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It has been shown that the static spin susceptibility of the Hubbard model for a narrow band
calculated in the alloy-analogy approximation remains finite for any single-band model and car-
rier number, except possibly in the case of half-filled bands. In the same way one does not find
any instability if one looks for a possible divergence of the susceptibility for a wave vector corre-
sponding to an antiferromagnetic ordering in a half-filled or nearly-half-filled band. In this pa-
per we consider a model with orbital degeneracy. We calculate the spin susceptibility in the
alloy-analogy approximation using self-consistent expressions for the configuration probabilities.
We investigate how these quantities vary with the model parameters. In this case also we do
not find any ferromagnetic instability. The discrepancy with previous results is discussed.

I. INTRODUCTION

The possibility of ferromagnetic and antiferromag-
netic solutions and their stability with respect to the
paramagnetic solutions of the Hubbard model used in
the discussion of the magnetic and conductivity prop-
erties of narrow-band materials has been investigated
by many authors.

It is now well established that the Hubbard III ap-
proximation! does not provide a stable ferromagnetic
_solution. As was shown by Velicky et al.,? the Hub-
bard III solution which inciudes only the scattering
corrections is identical to the coherent-potential ap-
proximation (CPA)? of the theory of alloys.

Fukujama and Ehrenreich* have shown that the
static spin susceptibility of the Hubbard model calcu-
iated in the CPA remains finite for any single-band
model and carrier number except possibly in the case
of precisely half-filled split band. Brouers and Du-
castelle® have shown that this statement is more gen-
eral and should be true if the Hubbard model could
be solved exactly within the alloy-anaiogy approxima-
tion. This statement is therefore true for any exten-
sion of the CPA. In a subsequent paper Brouers
et al.® have calculated the response to a periodic
external magnetic field of the magnetically disordered
phase of the Hubbard model in the alloy-analogy ap-
proximation. They looked for a possible divergence
of the susceptibility for a wave vector corresponding
to an antiferromagnetic ordering. They did not find
any instability for a half-filled or nearly-half-filled
band.

The case of the doubly degenerate Hubbard model
was also considered by Brouers and Ducastelle’ and
the conclusion of that paper was that there can be an
instability related to the Hund’s rule and that fer-

romagnetism is possible in that model. That paper
was criticized by Lacroix-Lyon-Caen and Cyrot’
(LLCC) on the ground that the occupation probabili-
ties had not been calculated self-consistently. These
two authors considered the solution of the strong-
coupling limit and using energy arguments concluded
that for a band filling per spin and per orbital (77)
between 0.25 and 0.75 a ferromagnetic instability oc-
curs.

The purpose of the present paper is to reconsider
the results of Brouers and Ducastelle’® taking account
of the remarks of LLCC’ and to calculate the spin
susceptibility for any value of the Coulomb and ex-
change interaction and of the band filling. The con-
clusion of the present work is that if the configura-
tion probabilities are calculated self-consistently there
is no ferromagnetic instability in the doubly degen-
erate Hubbard model treated within the CPA. The
instability found in the previous work® was not due to
the neglect of the correlations in the probabilities but
to an error in the computing program which has been
now corrected.

The magnetic state found by LLCC’ is based on an
energy calculation. Their expression gives a lower
energy for the ferromagnetic phase in the strong-
coupling limit for a band filling between 0.25 and
0.75. We must, however, point out that the criterion
for magnetic instability derived from the divergence
of the magnetic susceptibility is unambiguous in the
framework of the CPA. On the contrary, the defini-
tion of the total energy is not unique:in the CPA,
since CPA is not derived from a variational principle.
The definition of the total energy used by LLCC,
based on the Hartree-Fock expression of the total en-
ergy, is therefore questionable. We have, however,
noticed that we find a high enhancement of the mag-
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netic susceptibility—but no divergence—in the region
where they find a lower energy for the ferromagnetic
State.

We are also interested in this article in the confi-
guration probabilities as such. These probabilities
had not been self-consistently calculated previously,
and we find it worthwhile therefore to study rather
thoroughly their dependence upon the parameters of
the model.

The outline of the paper is as follows: in a first
part (Sec. II) we present the model and study some
exact limiting cases; in a second part (Sec. III) we
study in detail the configuration probabilities as a
function of the band filling (#) and of the strength
of the e-e interactions (U); in a last part (Sec. IV)
we study the magnetic susceptibility of the system
and we show that it never diverges.

II. The model: exact limiting cases

In the alloy-analogy approximation of the two-

orbital Hubbard Hamiltonian, the motion of the elec- °

trons with spin o (=1, |) on the m(=1,2) orbitals is
described by the following Hamiltonian®
He =Y emlam)(mal+ 3 3 nlam) (mp| ,
a a B
(1)

where a is the site index, A describes the electrons
configuration on the « site, €, is the energy level
when an electron with spin o is on the |am ) orbital,
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and where E; is a sum over the first neighbors of a.

The eight possible values for ell are given in Table
I with their corresponding probabilities P},; similar
tables exist for the 1], 21, and 2] electrons. The two
orbitals being equivalent, the values of €§,, and Py,
are in fact independent of m7; in the paramagnetic
state, they are furthermore independent of o. From
now on, we will therefore drop the m and o indices
whenever the context allows it without loss of clarity.

Hamiltonian (1) describes a pure metal but the en-
ergy levels are nevertheless varying from site to site;
it has therefore to be studied as a-disordered system.
CPA? has therefore been used to study it, but the
probabilities P, were not computed self-consistently
by Brouers and Ducastelle,® who replaced the average
of the products as given by Table I by the product of
the averages. LLCC’ showed how to go beyond this
approximation. The probabilities of the various ener-
gy states or configuration probabilities are given ex-
plicitly in Appendix A in terms of the correlation
functions (n,,,(,nmlv,) and (n,,,‘,,nm’u,nm”v,,). Once
the P\ are known, the magnetic susceptibility of the
system (X) can be calculated as explained by Brouers
and Ducastelle.’ We give, nevertheless, in Appendix
B the explicit formulas for X firstly because there is a
mistake in the last formula of Ref. 5—which gave
rise to the mistake in their computer program—and
secondly because we consider that the intraorbital
Coulomb interaction U differs from the interorbital
one U’

The probabilities and the occupation numbers are
easily calculated for the two limiting cases of negligi-
ble e-e interactions and of infinitely large e -e interac-

TABLE I. Energy levels ell and configuration probabilities P{l for a 11 electron. U, U’, and J are, respectively, the e-e in-
traorbital Coulomb interaction, the interorbital Coulomb interaction, and the exchange interaction, and Ny o is the number of
electrons with spin o on the m orbital. The probabilities must be computed self-consistently as explained is Appendix A, the
brackets indicating that the average of the products has to be taken. Similar tables exist for the 1}, 21, and 2| electrons.

Configu- Orbitals Energy

ration occupation levels

() 11 1] 21 2] (el Probabilities (P}, )
1 x 0 (A =n PU=ny U =ny )
2 x x u'-J ((F=ny Pnyy(1=ny ) -
3 x x U’ (A=ny DA =nyInyy)
4 x x U (n (T=ny ) (1 =ny)))
5 x x X 2U'—J ((L=nydnynyy)
6 x x x U+U'—-J (nyyny (1 =ny)))
7 x x x u+u’ (ny (I=nyny )
8 X x x x U+2U'—J (nyynyqny))
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TABLE II. Configuration probabilities P, in the U =0 and o limits. The probabilities for 7 > 0.5 are easily obtained from

the symmetry relation P,(7)=Pqy_,(1 —7).

The U =oo limit is taken under the conditions 0 <J < U' < U.

0<7=<0.25 =025 025<7=<05 =05
A U=0 U=o U=0 U= U=0 U=o0 U=0 U =00
1 (1-n)3 1-37 0.422 0.25 (1-n)3 0.5—7 0.125 0
2 (1-7)27 7 0.141 0.25 (1-7)%7 0.125 0.5
3,4 (1-7)% i 0.141 0.25 (1-7)2" 0.5-7 0.125 0
5.6 (1-7)n? 0 0.047 0 (1—-7)n? 0 0.125 0
7 (1 —7)m? 0 0.047 0 (1—n)n? 27 —-0.5 0.125 0.5
8 i 0 0.016 0 w 0 0.125 0

tions (Tables II and III). These limits are interesting
because they have been extensively used previously
and also because one point of this article is to show
that the transition between these two limits is not al-
ways monotonous. Let us simply point out here that
these two limits coincide for nearly empty bands and
that they differ most for half-filled bands.

For intermediate values of U, U’, and J, the proba-
bilities and occupation numbers depend upon the
empty band density of states. We take here the same
density of states as Ref. 5, namely,

0, le|>1, @)

and we have checked that our conclusions are in-
dependent of this choice. The bandwidth for nonin-
teracting electrons ( W) equals 2 according to Eq. (2)
which determines, therefore, the range of realistic

values of U because W and U are known to be of the
same order of magnitude for transition metals.

We have assumed in this article that U'/U =0.8
and J/U =0.2 in order to simplify the discussion;
these values have been chosen because they are of
the right order of magnitude and because they avoid
any degeneracy of the energy levels. Nothing special
happens if these ratios are changed as long as the en-
ergy levels stay in the same order as in Table I; for
example, if one assumes that J =(U —U')/2=0.1U,
one would simply decrease €3 —€; and €; — € and one
would merely have to go to higher values of U for
0.25 < n < 0.75 before reaching the U = oo limit for
P,, P;, Pg, and P;. On the contrary, assuming J =0
implies €, =€3 and €5 = €; and therefore P, = P; and
Pg¢ = P; which would change drastically the particular
results presented here for 0.25 < 7 < 0.75; this is
nevertheless expected because magnetism is.known
to arise from a nonzero exchange interaction and one
therefore expects large values for dP,/dJ near J =0.

TABLE III. Occupation numbers 7, in the U =0 and oo limits; they give the number of 11 elec-
trons for each configuration. The question marks indicate that the corresponding states have a van-
ishingly small probability (see Table II) and fall in a gap of the density of states; the Fermi level
can therefore be placed at will below or above these states.

0<7<025 =025 0.25<7<0.5 =05
A U=0 U=w U=0 U=w  U=0 U=oo U=0 U=
1 A " 0.25 1 i 1 0.5 1
1-3n
2 i 0 0.25 0 7 27 —0.5 0.5 I
n
3.4 7 0 0.25 0 i 0 0.5 ?
5.6 ﬁ 0 0.25 0 i 0 0.5 ?
7 i 0 0.25 0 7 0 0.5 0
8 i 0 0.25 0 7 0 0.5 0
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III. e-e CORRELATIONS: SELF-CONSISTENT RESULTS

FOR THE PROBABILITIES

We discuss rather thoroughly in this section the
probabilities P, because it is the first time that they
have been self-consistently calculated from the e-e
correlations <”m°”m’¢’> for any value of the e-e in-

teractions; this section gives, therefore, new informa-
tion even without reference to the stability of the
paramagnetic phase.

We will first stress the dependence of the probabili-
ties upon the average number of electrons per orbital
and per spin (#7) and secondly show their depen-
dence upon the strength of the e-e interactions (U).
We present then on Fig. 1 the probabilities P, to Py
as a function of 7 and for various values of U. The

values of Ps to Pg can be deduced immediately from
the symmetry of the Hamiltonian

Py(A)=Py_\(1—7), S=A=8 . @A3)

Let us review the main conclusions which can be
deduced from it. One notices firstly [Fig. 1(a)] that
P, is a monotonously decreasing function of # for all
values of U. This is quite easy to understand: the
larger the number of electrons in the system, the
smaller the probability to encounter an empty state.
Secondly, one sees that P, [Fig. 1(b)] is an increasing
function of 7 up to 0.?5 for U=0and up to n =0.5
for U = and is a decreasing function of 7 for larger
values of 7, the fact that the value of 7 for which P,
is maximum increases with U simply means that the
larger the e-e interactions, the larger the number of
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electrons the system can take in before starting to
create the states of higher energy (i =3 to 8). Third-
ly, P3 and P, [Figs. 1(c) and 1(d)] are identical to
each other both in the U =0 and in the U = oo limits,
but they behave differently for intermediate values of
U, they would obviously become identical for all
values of U if one sets U'=U. They provide, there-
fore, a good test for the influence of the value of the
ratio U’/ U on the results and one can see that this
influence is relatively small for realistic values of the
ratio. Fourthly, one notices for all the probabilities
that the difference between the U =0 and oo limits is
maximum for # of the order of 0.5. This is in agree-
ment with the well-known fact that the correlations
are maximum for a half-filled band and become
negligible for nearly empty (or full) bands. Fifthly,

(a)

S n-01 1075
P 05

\ 0.2

\ 03 -10.25

\ 04

\&L ] |

0 1 2 3 4 5

let us point out that P, is not very sensitive to the
value of U while P,, P3, and P, change tremendously
with U for most values of 7.

In order to analyze in more detail this dependence
upon U, we have plotted on Fig. 2 the same probabil-
ities P, to P4 as a function of U and for various
values of 7.

One notices firstly [Fig. 2(a)] that P, is a decreas-
ing function of U for all values of . This is easy to
understand, because the e-e interactions tend to
spread the electrons on all the sites of the crystal by
avoiding multiple occupancy on a given site; the pro-
bability to encounter an empty site is therefore
lowered by the e -e interactions. The situation is less
simple for the other probabilities and the situation is
summarized in Table II. It appears from it that all

o5

02

(o)

FIG. 2. (a)—(d) Configuration probabilities P; to P4 as a function of U and for various values of 7, the values of 7 are

indicated on the figure.
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the probabilities have a monotonous dependence
upon U only for 0 < 7 <0.25 (and, by symmetry,
also for 0.75 <7 <1). This can be understood as
follows: as long as there is less than one electron per
atom, the e -e interactions will tend to put at most
one electron per site; the probabilities of multiple oc-
cupation (P,, A =5) decrease therefore with U, P,
decreasing also as explained above, the other proba-
bilities (A =2 to 4) must increase because the sum of
all probabilities is a constant. This means that the
probability that an electron arriving on a given site
encounters another electron on the same site is an in-
creasing function of U, for 0 =< 7 =0.25; this might
look strange, but in fact even if the number of states
corresponding to that situation increases with increas-
ing U, it must be noticed that most of these states
are empty and that the number of these occupied
states decreases with increasing U.

For 0.25 = 7n =<0.75, at least one of the probabili-
ties has a nonmonotonous dependence upon U and
the situation can no longer be analyzed by simple
qualitative arguments. Let us finally pay special at-
tention in Fig. 2 to the region 0.5 <= U <2, i.e., the
region for realistic values for transition metals—to
see how the probabilities behave in this region with
respect to the limiting cases U =0 and oo.

A quick look shows us immediately the impossibili-
ty of interpolating between the U =0 and oo limits:
for U =0.5, the probabilities can be either very close
to the U =0 limit (see P, for 7 =0.75 or P; for
7 =0.6), or very close to the U = oo limit (see P; for
n =0.3), or somewhere in between these two limits
(see P, for n=0.3, 0.4, and 0.6), or even not in-
between these two limits (see P3 and P, for 7 =0.4).
And for U =2, though the probabilities are generally
very close to their U = oo limit, they are sometimes
not even half-way between the U =0 and the U =
limits (see P; for 7 =0.4). One can therefore con-
clude that for U larger than the bandwidth, the
U = oo limit is a fair approximation but that for real-
istic values of U (of the order of a half bandwidth)
neither the U =0 limit nor the U = o limit or an
average between these two limits seem fair approxi-
mations.

The influence of the e-e interactions on the e-e
correlations can also be visualized on Fig. 3 which
shows, for fixed values of 7, the evolution of the
probabilities as a function of U. One sees very clear-
ly that the correlations are negligible for nearly empty
bands and that they become more and more impor-
tant when the number of electrons increases; as ex-
pected, they are maximum for a half-filled band. For
0 =< 7n =<0.25 there is indeed no major deformation of
the curve when one goes from U =0 to oo; on the
contrary for 0.3 =<7 <0.5 two states (states 2 and 7)
which are not more probable than the others in the
U =0 limit become much more likely than the others
in the U = oo limit. The change is maximum for

n =0.5 where in the U =0 limit all states arise with
equal probability, while in the U = oo limit only two
states exist with nonzero probability. Another strik-
ing result is that the e -e interactions diminish in gen-
eral the probability of occurrence of the states which
have either the highest or the lowest probabilities of
occurrence without e -e interactions. The e-e interac-
tions tend then to favor the states which have an
average probability of occurrence in the absence of
e-e interactions. These two effects can reverse the
order of the probabilities as occurs for example for P,
and P, on Figs. 3(d) and 3(e): for small U one has
P, > P, while P, > P, for a large enough value of U.

IV. MAGNETIC SUSCEPTIBILITY

According to Eq. (B8), the paramagnetic phase be-
comes unstable whenever the Fermi level (ef) lies in
a region where D =1+4+a,+a,—b <0. We show in
this section that it never happens.

There is nevertheless an important difference
between these results and the single-band results:
the equivalent of D for a single band is positive for
all energies where the density of states is nonzero.*’
Ferromagnetism is therefore never possible in such

- systems. On the contrary, our results show that if D
- is always positive at the Fermi level for a model with

two-fold orbital degeneracy, there are nevertheless
regions of nonzero density of states where D is nega-
tive.

To make this point clear, we consider, therefore,
the whole curve D (€) and not only its value at the
Fermi level D (ef) and we look for the values of e
where D (e) =0. Now, in the regions of nonzero
density of states the integrated density of states
n(e) = _wg(e') de' is a monotonously increasing
function of the energy e which means that the energy
itself is a well-defined function of the integrated den-
sity of states: e=e(n). We can therefore consider D
as a function of the integrated density of states D-(n)
and look for the condition D(7=n(er)) <0. For a
given value of U, the equation D (n) =0 therefore
defines a curve in the (7,n) plane whose intersection
with the # = n line gives the domain of # where
D(n) < 0; we show here that this domain contains at
most the point 7 =0.5 for large enough values of U.

The advantage of this presentation of the results is
that the results for all values of U and all values of #
can be given with a single figure, namely, Fig. 4.
Point (0.5, 0.5) being a center of symmetry, we
present only the region 0 =<# <0.5. One sees that
the domain enclosed in the D (n) =0 curve vanishes
for small values of U and that its extension is nearly
independent of U for large enough values of U. For
small values of U, the instability appears first around
the point (0,1) and develops then along the line
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FIG. 3. (a)—(f) Configuration probabilities P, as a function of A and for various values of U; the lines are labeled as on
Fig. 1.

n =1—2n; another instability appears around the
point (0.5, 0.5) and develops along the line
n=15-2n The two domains merge together for U
around 2.5 along the line n =0.5.

It is well known** that, for a half-filled band with
€r in a gap of the density of states, the results
depend upon the way the limit is taken. One expects
therefore, the point (0.5, 0.5) to be on the border
between stability and instability of the magnetic
phase; this is indeed the case as can be seen on Fig.
4,

On the other hand, when # =0 we have P;=1 and
P,=0 (A =1) (see Table II); this implies
a;=a,=>b=0 (see Appendix B) and D =1. There
is, therefore, no solution for D (#) =0 corresponding

to 7 =0. This is indeed the case.

There is another special point in Fig. 4, namely,
the point (0.35, 0.8); we could find no reason why all
the curves pass by this point for large enough values
of U. We have drawn the same figure for several
values of the ratios U'/U and J/U and the position of
that point did not change at all.

It can be seen from Fig. 4 that for large values of
U there are two regions for #: (1) when
0 =<7 =<0.25, the system is far from instability but it
gets closer to instability when # increases, and (2)
when 0.25 =7 =<0.5, the system is close to instability
but it stays at a constant distance from the instability
region; it only gets nearer to instability when # is
very close to 0.5.
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FIG. 4. Roots of D(n) =0 as a function of 7 and for vari-
ous values of U. The straight line corresponds to n = 7.
The figure shows that D (n(eg)) > 0 for all values of U.

These results are in agreement with the qualitative
results of LLCC’ who found no instability for
0 =<7 =0.25 and an instability for 0.25 =7 =<0.5 for
large enough values of U, as explained in the Intro-
duction, their total energy calculations are only ap-
proximate and one cannot expect more than a quali-
tative agreement between their results and ours.

V. CONCLUSIONS

We have shown in this paper that there is no mag-
netic instability in the alloy analogy of the doubly de-
generate Hubbard model when the configuration pro-
babilities are self-consistently calculated with the oc-

"cupation numbers and the correlation functions. We

conclude, therefore, that the paramagnetic phase is
stable for all strengths of the e-e interactions and for
all values of the band filling. The reason of the
discrepancy with LLCC’ results has been discussed in
the Introduction.

While it had been proved for a single-band model
that the expression for the susceptibility remains fin-
ite within the whole band and not only at the Fermi
level, the corresponding expression for a doubly de-
generate model diverges sometimes within the band
but never at the Fermi level. It would be interesting
therefore to see if the corresponding expression will
diverge at the Fermi level for higher degeneracies.

We have also discussed the configuration probabili-
ties and we found that they do not vary monotonous-
ly between the U =0 and oo limits. It is therefore
impossible to give a general interpolation formula
between these limits.

APPENDIX A
We show in this Appendix how to calculate the

configuration probabilities P, in terms of the occupa-
tion numbers n,. From Table I one gets immediately

P1= ((1“”1])(1 —n“)(l —n“))=1—— (n”)— (n”) - <n21> + (n”n“) + (nllnzl) +(n2tn“) — (nun“n“) )

Py={((1=nyPny(1=ny)) )= (nyy) = {nyynay) — {ngynay) + (nyynagngy)

Py=(ny}) — (nyny)) — (nany)) + (nyynynay)
Py=(ny)) — (nyynyy) — (nyynyy) +(nyngynay)
Ps=(nynyy) — (nynynyy)
Pg=(nynyy) — (nyynagnyy)
Py={nyny)) — (nynaynyy)

Pg=(nynynay) .

The two orbitals being identical, we have for the
paramagnetic state the following equalities

(nyy) =(nyy) =(ny)=n ,
(n“nz,)=(n1,n21) ,
(”11"21)=<”11n21> ,

("21"21) = (”11'111) ,

I
where the last three equalities allow the use of Table
I for the calculation of all the two electron correlation
functions. One has

(n1 "nn) =P3n3 +P5n5 +P7n7 +P8n3 )

(n”n“> =P2n2 +P5n5 +P6n(,+P8ng )

(ﬂ”ﬂ”) =P4n4 +P6n(, +P7I17 +P8ng .
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As usual, the three electron correlations are not as
easy to write down as the two electron correlations;
one has from Table I

(nyynagnay) =Psns+ Pyng
(nyynyynyy) =Peng + Pyng
(nygnynyy) =Ping +Pyng

and the left-hand sides should be equal by symmetry
while the right-hand sides are different except in the
U =0 limit. We therefore made the standard as-
sumption, namely,

1
(nyynagnay) =5 (nygnagnyy gy gy +nygng ny )

APPENDIX B

We calculate in this Appendix the magnetic suscep-
tibility of the system. The reasoning follows the
same lines as Ref. 5 but it is slightly more general
and it corrects the mistakes of that work.

dn,

a5 B1)

X=2up
with
na'=nlc+n20- ’

and where JCis an external magnetic field. We have

an” 1

then
dn,s _ a"la’ anlo’ d”l—u
dx 93  9n_, d3C

on, dnyg
anzo. di

anlo d”Z—-a

B
anz_v d3C ( 2)

Defining

a”la‘ .
- =a B3
; : 1 (B3)

anl,,
0Ny a (B4)

anla
—le_p BS
Y (BS)

we get

dnl,, _ aﬂl‘, dnl_a +a dl’lz_o, dnz,, (B6)

- + +b ,
dxc ox aze T “ax %

and similarly

dn2 anq dﬂz_o. dnl_a d"la'
T _ + + +b . (BT
dic a3 D Tax T anc PLS

Replacing Egs. (B6) and (B7) into Eq. (B1), one ob-
tains

on, ‘ -
X=2#B—87C_(1+al+a2_b) L (B8)

Following the arguments of BD,’ one gets

a = a”ll =;Im[P4ln(1 +UG4)+P61H(1+UG5)+P7ID(1+UG7)+P31H(1+UGS)] , (B9)
ay= g;'” =%Im[P3ln(1 +U'G3) +Psin(1 +U'Gs) + Py 1n(1 + U'Gy) + PyIn(1 + U'Gy)] (B10)
2]
b= g"” = L mlPyin(1 4+ (U =D Gy) +Psin(1 + (U =) Gs)+ PgIn(1 + (U =) Gg) +Pgin(1 + (U’ = 1) Ge)] ,
I’I2I T

(B11)

where G, is the Green’s function for the A configuration and is given by

G

Gy=——"7--—,
1_(€R‘—E)G

(B12)

where G is the Green’s function of the effective medium for which the potential on all the sites equals 3 (see
Ref. 3 for more details on CPA). It is in the computation of a;, a,, and b that a mistake was made in Ref. 5.
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