t", because: (i)
the area where nt(KR ) are singular (smali R (R, )
can be discarded in comparison with the whole crystal
volume —mR j, (ii) in the overwhelming part of the

crystal volume the asymptotic formulas'

where at the second step we assumed that R;, is
confined to one site, say 0. In this case

I', p„A.
A ' '

(K, 0) =0 unless 1'; = 1', and I'i is the one-
dimensional irreducible representation. The sum
over ~ can be replaced by an integral (Rq is the crys-
tal radius)

ji(trR ) = (nR ) 'cos[nR ——(I + l)m]
«R &)1 2

nt(trR) = (KR) 'sin[trR ——,'(I+1)m]
«R &&1

are valid, and (iii) we have

ta Rd ta Rd
sin'~R dR = cos'KR dR

a

(14)

(15}

(19)

where x~ = x~i„ is the value of x at the limit of the
A.th subband ", see also inferences below Fig. 1.
Rq/n is the density of states per unit of tr; cf. Ref. 1.
Providing E is an energy within the band, at least for
some A. we have certain th) for which

=-, (Rq-R, )
1 r, ~E=e ' (ng) (20)
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where Kp (K"; for the remainder of X the contributions to Eq. (18) can be neglected. The summands in Eq. (18)
are the largest in the range of K Kp therefore

E ' (K) F. =—-[K (Kp) ] lim f„'(F., K)

where
I ], A.

(E )
E (K) E
K' —(KE)'

(21)

(22)

r
is a slowly varying function of K. This is so because the behavior of E

' (K) is very similar to parabolic. 'p At very
r, , i

large R = (R ( the function A
'

(K, R) take the form [cf. Eq. (14); representation I"& combines I, and n& having

only even I]

(K, R) N ' (K)[1+c4' (K)(H) ' —cp
' (K)(H)pr+ ]

R ~oo ]cR
(23)

where

N ' (K)=C ' (»)r, ~ r, ~

I

whereas 8 ' (», 0) diverges;

r, , i Cp' (K)
Cp K

Cp' (K)

r, , )

r& k( )
C4 (K)

C' (K)

(24)
N ' (K) = ',

/, (1+[c4' (K)]'l4
2mB, '/'

+ [C (K) ]'lp+ }

(27)
A similar asymptotic expression holds for

8 ' (K, K). This expression for 8 ' (», K) is Eq. (23)
having sinxR replaced by —cosKR, viz. ,

cf. Ref. 18; v, is the volume of the elementary cell,

8 ' (K, R) —cot(»R )A ' (K, R) (25)
f2+

] 2lt, = (44r) '
J sint) d8 J dg[(H)&&']2 . (28)

cf. Eqs. . (12) and (15). At }R(=0

A ' ( 0)=N'( )
In virtue of Eqs. (18), (19), (21), (23), and (26) the
GE(R, O) for large R is

42E(K, O) Xf~(E, Kp) Jt
" d» [N ' (Kp))'

n KR

x [I+c4 (KP)(H)4' —cp' (KP)(H)p'+ ]

=—Xf, (E, KE)g„(KE, e, y) „d» (29)

where the last step is due to the fact that any

gg( t) K@) = K 2[N & (K) ]2 X X ( I)&/2C&, (K)(H)&
l fr] i@1 ]

(30)

is a slowly varying function of »; the sum in Eq. (30) runs over I and t which label the cubic harmonics belonging
to I &. The principal value of the integral (29) isp

2R
cos(KpR ) ( S& [(K«& KE ) R ] + S& [(K«&+ Kp)R ] }

l 2r cos(KER )+ s&n(»zR ) ( Ci [(K~ —Kp) R ] —C& [(K~+KE) R ] } =— (31)
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providing R is very large. Since C;(0) ~ expres-
sion (31}does not apply when Kp K . Taking the
principal value and the imaginary part of the integral
(29) together we obtain for large R

G, (R, 0) =—Xf,(E, KP)g„(KP. e, y)

r), A,

[In order to avoid any confusion with the cl, (K)
used in Eqs. (23)-(30) the superscripts I'1 and }h at
e(0) are omitted. ] We can calculate the coefficient
e(0) in the way similar to that used in Refs. 3 and 4.
We have

x [cos(KpR) —i sin(KpR)] . (32)

This term has to be added to any unperturbed coeffi-
cient function of Eq. (23) in which K is replaced by

one of xz", if, in analogy to Koster method for the
Bloch coefficient functions, 4 we put

WA ' (KE, R) =t'(Kg)A ' (Kq, R)

(W+ V )U ' (R) =EU ' (R)

(34)

(35)

U (R) =A (K, R)+c(0)Gg(R, O) . (33)
The index A. for ~z has been omitted. Substituting
Eqs. (33) and (34) into Eq. (35) we have

( W+ V }[A ' (Ks, R)+c(0)GE(R, 0) ] = a ' (Kq)A ' (Kq, R)+ V A ' (Kc, R)+V c(0)Gz(R, O)+c(0) WGc(R, 0

Because

WGs(R, 0) =e (K)GE(R, 0)

and

= EA
'

(KE, R) + c (0)EGp(R, 0) (36)

(37)

XX [E—a ' (K)]A ' (K, R)A ' (K, O)

e ' (K)-E
which is the Kronecker's delta, we have

[—E+l. ' (Kq)]A ' (Ks, R) + V A ' (Kq, R)+ V c(0)Gq(R, O) = —c(0)5(R, O)

(38)

(39)

We multiply this equation by A
'

(Ks, K) and integrate over the crystal space. Taking into account that Vf WO

only at R =0 we obtain

[—E+e ' (Ks)1+ V (0) [A ' (Ks, 0)] + V (0)c(0)A ' (Kq, 0)Gq(0, 0) = —c(0)A ' (K+, 0)
therefore

A
' (Kg, 0) V (0)

I+ V (0)GE(0, 0)

(40)

(4l)

r, , x I 1' r), x
since a ' (KE) =E by hypothesis; see Eq. (20). For large R the dependence of A ' (K, R) and 8 ' (K, R) on
the angles 8 and Q is the same as the dependence of gh(K, 8, Q) on these angles. Then, because of the formula

(32) and the asymptotic form of A
'

(K, R) and 8 '(K, R) [cf. Eqs. (23) and (25)l, the Gs(R, O) at large ~R~

is a linear combination of A ' (K, R) and 8 ' (K, R) taken for different ih. Therefore [Eq. (33)] the perturbed
coefficient functions at large 8 are

I I II III

U ' =(1+a"")A ' (K")+a""A ' (K" )+a"' A ' (K" )+
I II fll

I' (Kh )+bhh 8 1' ( h )+bhh 8 1' (Kh )+
II II I fll

U ' =(1+a" " )A ' (Kp )+a" "A ' (KEh )'+a" " A ' (KE )+
I II I I I

1' ( h)+bh h 8 1' (Kh )+bh h 8 1' (Kh )+

I II

( It] [n& r X("]
+b" "8 ' (Ksh )+b" " 8 ' (KP )+ ~ +b" " 8 ' (KE )
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For any pair of the indices A.
'~' and A.

'"' the coeffi-
cients a and b depend on the strength of the pertur-
bation potential and the energy; cf. Eq. (41). For the
sake of simplicity the symbol R in the argument of

r] x r] r, , )1, .
U ', A ', and B ' in Eq. (42) has been omitted;
the same applies to Eq. (46). We have assumed in
Eqs. (42) that for a given E there are n values of «P:

impurity area. For in this are&

W=W

and the eigenfunctions are

I I I

p(x )A 1'
( 1 )+q(x )B 1' (Kx )

(45)

)I. &(n)
KE, KE ~ ~ ~ ~, KE

for which

(43)

It lt II
p(k )A I' (Kh )+q(k )B 1' (KX )

(46)

r, , ~' r, ~"
e ' (K" )=s ' (K" )=

(n) („)=e ' ( PK")=E

r&, )i'
is satisfied. The important point is that U

r, , )" r, ) '"'
U ', . . ~, U ', which are solutions of the
same eigenproblem, can be mutually orthogonalized.
These solutions, however, are not of much use, be-
cause of the difficulties in the calculation of the coef-

] (p)) (u) ),(p, )),(v)
ficients a" " and b~ ", But there exists

r, , x
another set of functions, U, which are mutually
orthogonal and are also the eigenfunctions of the en-

ergy operator W of the perturbed crystal outside the

r z(")
~
&(n)

&
r~, L &( n) &&(n)

&
r~, x &(n)

)
(n)

p &E +q ~ KE

A ' (Ks, R) ~R 'sin(«sR )

B ' (Ks, R) ~ R ' cos(«&R )

(47)

(48)

),(p, ) r ),(v)
Any integral U (R) U (R) dO is a com-

bination of

The energy of any function (46) satisfies Eq. (44) be-
cause of the validity of Eq. (12) in the considered
area. The mutual orthogonality of the functions (46)
can be easily checked if we note that for large R and
any ~q

sin( Ks'~'R ) sin(KP R ) dR = „sin(KP R ) cos(KP R ) dR

= JI cos(«s R ) sin(«p R ) dR

), (p, ) ),(v)
cos(«p R ) cos(KE R ) dR =0 (49)

providing p, & y. The result (49) holds because the
interval of the integration over R is large in com-
parison with the period of sine and cosine and

Ks + Kp; see Ref. 20. Since Eqs. (42) and (46)
represent two sets of mutually orthogonal eigenfunc-
tions of the same eigenproblem having one energy E
there must exist a unitary transformation between
these two sets of functions. As a result, the electron
density given by a more complicated set (42) can be
replaced by the density given by a simple set (46).
This makes the impurity problem suitable to its
further treatment with the aid of the phase shifts.
For, if we put

IV. CALCULATION OF PHASE SHIFTS

Des~""=—V(K ) = —V(R, )
N ' N

l - 1=—V(R „)= = —V(0)
N ~ N

(52)

This can be done on the basis of the rigid-band
theorem. At the first step we assume the perturba-
tion potential VP( r —Rt) centered on one lattice
site, say R~. This site is close, but not necessarily
equal to site R~ =0. The perturbation energy of the
Bloch state is independent of the position R~, viz. ,

p(") = cosh" (50)
In Eq. (52) we assume that only

q'"' = sinS", (51)
and take into account Eqs. (47) and (48) we obtain—r, , ~ r, , )
U equal to a phase-shifted A (K~, R). This is

given by Eq. (23) in which K =Kg and the argument
KF R is replaced by ~qR + h". This can be done for
any Ks which satisfies Eq. (44). We obtain one phase
shift for any standing wave function whose energy is
inside the band, in analogy with the result obtained
earlier by Blandin for the Bloch state. "

V(Rt) =
~

@'( r —Rt) V ( r —Rt)@( r —Rt) dr

= V(R, )

@"(r—R, ) VP(r —R, )$(r —R, ) drn' s'

(53)

do not vanish.
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Beyond the one-center integrals (53) we may also have

V(R, ;Kl, RI) =„@(7 —RI) V (r —R, )4(r —RI) d& ~ (54)

the two-center integrals, and

V(Rz', Ri, R ) =„$(7 —RI) V (7 —Rz) @( r —R ) dr (55)

the three-center integrals. Their total effect on the standing wave function labeled by I;, p„~, and K is

= V(R~) [A ' '
(K, R~)] + XV(R~;Ri, RI) [A ' (K, RI)]

RI

+x $V(R~;RI, R~) [A ' (K, R()A (K, Rpg) j
R/ R

(s6)

The sums X-„and X-„run over these few centers
I m

near R~ = 0 for which Eqs. (54) and (55) do not van-
r, ].

ish. The superscript p, in e ' is omitted because en-
ergies of the wave functions belonging to different
rows of an irreducible representation are degenerate.

Outside the region of the localized perturbation the
energy operator of the perfect crystal is unchanged,
hence the energy eigenvalue as a function of the
quantum parameter K must be unchanged, too. The
energy change is due solely to the change of the al-

r, ~
K'Rd+5 ' = KRd

I, x
Therefore the shift of e ' given as a function of

r, ]I. .5' is

(57)

lowed values of K. If the condition of the vanishing
of the coefficient function at the boundary of the
metal sphere whose radius is Rd is satisfied by a par-
ticular K before the impurity is introduced, the same
boundary condition after the introduction of the im-

purity is satisfied by another value K such that""

r, x r, x , r, ]=E ' (K')-a ' (K)

r4 r, ~ 2 4 r, ~—= (I+A~K +92K + ) ' —(I+A]K +92K + ) '

=~, [(K —&
' /R„)' —K']+~, ' [(K—&

' /R~)' —K']+
I, A, r, ~=——[Be " (x)/BK]5 ' /Rq .

r, , a
In the power expansion for a ' (g') we took into ac-

r, ] r, ]
count that 8 ' /Rq (( 1, so the terms (8 ' /Rq)"

r, ]
having n & 1 can be neglected. The coefficients e '
depend on the interaction integrals which define the
potential of the perfect crystal:

r

(59)

r[, ~
5 =Rg—

I ]'
V(0) [A ' (K, O)]' . (60)

QK

where p, p', p", . . . , are, respectively, the integrals
of the nearest-neighbor, the second-nearest-neighbor,
and the third-nearest-neighbor atomic interactions of

r, , ~.
a given atom. The coefficient o. ~

'
is the same for

any I'; and A. . Putting Eq. (56) equal to Eq. (SS) we
r, ~

obtain 8 ' (~).
r, ]i.

The calculation of 8 ' can be simplified if the
symmetry properties are used, For examplt:, for
VP(R ) confined to one point R = 0 and neglected

many-center integrals (54) and (55) only B ' do not
vanish:

I

The density of states at energy e coming from the
A. th wave function is"

D ' (e)=[A ' (~ 0)j'
dK

dK
r], ]1,

de ' (~)

=[& ' ( )]' dK
r], ]

de ' (~),
(61)

providing K satisfies the equation

r
(K) =t (62)

Therefore

8 (t) = V(0)rrD ' (e)

Tables I and II present the average [ V(0)m] '8 ' (a)
calculated for the tightly-bound(p'=p"= =0)
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TABLE I. Phase shifts 5 ' for the tightly-bound s electrons in the face-centered cubic lattice times the factor f m V(0}J '.
-r&, z r&. ~

The sum of 8 ' =|) '
(m V(0) j ' over A. approaches the density of states D(») in the crystal, therefore D(», )5», is the elec-

tron number within the energy interval b, »;. The reduced electron energy of the band states is»=(F. Eo —y
' )/

12P(R;, R„;),where E is the electron energy, P( Ri, R„J) is the interaction integral of a lattice site R; with any of its nearest

neighbors R„; and Fo' +p ' is the value of P when R; R„;. Energy» is within the interval (1,——) for the Bloch states and

almost exactly the same interval holds for the states based on the standing wave functions; see Ref. 20. %'e choose 5», =—for

any i and assume k= 1, 2, 3, and 4 (four-subband model). The sum 0 = X, D(a, )ha; approaches the electron number per

atom supplied by all states within the band, providing the spin degeneracy is neglected.

Energy

interval
I'1, 2

5
I'), 3

Bloch's

D(»)

(1,
(29/30,
(28/30,
(27/30,
(26/30,
(25/30,
{24/30,
(23/30,
(22/30,
(21/30,
(20/30,
(19/30,
(18/30,
(17/30,
(16/30,
(15/30„
{14/30„
(13/30,
(12/30,
(11/30,

'

(10/30,
(9/30,
(8/30,
(7/30,
(6/30,
(5/30,
(4/30,
(3/30,
(2/30,
(1/30,

29/30)
28/30)
27/30)
26/30)
25/30)
24/30)
23/30)
22/30)
21/30)
20/30)
19/30)
18/30)
17/30)
16/30)
15/30)
14/30)
13/30)
12/30)
11/30)
10/30)
9/30)
8/30)
7/30)
6/30)
5/30)
4/30)
3/30)
2/30)
1/30)

0)

0.009
0,016
0.022
G.026
0.030
0.035
0.039
0.043
0.049
0.051
0.057
0.064
0,070
0.070
G.077
0.091
0,090
0.097
0, 114
0.123
0.132
0.141
0, 150
0, 174
0.201
0.231
0,247
0.301
0.362
0.474

0.008
0.015
0.020
0.024
0.028
0.030
0.038
0.039
0,04)
0.047
0.052
0.058
0.059
0.065
0.070
0.076
0.083
0.089
0.096
0.103
0.110
0.118
0.137
0.134
0.1S6
0.166
0.177
0.204
0.235
0.252

0.011
0.020
0.025
0.032
0.040
0.041
0.049
0.053
Q.061
0.063
0.065
0.078
0.079
0.087
0.095
0,093
0.110
0.119
0.116
0.137
0.146
0.156
0.167
0.177
0;188
0.218
0.232
0.247
0.284
0.326

0.005
0.010
0.012
0.016
0.018
0.022
0.022
0.026
0.027
0.031
0.035
0.036
0.039
0.039
0.046
0,046
0.055
0.053
0.057
0.061
0.066
0.07G

0.082
0.080
0.093
0.090
0.105
0.112
0.119'
0.138

0.033
0.061
0.079
0.098
0.116
0.128
0.148
0, 161
0.178
0.192
0.209
0.236
0.247
0.261
0.288
0.306
0.338
0.358
0.3&3

0.424
0.454
0.485
0,536 .

0.565
0.638
0.705
0.761
Q.&64

1.000
1.19

0.033
0.061
0.078
0.106
0.110
0.127
0.152
0.160
0.177
0.192
0.215
0.224
0.256
0.258
0.301
0.307
0.320
0.363
0.399
0.410
0.457
0.481
0.533
0.585
0.632
0.693
0.777
0.865
1.01
1.16

(0,
{—1/30,
(-2/30,
(-3/30,
(—4/30,
(—5/30,
{—6/30,
(—7/30,
(—8/30,
(—9/30,

—1/30)
—2/30)
-3/30)
—4/30)
-5/30)
-6/30)
—7/30)
—8/30)
—9/30)

—10/30)

0.673
1.476

0.19

0.289
0,333
0.407
0.499
0.619
0.927
1.59
3.99

0.38

0.347
0.396
0.480
0,546
0.688
0.893
1.39
3.00

0.37

0.147
0.169
0.181
0.223
0.240
0.312
0.34
0.46
0.73
1.82

0.21

1.46
2.37
1.07
1.27
1.55
2. 13
3,32
7.45
0.73
1.82

1.15

1.56
1.S3
1,58
1.63
1.70
1.73
1.88
2.00
2. 18
2.77

1.00
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r
TABLE II. Phase shifts 5 ' for the almost-free s electrons in the face-centered cubic lattice times the fai;tor [n V(0)]

r, , x r
The sum of 5 ' =5 ' [m V(0)] ' over A, approaches the almost-free electron density of states D"""'(e). Four-subband

1 I
model (X=1, 2„3, and 4) has been considered. The bandwidth e, =

2
( 2&5m) is divided into 40 intervals each having the

1

length ha= —oa, . The sum g = g, D" "re'(a;)Aa; over all i approaches the electron number per atom supplied by ail states

within the band providing the spin degeneracy is neglected.

Energy

interval
I I'2 I I'3

5
r, , 4

r~, )4

5
Bloch's

Dn free( )

1

2

3

4
5

6
7

8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0.010
0.018
0.023
0.028
0.031
0.035
0.038
0.040
0.042
0.045
0.046
0.051
0.049
0.056
0.052
0.055
0.059
0.057
0.060
0.062
0.060
0.062
0.063
0.059
0.060
0.060
0.022

~ ~

0.19

0.009
0.017
0.021
0.026
0.029
0.033
0.035
0.037
0.040
0.042
0.044
0.048
0.046
0.054
0.051
0.054
0.058
0.057
0.061
0.065
0.064
0.069
0.074
0.073
0.078
0.085
0.092
0.101
0.101
0. 1 1 1

0.122
0.132
0.139
0.141
0.121
0.108
0.022

0.38

0.012
0.023
0,029
0.035
0.039
0.044
0.048
0.050
0.054
0.057
0.060
0.065
0.063
0.072
0.068
0.072
0.077
0.076
0.080
0.084
0.082
0.086
0.090
0.086
0.089
0.093
0.096
0.100
0.094
0.097
0.101
0.104
0.107
0.099

0.37

0.006
0.011
0.016
0.017
0.020
0.022
0.024
0.025
0.028
0.029
0.031
0.034
0.033
0.038
0.036
0.039
0.042
0.041
0.044
0.047
0.046
0.049
0.052
0.050
0.053
0.056
0.059
0.062
0.059
0.062
0.066
0.069
0.073
0.008

~ 0

0.21

0.038
0.069
0.088
0.106
0.119
0.134
0. 145
0. 152
0. 164
0.174
0.181
0.199
0.191
0.220
0.207
0.221
0.235
0.232
0.245
0.259
0.252
0.265
0.278
0.267
0.280
0.293
0.269
0.264
0.255
0.271
0.288
0.305
0.319
0.248
0.121
0.108
0.022

~ ~

1.15

0.038
0.069
0.088
0.106
0.118
0.134
0.145
0.152
0.164
0.173
0.181
0.198
0.190
0.219
0.206
0.220
0.234
0.231
0.244
0.257
0.250
0.262
0.274
0.262
0.262
0.250
0.238
0.225
0.193
0.181
0.169
0.157
0.136
0.106
0.069
0.044
0.033
0.022

. 0.011
0.000

1.00

and the almost free s electrons in the face-centered

cubic lattice.
r, y„L

The 5 ' '
belonging to different I"; and p, depend

on the size and the position of the perturbation, the
structure of the matrix lattice, and the values of the
integrals of the atomic interaction which enter

l, , a
(K). At the band bottom which is at K=0 aii

r, p„A, r, p„ x
5 ' (K) vanish because any A ' '

(0, R) is zero.
It is easy to show for small K and the perturbation in-
tegrai confined to V(0) that the phase shift given in
Eq. (63) can be obtained also from the Green's-
function method and the Born approximation.
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V. USE OF PHASE SHIFTS

A. Total change of electron number and the sum rule for phase shifts

Phase shifts are very useful because one can calculate easily the change in the density of states due to an im-

purity. Assuming the main part of electron charge is coming from large distances, the change in the electron
number due to a single wave function is

1

p2'II' r ~ g Sin KR + 5
2
~~ Sin KR

2
~7r

Ap ' '
(K) =— R'dR Jl sin8d8 t d@[N ' ' (K)]'

aJ {) 0 0 KR2 K R

I 6 I',. f E I',,

(64)

on condition that the angular part of the wave function remains unaltered;

5=0, q = —I for I";=I &, I"~2, I, I, and I"~1

(65)

and

9 =
2

(I —1) for I;=I,„ I', I'„, I')5, and I'2g

Taking

4=R 'sin[KR+5 ' (K) —
—,hml (67)

I

have the same set of Kq for any I;. Neglecting the
oscillating part in Eq. (69) we obtain a modified
Friedel's sum rule (Z is the change of electron
charge introduced to the metal by an impurity)

40=R ' sin(KR ) (68)

the functions C and 40 can be regarded, respectively,
as radial solutions of the perturbed and the unper-
turbed free-electron problem in a spherical potential
box. Using the reasoning given by Friedel' as well as

I', p, A,

the fact that A ' (K, R) are normalized [cf. Eqs.
(23) and (27) for I'; = I ~] we obtain

r, p„A,
1 dg' ' (x) 1

Ap ' ——sin5 '
&K j

Ry, dK K

r, p, , x
x cos[2~Rg+8 ' (K) —Am ]

(69)

I', p„A,
Excepting for 5 ' (~) which is not the free-
electron phase shift, this formula is identical with
Friedel's. The factor 5 replaces the azimuthal quan-
tum number I of free electrons. Friedel has summed
the free-electron contributions corresponding to a

given I which gave the factor 2I +1. In the present
case this does not apply. To get the change of elec-
tron charge for a given E we have to sum expression
(69) over all appropriate I'; and p, and over all K = KE

which satisfy Eq. (44). If A ' (x, R) are exact
r, ~

eigenfunctions, the e ' obtained for different 1; are
degenerate (see Appendix for the proof); therefore we

2 g XX)'"& dg ' '
(~) ~

m' r ),
o dK

I

= —gxxs" (aF")
7T

I, p„A,
because 5 ' ' (0) =0. The ~P are obtained from Eq.
(44) in which E = Eq is the Fermi energy and

(70)

dn Rg

dK 7r
(71)

is the density of states ~ in a spherical potential box.
The factor 2 represents the spin degeneracy. Let us
.note that for a spherical energy band only a single
value K = Kg corresponds to a given E and only one
phase shift was obtained for that E (Ref. 7); cf. also
Sec. VC. A short numerical comparison of the
present model with the Koster-Slater theory is given
in the next paper.

For the impurity potential confined to one lattice
site (R~)

Z =2 V(Rp) X X XD-„' (E~) =2V(R~)D(Ep),
r. IM, A.

(72)
where

D-" (EF)
R

4K (73)
de ' (K)

r., ~
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is the component of the total density of states at the Fermi level of the matrix metal labeled by the indices V;, p„
and X. These components have been calculated before. '3 In distinction to the total density of states D (EF) ex-
pression (73) does depend on KF; see Ref. 23.

Results given in Eqs. (63) and (70) can be obtained also in an elementary way. Since the change 6 K of the in-

terval of the quantum parameter due to the phase shift is 5 ' (Kp) /Rq the change An in the number of states
labeled by I I, p, , and A. is

I', Ilt„k,

An = bK=dn Rqg ''
dn (EF) V(RF)

I i'

dK 7T Ry dC e EF
(74)

because the density of states per unit of K is that given in Eq. (71); at the second step we take into account the

change of the density of states labeled by I;, p„, and A. per unit of K due to the presence of impurity. This is'

I d8""' (K)
dK

(75)

Therefore the total change in the number of states labeled by I;, p. , and A. is

m' "0 d]c - m
(76)

B. Local change of electron density

The total change of electron density at R, where iRi is large, is

l ~g JL

F Rd I', p„h ]hp(R) =, / XX„dKg ' (K, ()„,It a)-[sin (KR +5 ' ——,Err) —sin (KR ——,hm)]
p, A.

(77)

where

I', p„]i, r ~ r'"'
( )= "

X (—I)' ""'
( )(H)"

K I, r Er,.
(78)

is another slowly varying function of K. The term in the integrand in Eq. (77) can be transformed into

l 1 I', p„A, I', p„A,
sin'(KR +5 ' ' —b, —,rr) —sin (KR —6 , rr) =si—n(2KR +5 ' ' —Aw) sin5 ' '

I

= (—l)a —sin(2KR) sin(25 ' '
)

= ( —l)csin(2KR )5 ""' (79)

I', p„A.
providing all terms having [ &(0)]' and higher powers I'(0) are neglected. The g

' (K, I)-„, ItI-„) can be ap-

proximated by a single value calculated for an argument K =Kp which is within the interval (0, KF). Therefore

~F"

kp(R) = X g Xg " '
(Kp, I)-„, ItI-„) (—I ) „sin(2KR )5 ' '

(K) dK
I',.

(80)

In a large interval of K we have

(81)
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I., gl, k,

where C ' is a constant. Then

K~Kf F r., p„x 1 1 ~g K KF
sin(2KR )5 ' '

(v) dK= — cos(2KR )5
' '

(K)
0 2R K~0

+ „' cos(2KR ) dK
d5 ""' (.)

2R dp dv

1
cos(2KPR )5 (KF) + C . Sin(2KPR )

2R (2R )' (82)

At large R the cosine term predominates; hence

hp(R) = —
—, X $ Xcos(2~PR )5 ' '

(~P) (—I)~g ' (K„, I)-„,$ )
2R

I

I, p., X

The dependence on Rq is canceled if the expression for [W ' ' (~)]' is taken into account; see Eqs. (78) and
(27) for the special case of I'; = I'~. The charge oscillates, as it has been pointed out earlier, in the free-electron
case', but now the amplitude, which is proportional to R ', depends on the phase shift at the Fermi level and the
direction in which the oscillation is going out. Only in the almost free-electron case for which all KF are equal we
have one length of the oscillation wave. In general the oscillation is a superposition of the waves whose lengths
are reciprocals to the values of the quantum parameter taken at the Fermi level.

Instead of the intervals (0, KP) expression (77) can be referred to a small interval near K and integrated over
1', p, , X

the surface of a sphere. Because of the form of g
' (K, Ha, Qa ) and the orthogonality of (H)„' we obtain

+1K P2%
1 l r, P„z 2Rd

J sin()dt) dg [hp(R)] „=,gxg[N ' ' (~)]'
Ug dK Jp KF~K K

l

&& X [ct,' (K)]''li, , ( 1) sin(2~—R +5 '"'
) sin5 ' '

$ X g sin [2KR + 5
'"'

] sin5 ' '

R' 2n.
I

(84)

I', g, A,

where the formula for W ' (~) has been taken into account. Exactly the same result is obtained from Friedel's
expression (69)

1., p, , h,

'd[ap ' ' (K)], I, r, , i . r, , „.~
sin(2aR +5 ' sin5 '

4n R BR 27r'R ' (ss)

providing Eq. (69) is multiplied by the density of
states per unit of ~ and we have put Rd = R.

C. Phase shifts for a spherical band

The result obtained in Eq. (63) can be compared
with Clogston's, ' He considered a spherical band and
obtained one phase shift

I

E. The identical result is obtained also in the model
of this paper if we do not diagonalize the energy
operator but apply the free-electron wave functions as
the coefficient functions for the wave functions in a
spherical band. Taking into account only one free-
electron wave function, namely that which does not
vanish at site 0, we obtain from Eq. (60)

n D (E) V(0)
1+ V(0)l(E),

(86)
5(E) = V(0)Rd — "— " jo(p)5&free (2 R ) 1/2 K~KE

5(E) = —~ V(O)D(E); (87)

D(E) is the density of states of the matrix metal at

where l(E) is the principal value of the Green's
function Gs(R, R~) calculated at R =R~ =0; the
volume of the atomic cell is assumed equal to unity.
If the powers of V(0) higher than the first are
neglected, Eq. (86) is simplified to

= —~V(O)Dr" (E) . (88)

5' (E) = —m V(0)DI"""(E)

The superscript "free" refers to the fact that elec-
trons are free in a spherical band. If the impurity is
localized on site R~ &0 a similar result can be ob-
tained but now we have many phase shifts
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coming from the individual

D,""'(E)~ ~PI (cosg-„) exp(imrtr-„) jl(KRn) ~„' „
P

(90)

which do not vanish at R = R~ and can be added to
Dfree(E) .

On free

X QD free(E) Dfree(E)
I m

(9l)

The eigenenergies of all A = PI (cos8)e' ajI(KR ) are
the same

1/3 2/3

WA = d [PP(cosjj)e' ~j~(KR ))

rr'PP(c—os8) e' &j,(KR ) (92)

The total displacement of electron charge is ob-
tained when Eq. (88) is multiplied by 2/n and calcu-
lated at the Fermi level':

Z = —2V (0)Dr"'(EF) (93) .

Z = —2 V(0) XD ' (EF) ~-a -,

2 V (0)D n free(E ) (94)

since, as it has been checked before for several
cases, ' the total density of states of the present
model does not depend on the position of the site
considered in the crystal and we have V(Rn)
= V( 0 ). The change of sign in Eq. (63) is due to
the fact that now

r, ~dt d (1 2)
dK dK

(95)

(which holds for any I'; and h. ) is positive for all

~)0.
The difference between the present and the

Clogston's approach' is in the diagonalization of the
energy operator which is absent in the Clogston's
model. This diagonalization makes the density of
states at site 0 contributed not by a single wave func-
tion but several wave functions. The diagonalization
explains to us the decrease of the nearly-free electron
D (E) beginning near E which is at the critical point
in the Brillouin zone; see Table II and Fig. 1. Corre-

because D""'(0)=0. Now let us calculate the charge
displacement in the present model, The coefficient
functions diagonalize the energy operator. Since
these operators commute independently of the
strength of the atomic interaction taken into account,

1
the accurate A ' '

(K, R) are the same for the tightly
bound and nearly-free electrons. According to Eq.

r, p„x
(70) we calculate a sum of all 8 ' ' (E) for E = EF.
Taking into account Eq. (63) we obtain

g
free

FIG. 1. Almost-free electron density of states, . o"""",in
the sc lattice vs energy e~"". Curve a is obtained from the
itinerant, or Bloch's, crystal wave functions (Ref. 24), curve
b from the standing crystal wave functions of the present
scheme. In the present scheme

ITl8 X

Dn free(nfree) — (2nfree) I/2 X gx(n)
2n. 2 ~max

where A. m„, x is the number of subbands taken into account in

the mOdel (RefS. 18—21 and 23); 5"(K) =1 fOr K ( Kmjq,

otherwise 4"(K)=0. The parameter Km;„ is the position of

the first minimum of the energy curve e ' (K) calculated
for the tightly bound s electrons in the sc lattice (Ref. 25).
This minimum position points to the boundary of the first
Brillouin zone (Ref. 20), though only for certain directions
taken from the center of the zone this position is ex ectly

coincident with the boundary of the zone [T. Bulski, P.
Modrak, and S. Olszewski, Acta Phys. Polon. (in press)).
For other directions (other X) the Km;„have to be replaced

by certain Kq where Kq & Km;„. Then curve a and curve b

will be closer together within the interval —, «""& 1 than

it is shown on the figure; within'the interval 0 & ~ &
3

(or (0 & K ( '7P) curve a and curve b coincide. The energy
of the almost-free electrons is referred to the quantum
parameter K via the relation

cf. Eq. (95). The bandwidth of the Bloch's almost-free elec-
tron states has been taken as the unit of energy.

r, , ~
spondingly, we obtain several phase shifts 5 for
the perturbation confined to V(0) [Eq. (94)]. But
these individual phase shifts can be added together
and their sum is equal to the Clogston's phase shift.

VI. SCATTERING CROSS SECTION
DUE TO AN IMPURITY

The perturbed coefficient function U can be set up
as a combination of a part that represents an incident
particle'moving in the positive direction along Z and
a part that represents a radially-outgoing particle'
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The parameter» =
~
k

~
is the magnitude of the propagation vector. The scattering amplitude f (H, $) is obtained

when U(R, H, P) of Eq. (96) calculated at large R is identified with the general solution of the eigenproblem hav-

ing the same perturbation potential. Unlike free electrons, the scattering in a crystal does not have the axial sym-

metry, hence f depends also on the angle $. A component of the general solution of the energy eigenequation
depends on certain K and belongs to the p, th row of the irreducible representation I;:

r, ~, ]~,

Xb "i (')N"I "( ) XX( 1)q "i' "( )(~)'I sin[»R+5 ' (»)1
KR

(97)

The sums run over I and t which label the harmonics of a given 1';; the meaning of q is explained before [Eqs.

(65) and (66)]. The b~' (») are constants which should not be confused with those entering Eq. (42). At the
I ( p A,

next step we express e'"z in terms of A ' (», R) which form an orthonormal set

J A ' (», R)A t (», R)d0=5 I5r, r 5
A, A, i J

(98)

I
The A ' '

(», R), which are solutions of the energy eigenequation for the unperturbed crystal, form a complete
set for the expansion of any function which is finite throughout the potential box. To have the expansion of e'"z

it is enough to combine the functions having the same value of the parameter ~:

e'" = e'"' ""= X (2I +1)ij't(»R )Pt'(cosH) = X g g d„' '(»)A ' " (» R) (99)

where

d ' (») = e'"ZA ' (», R) dA

=N ""' (») $(2I+1)I't X X5„,
I~0 I EI'.

l

R„sin'(»R ——,
'

t) rr )
R'dRc, ""' (»)(—1)"

R 2R2 l, f

f2% I ., ill 0x
&I d@ JI sinHdH (H), ' Pt (cosH)

= X X(2I+1)i', N ' ' (»)c ' ' (») J J drbsinHdHPto(cosH)(H)„'
I KI'. 2K 0 0

I

(100)

d is the Kronecker's symbol. Since the main contribution to dq' (») comes from large distances, the asymp-

totic form of jt(»R ) has been taken into account; the last step is due to the fact that Rq &) R, and the average

of sin' or cos'is —,.

Similarly to e'" we assume that f can be decomposed into parts belonging to different I; and p, .

(101)

Then at large R we have the equation

I', p,

gd ""( )A" ( R)+f & e"'
R

I k= gbg (»)[cos5 ' '
(»)A ' '

(», K) —sin5 '"' (»)8 ' '
(», K)] . (102)

I,p, A,

Denoting the angular part of A ' (», R) at large R by

I f

(103)
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I', p, , A, l"i pa, X
and applying the asymptotic formulas for both A ' '

(», R) and 8 ' '
(», R) we obtain for Eq. (102)

1'/, p, r/ &, x

)
sin(»R ) f ' (8, P);„„Xbr,, ~( )Fr, , ~, ~( )

sin[»R +8 '"' (»)]
KR R K

Taking into account that

i ~R —i~R ei (~R+S) e-i (xR+8)
sin»R =;sin(»R +5) =

2/ 2/

we can put equal the coefficients of e'"s and e '"" on the two sides of Eq. (104). We obtain

2i»f ' (8, @)+Xdq' (»)F ' (», 8, $)=xb„' "(»)F ' '
(», 8, @)exp(i5 ""'

)

(105)

(106)

and

Xdt' (»)F ' '
(», 8, @)= Xb„' (») exp( —i5 ' ' )F ' '

(», 8, @) (107)

I', p„A.
These equations are true for all values 8 and P; moreover any two functions F ' '

which differ at least in one of
the indices I';, p„and h, are orthogonal. Therefore from Eq. (107)

b), (») = dg'" (») exp[ih ""' (») ] (108)

f' (8, $) ,
= Xd„' (»)F ' '

(», 8, $) [exp[2i8 " ' (»)] —I [
2/K

/

(109)

I'., p„A, ,I', p,
For 5 ' 0 the scattering amplitude vanishes. It may happen that we have vanishing f' ' for certain 1"; and
p, and the nonvanishing for the other 1"; and p, .

The differential cross section

(110)

is also dependent on». Since we assume the elastic scattering, no velocity factors appear in passing from f(8, $)
to a (8, Q). The total elastic cross section o. is the integral of the expression (110) over the spherical surface.

I, /a, A.

Because F ' are orthogonal, and can be normalized, the cross products F ' F ~ entering the integral of
(110) vanish and we obtain

o'=„J o(8, $) sin8d8dg=(8mRq) ' Xxx[d„' (»)]'sin'[5 '"' (»)]
r/ &

The dependence on Rq is canceled if we take into account that d„' ~ R)i2; cf. Eqs. (100) and (27) which holds
for I;=1

~ taken as an example.

VII. OPTICAL THEOREM

The validity of the calculation of cr' can be checked with the aid of the optical theorem. This theorem is valid
also when f depends on the angle g'6:

crt= Im f(8, @)~e
K

(112)

The o' and f are the sums of contributions coming from the individual I'; and p, , the theorem must hold for any
of these contributions. 'Therefore it should be

Imf ' (0, Ib) = Xsin'5 '"' (»)d„'"(»)F ' (», 0, $)
K K

=(r '" =(8mRg) 'X[d„" (»)]'sin'5 '"' (») (113)
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which implies for any A.

d„' (K) =F '"' (~, 0, )
d

(114)

with the accuracy to a constant multiplier. First we

note that the dependence on Rd on the both sides is

identical because the right-hand side is proportional

to N ' (K) ~ Rd 'i' and the same dependence on
the left is given by Eq. (100). Second, the Legendre
polynomials satisfy the relation

Pm ( I —cos28) m/ (115)

[Plo(cos8) ]' sin8 d8 = 2(2(+ I ) ' (116)

so PIP(cos0) = PP(1) =0 unless m =0. If the last
I, ]M,

case applies these (H)I,' which do not contain
PID(cos8) vanish and these cubic harmonics which

contain PP (cos8) are reduced to a multiple of this
I', p„)t.

function. Hence, for 0 = 0, any F ' and therefore
I, p,

any f ' ceases to be dependent on $. Furthermore,
'I', p., A,

because PP (I) = I for all I, any F ' becomes equal
to the combination of the coefficients with which

Plo(cos8) enter any (H)i,' Owing to the. property
of the orthogonality of Pl (cos8) the same result is

I', p., A, ,
obtained when F ' '

is multiplied by Plo(cos8) and

integrated over the spherical surface. This is the
I'. , p,

essence of the expression (100) for d„' (K) provid-

ing we note that

cedure. In general no splitting of the full band of
states into subbands occurs since the nondiagonal
matrix elements of the Hamiltonian calculated
between Bloch sums based on different $'s do not
vanish. But the change of symmetry of P may
change the symmetry of the differential operator for
energy calculated with the aid of the wave functions
based on that $. Let us assume for example

I

where @~ are orbitals which belong to zth row of ir-
g

reducible representation I ]5. The parameters which
characterize the electron state are abbreviated to sym-
bol n. For the Bloch states index n is replaced by k,
The wave function p-„has to satisfy

II

HP-„=E „y„ (118)

+ X p(R, , R„,) T ( n, R„,)
R oj

(119)

on one side and

where H is the crystal Hamiltonian, and E„ is ener-

gy. We multiply Eq. (118) on the left by @,'( r —R;)
and integrate. %e obtain

„@'(r —R, )Hy-„dr = (Eo ' +y ' ) T( n, R))

I ., p„A, .
and the factor (—1)~ in F ' '

is rendered by the
term i'. $~'( r —R, )E„P„dr=E-„T(n, R, ) (120)

VIII. ELECTRON STATES BASED ON ATOMIC
ORBITALS WHOSE SYMMETRY IS

DIFFERENT THAN SPHERICAL

If the atomic orbitals Q have spherical symmetry

(type s), the construction of the wave functions be-

longing to different rows of the irreducible represen-
tations is easy: we calculate the coefficient function

A ' '
(K, R) on each site R =R;, then multiply it by

Q( r —R;) centered on this site, and add the products
together. These wave functions are listed in Table
III. For @( r —R;) having symmetry different than s

the calculation of the wave functions is more compli-
cated. In the Bloch LCAO theory we construct the
Bloch sum for each atomic state $ separately. Then
these sums are linearly combined into the full wave
functions with the aid of the diagonalization pro-

on the other side, providing that $~ centered on dif-
z

ferent lattice sites form an orthonormal set. R„j label
the sites which are in the neighborhood of Rj. The

(p ) (p ) ,
term Eo ' + y

' is the value of the interaction in-

tegral p(Ri, R„,) when R„,=R, . Any T(n, R„,) can
be expanded in the Taylor series about R, :

T(n, R„,) = X, [(R„,—R, ) '7]
0 t

x T(n, R, ) (121)

Let us assume a simple cubic lattice with the lattice
parameter a = l and the atomic interaction reduced
to nearest neighbors; then any distance [R„,—R, ~

= 1.
Taking into account the symmetry of the lattice and
that of the interaction integrals

p(RJ, R„J ) = J $~' ( r —R, ) H$~ ( r —R„, ) dr A p(K&, R„j ) = Jl g~' ( r —R, ) Hp~ ( r —R„, ) dr

= p(R, , R„, ) = J g~'( r —R, )Hg~ (7 —R i ) dr (122)
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TABLE III. The wave functions of a cubic crystal based on the atomic states s and classified according to irreducible represen-
tations I; of the crystal point group; the index X. has been omitted. The superscripts give the symbol of the irreducible

r
representation and the characteristic polynomial of the lowest order. The approximate numerial data for A ' (K, R, );

rI2z 2Z —X —y2 2 2
r~2,X y ~ I ~&,z

2 2

A (K, R, ) [valid also for A ' '
(~, R;)]; A ' '

(~, R;) [valid also for A ' (~, R;) and A ' (K, R;)];
r zz(x -y )2 2 I',x(y -z )2 2 l,y(z -x )2 2 r yzxy r I,yz

(~, R, ) [valid also for A (x, R, ) and A (K., R;)]' A (~, R, ) [valid «iso for A (g, R, )
r

(K, R, )] are published in Refs. 18, 19, and 21 for different lattices. x =X/R, y = Y/R, and z = Z/R.

$y( ' (K, K;)@,( r —R;)
R.

r2,x(y —zi+y(z —xi+zix —y)
) ( )

4 2 2 4 2 2 4 2 2

K, R;@, r —K;
R.

2z2 X2 y2'
(~, K, )y, (r —R, );

R.

I x—
$A " (K, K;)@,(r —K, )
R.

Xw "(K,K, )@,(r —R, );
R.

XA "(K,R, )@,(7 —R;)
R,.

X 3"is'(„K
)gati, ( r —R, )

R.

I' x(y -z )
(K, R, )y, (r -R,);

R.

r y(z -x )3 "2s '* " '(„K )@ ( r K )
R,

r z(x2- )'
(K, K, )y, (r —K,);

R.

I „xyz[x (y -z )+y"(z -x )+z (x -y )]
(K, K, )y, (7 —K, );

R.

(K, K, )y, (r —K, );
R.

I' „(2z -x -y )xyz

XA " (~, R;)@z(r —Ri)
R

I' „(x -y )xyz

(&, K, )@,( r —K;);

I', ,xy(x -y )

(K, K, )@,(r —K, );
I I', ,yz(y —z )2 2

XA 's (ir, R, )$, (r —R;)
R. I,,zx(z —x )2 2

XA ' (K, R;)Q, (r —R;)
R.

„xy
(K, K, )@,(r —K, );

R,.

I „yz
(K, K, )@,(r -R;);

R.
'r

(K, K;)@z( r —R()
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superscripts x, y, and z denote that vectors R„,—R& are taken parallel to X, Y, and Z axis, respectively. From Eq.
(119)—(121) we obtain the equation for T( n, R) which holds at any R = Ki.

r t

(E —Eo ' —y
' ) T(n, K) = q "P"cos i +q ""'P'"» cos i +cos i T(n, R)

(p ) (p )
~ a

,
az, aX 8Y

(123)

The P" is the abbreviated symbol of the integral in

the first row in Eq. (122), p'"»' denotes the integral
in the second and the third row in Eq. (122). The
q" = 2 and q

"y' = 4 are numbers of the nearest neigh-
bors in direction Z and directions X and Y together,
respectively. It can be readily checked that T ( n, R),
when it is put equal to the Bloch's expression given
in Eq. (6), satisfies Eq. (123). The eigenvalue is the
well known cosinelike expression dependent on k„,
k», and k, .27 To solve the eigenequation for T(n, R)
in the case when the wave functions are classified ac-
cording to the cubic group-symmetry species we take

I", p„)l,
as the trial functions the eigenfunctions A ' '

(~, R)

I

of the eigenproblem having a full cubic symmetry.
These functions form a complete set:

T(n, R)=XXXC(I';, p„, A. )A ' (~, R) . (124)

The sum over K can be omitted because

I 1 r

A
""' (x, R)WA '"' (v', R)dQcc8, ; (125)

W is the differential operator given in Eq. (123); the
integration in Eq. (125) is over the volume of a large
sphere. The proof of Eq. (125) is as follows. We have

r ~ »~ r' pRd
tA ' '

(K, I) "
A ' ' (K', R) dII =—(—1)"(~') " 8'dR sin8d8 d@A ' '

(K, R)A ' ' (~', R)
aJ 9X2" 0

x cos'"$ sin'"Q (126)

xy, (r —R;) (127)

and similar integrals can be obtained for, the opera-
tors 8'"/8 Y'" and 9'"/BZ'". Because of the asymptotic

form ofj~(~R ) and j, (~'R ) which enter A '

r],p, k,

and A ' '
any integral (126) over R is reduced to

the combination of the integrals represented by the
first, or the last, integral entering Eq. (49) on condi-

tion that KE = K and KE = K ~ Also the),(pa) g(v) r

rl, ga, k
A ' (~, R) having equal ~ but different X do not
combine because they are the eigenfunctions of W
having different energies. ' The operator 8' com-
mutes with the operator W, therefore the nondiago-

A

nal elements of 8' between these eigenfunctions
vanish and the sum over A. can be omitted.

Let us confine our problem to a situation when the
impurity potential is extended only on one lattice site
say 0; more extended potentials can be considered in

a similar way. Our first task is to calculate the densi-
ty of states of the matrix at 0. This is the density of
states of the whole matrix crystal because the matrix
potential at 0 repeats at any site which is far from the
crystal boundary. The only nonvanishing coefficient

r, , ~
function in 0 is A

'
(~, R ). For states p, the coeffi-

r, , ~
cient function A ' (K, R) combines together with

I &2, 2z -x -y, A,
2 2 2

the coefficient function A
'~' '

(», R) into the
wave function of symmetry I ~q'.

r„,z, z r, x
2 2

= X [A (K, R;)+C (K)A (K, Rt)]
R.

I

It is easy to show that no other coefficient functionsr, 2z -x —y, &
2 2 2

than ~ '

(~, R ) can combine with
r I'

A
'

(~, R ). For, the differential operator in Eq.
(123) can be represented as

2z2 x2 y2
W =a@' '+b5' '2' (128)

where a and b are constants. If one of the bra or one
of kets in the matrix element

(A ' (K, R)iW iA " '

(K, R)) (129)
r r, 2z —x —yisA ' theotherhastobeA ' or g"

otherwise Eq. (129) vanishes. Strictly speaking, the
2z2 x2—y2 g

product A
"' '

(~, R) $» ( r —R) is not of
pure symmetry I ~5 but still contains a part which be-
longs to a different symmetry species dictated by the
direct product

(130)

2 x2 y2' '

(~, R, )]y, (r —R, )

(131)
which belongs to the representation I „because of

r„xr„=r„+r„.
It is however not necessary to cutoff from

r 2z2 x2 y2
X-„A "' (~, R;)@» ( r —R;) the part which

I z

belongs to I 25 because this is done automatically in the
course of the diagonalization process. A similar situa-
tion we have for the wave function based on Pd states,

=X[A ' (~, R;)+&"(x)
R.
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the symmetry of $d . Similar wave functions can be constructed for other @'s.

Solving the 2 && 2 secular problem

(W ""(W'~W ' ) -E
2.2 x2 y2 &

(~ " " ' ' [w'(~ ' )

2 x2 Y2

=0 (132)

r, , x
we obtain two combinations of A ' and

f'&2, 2z —x —y
2 2 2

A
'2' '

and two energies for any A. and any K,

The new coefficient functions can be normalized and
then the density of states calculated in the way

described before. Preliminary calculations are done
in Ref. 28. The solutions depend on the parameters
which enter the operator W~ which, in their turn,
depend on the form of @'s and the structure and the
strength of the atomic interactions in the lattice.

I, p„A,
Furthermore, the P

' '
which belong to the same I';

and p, but are based on different $'s can be com-
bined into more expanded p, similarly to the well-

known treatment. used in the Bloch theory, ' For ex-
ampie for @» and symmetry I'iq the wave function

(127) can be combined with the wave function

E, = J (y,
""'"

)H,"' "'"d. (134)

can be expressed as a function of K, P'*', P'"»', and
similar integrals whose number and magnitude
depends on the range of the atomic interaction, the
arrangement of the atoms in the lattice and the kind
of P considered in the combination. Replacing any K

=XA "'
(K, R;)p, (r —R,), (133)

R.

which is based on $, and has the same symmetry I'„,
r)5,z, A,

into the new wave function P, ' '. Any energy

I

by

K = K Sg (K)/Rd (135)

we obtain

r, x , r, )
AE, =E, ' (~') —E, ' (K)

= JI P, ' V»(r —0) Q,
' '

dr (136)
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APPENDIX: PROOF THAT THE COEFFICIENT
FUNCTIONS BELONGING TO DIFFERENT

IRREDUCIBLE REPRESENTATIONS OF
THE CRYSTAL POINT GROUP ARE DEGENERATE

Let W be the. total-symmetry energy operator of
the point group; for the cubic point group o. =1 ~.

For cubic crystals having the $( r —R;) of type s we

have

which is the equation for the phase shift 5, ' '; V~ is
the perturbation potential.

The detailed calculations on the density of states
~ I', IM„A,

and the corresponding phase shifts 5, ' are planned.

where

B ~ B ~ B . P P
BX BY BZ p p

8 . O' P"
kx, k& kz~ » ' ~q

P P

g (s) (s)

(A 1)

(A2)

is the reduced Bloch energy of the crystal; E is the
energy of the electron state, q is the number of the
nearest neighbors of a given atom in the crystal lat-

tice; q', q", . . . are the numbers of the second-
nearest, third-nearest, etc. neighbors, P is the in-

teraction integral between an atom and one of its
nearest neighbors, P', P", . . . are the interaction in-

tergrals between a given atom and one of its second-
nearest, third-nearest, etc, neighbors. The term
Eo + p

' is the matrix element of the Hamiltonian
calculated on a given atom. ""

We have the following set of eigenfunctions A of

I

the operator W:

WA =a A

W AI'=e~AI'

W A"=e"A~;

(A3)

(A4)

(AS)

W, W, . . . (A6)

Because the operators are differential, the commuta-

P, y, etc. , denote the irreducible representations other
than o.. We can also have a set of differential opera-
tors of a symmetry different than u.
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tion relations hold:

W W'= W'W

WW=WW
(A7)

operator W into other eigenvectors, whereas the
A

operator W leaves the vector unchanged to within a
constant.

Let us take the pair of equations

W'W'= W" W' . (A9) W Aa &aaAa (A19)
A~ A P A

Operators W, W, W, . . . are Hermitian, as it can
be shown along the lines given in Ref. 29. For the
sake of simplicity we assume that a, P, y, . . . are
one-dimensional representations. Their direct prod-
ucts satisfy the following relations

a xb=b xa=c (A10)

where a, b, and c, . . . are any element of the set of
representations n, P, y, . . . . In particular

W AP=e.PAP (A20)

and e P = eP are eigenvalues and A and AP

are eigenfunctions. We have additionally

W'A. = ~P.A P, (A21)

where e~ is not the eigenvalue. We act on Eq. (A19)
with Wl' and on Eq. (A21) with W . We have

WP W~A ~~~ WPA ~

o. x a = a x o. = g; o, x b = b x ~ = b;

and

g xa=bxb=

(A I I)

(A12)

= e~~eP~A P

W~ WPA ~ = ~P~ W~A P

=eP e PAP

(A22)

(A23)

Hence In Eq. (A23) we have made use of Eq. (A20). Since
CW" W'= W, (A13) WPW. = W. WP (A24)

etc. ; in particular and eP is a number, we have

W W =W (A14) &aa &ap (A25)

Moreover

gr~g b &abg e (A15)

W A~=e'~A'

W ga &aalu a

(A16)

(A17)

where a and b are still any elements of the set
n, P, y, . . . ', e', b', and e" are numbers.

Function A' in Eq. (A15) is the eigenfunction of
the W operator. To prove it let us note:

W W gb g W gb W ~b4b abg Qb (A18)

hence W'Ab is the eigenfunction of W . The same
holds for W A and W A'. If we consider a Hilbert
space whose main axes are eigenfunctions of operator
W, the operators WP, W", W, . . . where

P, y, 5, . . . A n, transform the eigenvectors of the

Since P is chosen arbitrarily, Eq. (A25) holds for any
one-dimensional irreducible representation.

The result can be readily extended to multidimen-
sional irreducible representations, if we note that
WPA is an eigenfunction of W also when WP be-
longs to a certain row of a multidimensional irreduci-
ble representation. For let us act on WPA with the
operator W . We obtain

W~( WPg~) Wa( W~g ~) —Wag«g ~

= e~~ WPA~ (A26)

The action of the operator WP on the fully symmetric
function A should give the function of symmetry P.
This function is the eigenfunction of W according to
Eq. (A26). Hence Eq. (A21), and accordingly Eq.
(A25), are satisfied also in the case of a multidimen-
sional irreducible representation.
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