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Low-temperature lattice specific heat of a-phase alloys based on gold

M. D. Tiwari*
Institut fur Angetoandte Physik der Uniuersitiit, Roxeler

Strasse 70-72, D-4400 Miinster, 8'est Germany

(Received 15 December 1980)

The low-temperature lattice specific heat of Au-Cd, Au-Sn, and Au-Zn dilute alloys have

been successfully explained on the basis of low-concentration Green's-function theory. The
effects due to change in mass at the impurity site and the changes in the closest radial and

angular force constants for the impurity —host-crystal interactions have been taken into
account. The lattice contraction due to the introduction of Cd, Sn, or Zn impurities has

also been included in the calculations. For Au —7.5-at. %%uoZnallo y th e low-concentration

theory has been modified. A reduction in the lattice specific heat due to substitution of
these impurities has been observed. The calculated results compare well with the

experimental data. The main contributions to the changed specific heat are caused by
even-parity 3 ig, E~, F2g, and Fig symmetry modes, a feature which is not usually observed
in other defect-induced physical properties.

I. INTRODUCTION

The measurement of the electronic specific heat
provides one of the very useful methods for study-

ing the electronic structure of metals. Its applica-
tion to the study of the alloy phases based on the
noble metals has become of particular interest fol-

lowing the determination, by means of a number of
new techniques, of the topography of the Fermi sur-

face in copper, silver, and gold. ' In terms of simple
models of the band structure, the density of states
at the Fermi level should decrease initially when the
noble metals are alloyed with elements whose addi-

tion increases the electron concentration. The mag-
nitude of the electronic specific-heat coefficient y
may be considered to give a measure of the density
of states of the conduction electrons at the Fermi
level. Therefore, measurements of the dependence
of y on alloying addition have been of special in-

terest in testing the validity of the rigid-band model,
and other factors such as the possible enhancement
of the y values by many-body effects and the effect
of changes in the atomic volume.

In the last decade a number of low-temperature
specific-heat investigations have been reported, with

the specific goal of studying the band structure of
the e phases, i.e., the terminal solid solutions based
on the noble metals. There are a number of publi-
cations on the systems based on copper and
silver. However, only very few measurements of
the low-temperature specific heat have been reported
in the systems based on gold. The experimental

work, particularly in the range of the terminal
solid-solution a-phase alloys, has shown that sys-
tems based on Au differ in many respects from
those based on Cu and Ag.

The study of the lattice part of the specific heat of
noble-metal alloys is also similarly very interesting,
and of great use. In general the lattice specific-heat
spectroscopy is universally applicable and involves
all kinds of symmetry modes, whereas the applica-
tion of several powerful methods like optical and
inelastic neutron scattering measurements is restrict-
ed to particular classes of materials. For example,
inelastic neutron scattering methods' ' are useful

only when suitable neutron fluxes and specimen
crystals are available. Similarly, the much celebrat-
ed technique of infrared absorption' ' may, usual-

ly, be employed only in the cases of electrically in-

sulating crystals. Further, the infrared "sees" only
the infrared-active modes. Thus, the study of a
number of symmetry modes which is not readily
feasible by any other experimental method, can be
made by this technique. However, the resolution in

specific-heat spectroscopy does not seem to be as
large as in other methods.

It is well known that the substitutional impurities
in the crystal produce special impurity modes, e.g.,
localized, resonance, or gap modes. The contribu-
tion of localized modes to the lattice part of the
low-temperature specific heat is too small to be
detected in the experimental measurements. On the
other hand, the contribution of the low-frequency
resonance modes to low-temperature specific heat is
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appreciable and is accessible to observation. The
possibility of occurrence of a substantial enhance-
ment due to low-frequency resonance modes was

predicted by Lehman and De Wames' and in-

dependently by Kagan and Iosilevskii. ' Recently,
we have employed the experimental specific-heat
data to investigate successfully the impurity modes
in different systems, including the noble metals
doped with different impurities. ' Recent review

articles can be referred to for more details. How-
ever, no substantial lattice-dynamical work has been
done on gold-based systems. In the case of Au-V
alloys we have observed a reduction in specific
heat due to introduction of V impurities in Au, and
a resonance is found in the I' » irreducible represen-
tation near the maximum of the phonon frequency.

Recent measurements by Bevk et al. on the
specific heat of Au-Cd alloys prompted our lattice-

dynamical study of these systems in detail. The
results so obtained were compared with the
specific-heat studies of Au-Sn and Au-Zn alloys, for
which the experimental measurements already exist
in the literature. ' There is an additional interest
in the study of these systems. As in some of the al-

lays, the Debye temperature shows an anomalous
behavior due to alloying.

In earlier studies' ' ' the low-concentration
Green's-function theory has been used taking the ef-

fect of single impurity and then multiplying by the
concentration of impurities. This study is taken to
be valid only for the concentration of impurities not
exceeding 5 at. %. In the present work we have
also studied the Au —7.5-at. %%uoZnallo yb yusing
the approximations of Elliott and Taylor. This ap-
proximation has been successfully applied by
Kesharwani and Agrawal' ' in the study of
phonon-frequency shifts and phonon-frequency
widths of dilute alloys, and by us in lattice specific-
heat studies of a-phase alloys based on copper and
silver. ' The present model includes the change in

mass at the impurity site and the changes in the
nearest-neighbor radial and angular force constants.
The effect of lattice contraction due to the introduc-
tion of impurities (Cd, Sn, or Zn in Au) has also
been accounted for. It is to be pointed out that the
force-constant changes evaluated under this formula-
tion can be used to explain other defect-induced
properties. ' '

II. THEORY

A. Lattice specific heat

Owing to the presence of impurities, the change
in the vibrational specific heat of a crystal (per

gmole) at temperature T can be expressed as

f2 oo

AC~(T) =
2 I co bN(co)csch (ficol2k&T)dco,

4k~ T

where k& is Boltzrnann's constant, A is Planck's
constant, and co is the phonon frequency. b,N(co)
denotes the change in the phonon density of states
N(co) which is defined as the number of normal
modes in the interval cu and co + d co in the limit as
d co~ 0. N(co) is related to a similarly defined
function N(co ), which is a more common function
in the theory of crystal-lattice dynamics as

N(co) = 2coN(co ) .

The evaluation of b,N (co ) is very diAicult for a
general defect, but the problem is tractable if the
perturbation caused by a defect exhibits some sym-

metry. For instance, one observes a point-group
symmetry of the host lattice for a point defect sub-

stituted at a lattice site and considers only the im-

purity space of dimension 3b )& 3b where b is the
total number of ions directly affected by a defect,
including itself. A group-theoretical analysis may

I be performed for the change in the phonon density
l of states in such cases. For a crystal containing a

single defect, one may therefore write

bN(co ) = gbN (co ),
V

where EN~(co ) is the contribution made by the
symmetri'c motion v and is given by

l„ l dD„(z)
b,N„(co2) = ——Im

1T &z

(2)

Here l„ is the dimension of the irreducible represen-
tation v, z = co + 2i cog is the complex squared
frequency in the limit g~ 0, and D„(z) is the reso-
nance denominator corresponding to the irreducible
representation v. The expression for D,(z) is given

by

D„(z) =
~

I + g,(z)p„(co') ~,

where I is the unit matrix, and p„(co ) and g„(z) are
the perturbation and Green's-function matrices pro-
jected onto the subspace of irreducible representa-
tion v.

The frequency of an impurity mode, i.e., reso-
nance or localized mode in the symmetric motion v

may be determined by the solution of the equation

ReD„(z) = 0.
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The problem is simplified if we introduce the phase
shifts 5, a concept used extensively in solid-state

scattering theory. In present notation 5„can be
defined as

IniD„(z)

ReD „(z)

In terms of phase shift the contribution towards the
change in density of states due to symmetry mode v
can be written as

1 d5
EN„(aP) =-

dc'

Substituting for b,N(co) in Eq. (1) and integrating
once by parts, the change in specific heat due to a
single defect can be written as

b,CL(T) = gb, CI"(T),

where the contribution of each irreducible represen-
tation is

2k~8'
b, CL'(T) = — I 5„cocsch (8'co)

3X~ 0

)& [1 —8'co coth(B'co)]d co,

where 8' = fi/2k~ T and N is the number of unit

cells in a crystal.
In the low-concentration limit we assume that the

impurities do not interact among themselves and

therefore the change in the density of states that is

due to a small concentration of impurities in a crys-

tal may be determined by multiplying the change

due to a single defect by the impurity concentration.
The total change in specific heat due to a fractional

concentration c of point defects is, thus, given by

representations are given in an earlier paper in the
low-concentration limits. The irreducible represen-
tations appearing in the problem are F1„,F1&, F2g,
F2„, A 1g, A2g, A2„, Eg, and E„. As the concentra-
tion of impurities increases the above expressions do
not remain valid. The next simplest approximation
is that of Elliott and Taylor which replaces Eq. (4)

by

D„(z) = II + (I —c)g (z)p„(~')
I

.

This approximation has taken into account exactly
the scattering of phonons on single impurities and
neglected scattering of clusters of impurities; i.e., we
have neglected the possibility of neighboring defects
interfering with the scattering on a particular defect.
Although the results can be taken in a better ap-
proximation, e.g., in the coherent potential approxi-
mation ' where essentially single-site self-
consistent scatterings are considered after taking into
account proper multiple occupancy corrections, the
expressions are more involved and are intractable to
computation for the case of a more complex defect.
Also at higher concentrations of impurities the al-

loys concerned change their phase and are no longer
in the o. phases.

The expressions for the resonance denominators
for a monatomic fcc lattice in the approximation of
Elliott and Taylor can be obtained from the earlier
expressions if A, and A,

' are replaced by (1 —c)A,

and (1 —c)A, ', respectively. . We get resonance in
the F1„mode only, hence we give the expression for
the resonance denominator in this particular mode.
The simplified expression for DF (z) for radial

lu

forces only, can be written as

DI; (z) = 1 —(1 —c)[eaPg, ——,A(SAi —Hz+33)j
+ —,(1 —c)Aero [g i(A2 —A3)

—g~ i(g2 g4)1

b 'o™C
( T) = cN 6Cl ( T) .

B. Perturbation model

(10) where

~1 gl g2+ 84 ~

2 ———g1+ 8g2 —2g3 —g5 —g6
The noble metal gold and its alloys, with low

concentrations of cadmium, tin, and zinc, crystallize
in a phase (fcc structure). For the atom Cd, Sn, or
Zn occupying the substitutional site, the symmetry
is seen to be O~ type. Along with a changed mass

at the impurity site we consider also the changes in

the radial and angular nearest-neighbor impurity—
host-crystal interactions. The perturbation matrix is

of dimension 39 &( 39. For a monatomic fcc lattice,
the pertinent expressions for the various irreducible

and

+ g 7 + g 9
—2g 10 + 2g 12

where

g1+ log4 g5 g6+ g7 g9 2g12 2g13 '

When we consider nearest-neighbor angular forces
also, the resonance denominator DF (z) is

lu
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gF, (Z) =

2g3

2g3 gl + 2g5+ gq v'F(gq+ gll)

~f 2 ~~g 2 + g I 1 ) g 1 + 2g 3 + g 5 + g 6 + g 7 + 2g 10

+llg4 —+~g le —(2g2+ g9)

84

—v'tlg l2

—(2g 3 + g9)

g& + 2g4 —gs g6+ g'7 —2g'i3

PF, (~)=

—ceo + 4(A, + 2X) —2A,
' —v'2'(A, + A, ') v'Z(A, —A,')

—2A,
' 0 - 0

v'Z(A, +—A,') 0 —,(A, + A,') ——,(A, —A, ')

v'2(A, —A,') 0 ——,(A, —A,') —,(A, + A, ')

g&(p = 1,13) represent the various Green's func-
tions appearing in the present problem and the ex-
pressions for them are given elsewhere. The
change in mass e at the impurity site is given by
e = (Ml~~ —MA„)/Mz„. M; 9 and MA„denote
the masses of the impurity and gold atoms, respec-
tively. The force-constant-change parameters
1, and A,

' are given as A, = hf/MA„, and
A,

' = 4f '/MA„, where f = f0+ bf and

f' = fo + hf ' are the radial and angular force
constants between the impurity and its twelve gold
atoms defined in de Launay's lattice-dynamical
model; bf and bf ' are the changes due to an im-

purity and fo and fo are the corresponding force
constants in the host gold lattice.

C. Volume-change effects

The need of considering the volume-change effects
in the study of defect-induced properties has been
discussed by many workers, ' ' ' ' including the
present author. ' The substitution of heavy im-

purities causes the expansion of the matrix, whereas

alloying with a less massive element dilates. The
masses of all three substitutional impurities Cd, Sn,
and Zn are light, hence a contraction in the gold lat-

tice is expected. In the low-concentration limit and
in a phases the behavior of the Debye temperatures
of Au-Cd and Au-Zn alloys are as expected, i.e., the
Debye temperatures increase due to introduction of
Cd and Zn in gold, whereas in the case of Au-Sn
systems we see an unusual behavior of the change in

the measured Debye temperatures as a function of
concentration. However, when we consider the
volume-contraction effects, then the behavior of the
changed specific heat is similar for the three sys-
tems.

The volume-change effect can be accounted for if
we know the Griineisen constant y which is related

to the Debye temperature as

8 lneD

8 lnV
(13)

TABLE I. Values of Debye temperatures 8~ for pure
gold after taking the volume-change effects and experi-
mentally measured 8

Systems

Au —4-at. %%uocd
Qp (K)

153.3
em (K)

164.4

Au —1.21-at. %%uoSn
Au —2.31-at. % Sn
Au —3.21-at. % Sn
Au —4.59-at. % Sn

159.6
157.1
155.0
151.7

160.6
159.1
157.9
157.7

Au —2.5-at. % Zn
Au —5.0-at. % Zn
Au —7.5-at. % Zn

156.6
150.7
144.8

162.5
163.8
166.3

Bevk et a/. have calculated the value of the
Gruneisen constant for Au and have found two
values (3.03 and 8.6) from two different methods of
calculation. There is a wide discrepancy between
the two values, which may be due to the much
more complex nature of the phonon spectrum for
Au as compared to Cu and Ag. We have taken the
lower value of y in the present calculations. The
reason is that two other noble metals, Cu and Ag,
have the corresponding values 1.9 and 2.5, respec-
tively, and these values are nearer to 3.03. Using
relation (13) we have corrected the Debye tempera-
tures for the three systems for different concentra-
tions of impurities. The values of Debye tempera-
tures for pure gold after taking lattice dilation ef-

fects due to introduction of different impurities and
the experimentally measured values are given in

Table I. The difference between the two values are
accounted for by the impurity effects which are con-
sidered later. The present method for considering
the volume-change effect is not as accurate as the
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Green's-function theory for considering the impurity
effects. However, the approximation is valid in the
low-concentration limits.

III. NUMERICAL COMPUTATIONS
AND RESULTS

A. Green's functions

The lattice dynamics of gold in Kreb's model
has been discussed by us earlier. " In this model
one takes into account the effects of electrons on the
motion of ions via screened Coulombic-interaction
and umklapp processes to satisfy the symmetry re-

quirements, whereas most of the elastic force models
used in the lattice dynamics of gold do not satisfy
the symmetry requirements. We also consider the
repulsive ion-ion interactions between closed-ion
shells extending out to two neighbors. We have tak-
en the expression for the screening parameters
(which is not well defined in this model) given by
Langer and Vosko

where

k, is the screening parameter and

E,(1'1') =P'(rpt'ap)' kF (P' is the Langer-Vosko

parameter). The interelectronic spacing is

rp = ( 4 mn, )'t, n, is the electronic density, ap ls

the Bohr radius, and kF ——(3m n, )
r is the Fermi

radius and t = q/2kF, where q is the electron wave

vector in the electron liquid.
Langer-Vosko parameter p' is adjusted with the

elastic constants of Neighbours and Alers and was

found to be 0.81. The eigenfrequencies and eigen-

vectors are determined by diagonalizing the 3 )( 3
dynamical matrix using Jacobi's method. The use

of a grid which includes 8000 points in the first

Brillouin zone was seen to give reasonably good
results. The calculated dispersion curves in the

main symmetry directions were seen to be in good
agreement with the experimental results of Lynn
et al. The Green's functions were calculated by a
staggered-bin averaging procedure. The pertinent

integrations were performed after dividing the pho-
non frequency range into 60 equal bins, each of
width 0.25 in the unit of bin width.

B. Changed lattice specific heat

The low-temperature specific heat of gold and its
alloys with cadmium, tin, and zinc have been mea-

sured by Bevk et al. , by Will and Green, and

by Martin, respectively. The electrons, as well as
phonons, contribute to the specific heat of the metal.
The electronic specific heat shows a T-dependent
behavior whereas the lattice part exhibits T and T
variation in all the three systems studied here. A
reduction in the lattice specific heats due to presence
of Cd, Sn, or Zn atoms was observed. The impurity
contribution to the lattice specific heat has been cal-
culated using Eqs. (8), (9), and (10) by varying the
nearest-neighbor radial and angular force-constant
change parameters A, and A,

' for the systems in

which the concentration of impurities are below 5
at. %. The present formulation has been found to
give good agreement with the experiment in a
number of systems. ' ' The parameters (A,,A, ')

found in the specific-heat studies give good results in

other defect-induced vibrational properties of
. solids. ' ' ' ' The systems studied with this formula-

tion were Au —4-at. % Cd, Au —1.21-at. % Sn,
Au —2.3l-at. % Sn, Au —4.59-at. % Sn, Au —2.5-
at. % Zn, and Au —5-at. % Zn. The calculated
change in the lattice specific heat of the above sys-
tems shows good agreement with the experimental
results. In all cases we get a reduction in the specif-
ic heat due to introduction of impurities.

We have tried a number of sets (A,,A, ') to obtain

good fit with the experimental results. A unique set
of A, and A,

' has been obtained to explain the experi-
ments successfully. The obtained values of force-
constants changes in the different host-impurity sys-

tems are given in Table II. The percentage changes
of the force constants in the vicinity of the impurity
of the contracted lattice with the force constants of
pure gold lattice are also shown in this table. It is

observed that the relative change in force constants
decreases as the mass of the impurity increases.
The relative change in both the force constants (ra-

dial and angular) due to tin impurity is approxi-
mately equal. Computations were also performed
assuming the above impurities as mass defects. The
mass-defect contribution to the changed specific heat
is found to be on the average 35% due to Cd, 38%
due to Sn, and 57% by Zn impurities, respectively.

To compute the lattice specific heat for a- phase
Au —7.5-at. % Zn we have taken the resonance
denominators given by Eqs. (11) and (12) instead of
Eq. (4). The modified expressions for the resonance
denominators in the various irreducible representa-
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TABLE II. Values of radial and angular force constants and resonant frequencies. The
percentage change of calculated A. and A,

' with the force constant f and f' of pure gold is also
given.

Systems

Au-Cd
Au-Sn
Au-Zn

A,(10' sec )

0.410
0.521
0.382

Percentage
change

36%
45.7%%uo

33.5%

A,'(10 sec )

—0.078
—0.087
—0.051

Percentage
change

40.6%%uo

45.3%
26.5%

co,(cm ')

147.0
152.3
159.0

tions are taken into account. The phase shifts
shown by Eq. (6) as well as the lattice specific-heat
equation are modified accordingly. The computed
results compare well with the experiments. We
have also calculated the changed specific heat when
Elliott and Taylor's approximations were neglected.
It is observed that when this approximation is not
taken into consideration, the calculated results differ
from the experimental data. The deviation is larger
at comparatively higher temperatures. The same
behavior was also observed in silver- and copper-
based alloys

Martin expected that the smooth rise in Debye
temperature due to alloying of zinc in gold produces
high-frequency impurity modes, i.e., the low-

frequency end of the lattice vibrational spectrum is
depleted as zinc is added to gold. We have seen the
resonances appearing in all the systems near the
maximum frequency of the pure gold. But out of
nine irreducible representations involved in the cal-
culations, the high-frequency resonance modes oc-
cur only in the infrared-active irreducible represen-
tation F», in which the impurity atom moves. The
obtained values of resonance frequencies corre-
sponding to fitted values of force-constant changes
are given in Table II. At very low temperatures
these resonance modes will not be excited and the
contribution of the F» representation will not be
very large.

Out of nine irreducible representations involved in

the calculation, the main contribution to the specific
heat arises due to the F», F&g F2g 3 &g and Eg
symmetry motions. The maximum contributions
come from the irreducible representations 3

&g
and

F2g which are similar in magnitude and negative

throughout the full temperature range. The contri-
bution of the F» irreducible representation is posi-
tive and dominates in the lower-temperature side
(-2 K) of the specific-heat curve. The contribu-
tions of irreducible representations Eg and F&g are

approximately temperature independent and are
similar in magnitude but opposite in sign. The con-
tribution of another odd-parity mode 32„becomes
appreciable at comparatively higher temperatures.

IV. CONCLUSIONS

The temperature dependence of the lattice specific
heat of Au doped with Cd, Sn, and Zn impurities
can be well understood on the basis of a localized
perturbation model which considers mass change at
the defect site as well as changes in the nearest-
neighbor radial and angular force constants. Elliott
and Taylor's approximation has been used for
Cu —7.5-at. % Zn alloy. The effects of the volume

change caused by the impurity atoms on the specific
heat has also been taken into account. In Au-Cd
and Au-Sn alloys the contribution due to force-
constant changes is quite large, whereas in Au-Zn
alloys it is 43/o. The main contribution to the
specific heat does not arise due to F» symmetry
modes, but instead is due to even-parity
A &g, F&g, F2g, and Eg modes. This behavior is

quite different from that observed earlier in other
systems, ' where the F» irreducible representa-
tion dominates over all others. It is hoped that the
force-constant changes obtained in this study will be
useful for future experiments on these alloys.
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