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Additivity of relaxation times and thermal conductivity of nonmetals
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The additivity of the inverse of the relaxation times as assumed by Callaway is observed to be valid to lowest
approximation; otherwise, interference terms like Mattheissen s deviation term should be considered. It is also
observed that the phonon-scattering processes due to lattice defects and chemical impurities can be included in an
approximation with the phonon boundary scattering to analyze the phonon conductivity results at low
temperatures.

I. INTRODUCTION

Any deviation from the perfection of crys-
tal leads' to a reduction in the phonon conductiv-
ity. By a perfect crystal we mean an harmonic
crystal whose elementary excitations (phonons')
contribute to heat transport. Peierls' has
shown that for an infinite and perfect crystal, the
thermal resistance decreases very rapidly with a
decrease in temperature. For a finite crystal,
there is a temperature below which the free path
of elastic waves becomes comparable to the di-
mension of the crystal. In this situation, the
phonon gets scattered by the boundary of the crys-
tal, reducing the thermal conductivity to a finite
value. In these temperature limits, the tempera-
ture dependence of the transferred heat mainly de-
pends upon the temperature dependence of the
phonon heat capacity, whereas the interaction be-
tween elastic waves can be neglected. Casimir4
has calculated the free path of phonons as

where C~ is the phonon velocity with X as polariza-
tion index and I is known as Casimir length de-
pending upon the dimension of the crystal. The
very presence of temperature dependence' intro-
duces deviationlike anharmonicity and nonadiaba-
tic approximation resulting in phonon-phonon in-
teractions and electron-phonon interactions. This
endows the bare phonon with a certain lifetime
and phonon width. 'Thermal conductivity analysis
shows that at low temperatures the majority of
phonons are hardly limited by phonon-phonon
scattering, but as the temperature increases
it dominates over the phonon boundary scat-
tering. The relaxation times for the different
phonon-scattering processes' other than phonon
boundary scattering are always defined in terms
of a transition probability between different states.
Herring' has therefore analyzed the justification
for combining the phonon boundary scattering with
other phonon scattering processes to calculate

the phonon conductivity and suggested that the
phonon conductivity can be expressed as

C'k
K(T) = (const) &» + ", r(q)q2dq cos'8 dQ,

(2)

r, '((u, ~) = rp+ rp (u),„)+7 '((u, „). (4)

Knowing that the different phonon scattering
processes except boundary scattering depend
upon the transition probabilities, we can express
the combined relaxation time as'

(4')

Substituting Eq. (4') into Eq. (3), we find that the
Callaway expression reduces to Herring's expres-
sion. Casimir has shown that, neglecting phonon-
phonon interactions, the combined relaxation time
at, very low temperature is the first term of Eq.
(4'). Many corrections" "have been suggested to
improve Callaway's approximation by considering
the real situation. These have resulted in the con-

where 8 is the angle between the phonon group velocity
and the phonon wave vector q. The constant term,
which is a function of temperature, corresponds
to the phonon conductivity contribution due to size
dependence and the integral term combines the
contribution due to other phonon scattering proces-
ses. Callaway' has very successfully calculated
the phonon conductivity at low temperatures by

1 + S(dZ(T)= r(&u i)2n W @~2"

hMqg/Qg 2

h&uz~/%AT l)2d qx r

where +,~ is the phonon frequency. Callaway has,
however, assumed (&) the Debye phonon spectrum,
(2) no distinction between phonon polarization, and
(3) additivity of inverse of the relaxation times.
Considering the additivity law, one can define
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sideration of nonlinear phonon dispersion rela-
tions and consideration of separate contributions
of longitudinal and transverse phonons to the
phonon conductivity. No calculations have been
made to study the validity of the additivity of the
inverse of the relaxation times as assumed by
Callaway. If one attempts to calculate the phonon
Boltzmann equation with the boundary conditions
applicable to the real situation, the calculations can
be done at very low temperatures where phonon-
phonon interactions can be neglected, as done by
Kazakov and Nageav" and Erdos." In another
calculation, Kazakov and Nageav" have consid-
ered the partial reflections at the boundary of the
crystal. This results in a parameter F connected
with the relaxation time of phonon boundary scat-
tering as

g -1 Cg
FL

The parameter F is a measure of acoustic mis-
match and has previously been used by Holland"
and Bhanadari and derma. " These calculations
are valid for a single crystallite. Recently there
were results which gave evidence of the in-
terface thermal resistance known as Kapitza re-
sistance. We have not considered the effect of
this Kapitza resistance" in our calculations.

Phonon spectroscopy (phonon conductivity) has
now been widely used to study the effect of the
presence of impurity and lattice defects in the
crystal. ' The reduction in the phonon conductivity
is sometimes followed by indentations or dips in
the phonon conductivity curves. Maradudin there-
fore calculated the phonon conductivity" of an
isotopically disordered lattice by a more powerful
approach suggested by Kubo. " Recently we
have extended previous calculations" to calculate
the phonon conductivity of anharmonic crystals
containing impurities. " Kubo's approach, how-
ever, neglects the phonon boundary scattering
which can be combined as shown by Eg. (4').

In the present work, we generalize the previous
calculations by including the electron-phonon in-

teraction, which is very important in semiconduc-
tors and metals. The calculations show that (l)
the additivity of the inverse of the relaxation times
is valid to a lowest approximation and (2) the re-
laxation time due to different phonon scattering
processes due to lattice defects and chemical im-
purities can be combined with the phonon boundary
scattering relaxation time as an approximation.
We therefore modify our previous results"'" of
low-temperature thermal conductivity of n-Ge
considering the fact that the phonon frequency is
changed due to interactions by lattice defects and
chemical impurities with phonons. We observe
that the deviation between theory and experiment
obtained previously can be explained by consider-
ing the interference term.

II. KUBO'S RELATION AND GREEN'S FUNCTIONS

Kubo's formula for calculating the phonon con-
ductivity" can be written as

K(T)=lim dte "ksP
, 3Q

ds 0 t+ its, 6

where P = (ksT) ', ks is the Boltzmann factor, 0
is the volume of the crystal, s is the parameter in
(energy) ' units with k being the universal Planck
(reduced) constant. Q(t) is defined as phonon flux
operator and within harmonic approximation; it
can be written as

where &~ is the phonon frequency with wave vec-
tor q and polarization index &. v;~ is the phonon
group velocity and lV;~ is the phonon density opera-
tor and is written as /

N~~ = a~~a@.

Substituting E|ls, (7) and (8) into Eg. (6), we ob-
tain the thermal conductivity

K(T)= lim g P (u&~&;.„v@vl.„i t dt e " ds(a;„(0)a;„(0)ag„(t+iS's)a~„(t+ its)) .
0

(9)

The correlation function can be calculated by several techniques. Zubarev's double-time Green's func-
tions" are, however, widely used to calculate the thermodynamic properties of the crystals. The corre-
lation functions are related to the corresponding Green's functions as

(
t

(0) (t)) d~ -g(at [Gaxj'x'(++ &~) GlxI'x'(+ t~)]
e -ghee (&0)

However, the correlation function in Eg. (9) can be simplified by using the following simple decoupling
scheme:
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(a&»(0)a;»(0)a~»(t+ its)a&[»(t+ ihs)) = (a~»(0)a;„(t+ Ns))(a~»(0)a~„(t+ its)) . (11)

In K[I. (10), we define the Green's functions

G~»~ » (t}= ((a~»(t)
~
a~.» (0)))= -ie(t)([a&„(t),a&.»(0)]) . (12)

The solution of the Green's function can be obtained by writing down the equation of motion of the Green's
function as

tt((a-t(t)[at. a(0))) =—([tttt, at. t& )t ((
—[tt- (t), tt(t)[ tt[t, , (0)))

Here II is the Hamiltonian of the system. The generalized Hamiltonian can be expressed as

8=/ I~;»(a;„a;»+ 2 )+ Q KV(3&((T,&(.„[I2&(,„[I3&3)A;, Ag, Ag,
1q83

J. 23

+„+ ( Il 1 t 12 2' 13 3 t I4 4~t&1»1 )[2»2 (&3»3 [414 ~ (ql 1' q2 2+41»1 tI2&t2
1142™l34 1 2

X1)t2)t3%4

+ E»c»c»+ z,chic» ~(a»+a „),
Pr. k, Q.

(14)

where a~„and a+ are the phonon annihilation and creation operators, respectively, with phonon wave vec-
tor q and polarization index &, and obey the following commutation relations:

[a~», a~ 1.] =5~~.5». , [a;„,a~.„.] =0= [a~», a~.„.] . (15)

We also substitute

A~„=A.'~, = (a~, +a';„), a~„=-8'~, = (a'~, -a&[,),
obeying the commutation relations

[A&h, t4g.„,] = 0, [A&[»)B~,„,] = —254(l, 5»„, .

The different coupling coefficients are expressed as

(17)

I'"'([I1&(&t(12&2t[I3&(3)=
( )V2 g2t i~2&(qAtq2&[2tq3&3)'~([I&+&2+q3) t

P( &([l&X1,[l»X2, [I3&(3,[I4&(4)=, ,g2 $(q&&(1,q2 2, q»t't[3, q4&[4}ZL([T1+[I2+j + [I4),

Q(q &(. q X )=——((1& (t& )&J2(e . e )I pfe&&t[1't&2&'&I&'& Jet&&[14[I»&' &&» (20)

with

1 ~ 1 fM-M'
(21)

Here M and M' are the masses of host and impurity atoms, respectively. The electron-phonon coupling
coefficient E, is defined as

&, =E(e /Q)~2 (22)

E is. the coupling constant depending upon the electron-phonon matrix elements. C„- and C& are the electron
annihilationand creation operators, respectively, with wave vector k and energy E»= k /22» —f »2 is the.
electron mass and $ is the chemical potential.

Substituting E[I. (14) into E[I. (13), the e(enation of motion for the Green's function G[[„~t»t(~) is written as
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~G~,~;(~)=—„6m' 6»+ 3 Z 1'"'(-&~ &i~| &2~2)&(A~...A~~, isa r&&

1122
v"'(-g, j,x„j,x„q,~, ) ((A~ „A~, A~ „ l

az,„.))„

+2 g C(-qt, gp, )((B&,, la&.„.))„+ur„((a+la~.„.))„+ZE&(Cfcf ~1st '&&-.
~lkl Pt

Similarly we can obtain the equations of motion for the Green's function, ((a @la~.„.))„, as

&« '-;.
l
g;»-=-",.« '-else'» -Z .« fCr. gl cv»

y&'&(q, y„q,y„qx)((A, ,A,+ l

a', ,„.))„
&1&2)F1~2

&X83"1~2" 3

y" (qP„q,x„q,x„-qx) ((A, „A„„A,„
l

a', ,„,))„

+ 2 Q C(q, h.„-qX)((B,„[a,.„.))„.
&1't1

(24)

Ec(uations (23) and (24) can be simplified only after writing the equation of motion of higher-electron
Green's functions as written below:

(&c',c,„l,';» = (8 ., -@ )«c'8 ., l ,'"))

+ Q E, (((C~C~, , A, i la, .~.))„-((Cm C~, A, i la, .v))„}. (25)

We can decouple higher phonon and electron Green's functions by using the simple decoupling scheme

1
((A...A, g, ls', g)) =pE(qgx q2&2 &) Z~"'(-q|~g -q2&2 q~)&(s,&l&'. ~);)) (26)

with

+ 6(N' +N' )~1~1 ~2 2 (d -(CO +(d ) CO
+111 Q2 2

&(A, „A,~A, „ ls,',„,))„N,~,((a, „,l's', .„.))„, (27)

(28)

(29)

Here we set:

(30)

After decoupling higher-order Green's functions and doing simple mathematics, we find that

(31)
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(~+ ~,.+M,.)&&a'-,.~a,
'

'&&.=-Z ~&. ~'-qX qX ~ q g +@ q}t q&

where

+ 2 P C(q,k„-qX)(«a, „,~a, .„&&„-&&a,,„~a, „))„),
ql 1

(32)

~~"'(qA, qA, -q~}~'&(qA, qA, &}+»Z ~"'(qA qA, qA -q~)iq. .
q~q+1&2 I 2

(33)

n, =&CaC&,&. (34)

Comparing E&is. (31) and (32), we get

(&d- ~,~-M, &, )&&a, eclat &&.=2 6„6~& +2 + I&, l'
2n "

k k k+q

+(~+(u, ,+M, ,}&&a~,,~at. .&&

Setting

(35)

~q k ~q x.™qx+ 2 Q (0 —Ek + Ek+q

G,'."(~)=&&a.~la,' ~ )&.= G'"(~),
G-",,'(~)=&&a', ~la,' ~ &&

= G"'(~),

Eq. (35) reduces to the form

(~-fi.~)G,',"(~)=& 5,. 6~~ +(~+&,~)G-",. (~).

Equations (31) and (32) can be rewritten as

(36)

(35')

(&o —&d,"q')G„(&u) =—6„5qq + g ~, ~' ' G „(e)+2 g C(q, h.„-qA)[G ', (v) —G,', ,(~)],
2w —&k+~k.q

(3i')

(&a+&d,«~'}G"„.(&o)=-g ~E, ~' " ' G„".(e)+2 + C(q,k„-qA)[G, ', . (~)- ', ,(v)],
k k+ k+q q1X1

with

(32')

~k+ @k+q)

Substituting Eg. (35') into Eg. (31'), we get

(&d ~~x)G (~)=
2

6~~'5zx'+ Q I+q I

'

@ @
G (&)

2m "
k + k k+q

ql 1 ql 1

1 C(q A„-qk) g C(q, A, „-qA.) G, ( )
. g ~~ ~

n -+ G, ( )«(~+i~, ~), (~+~, ~ ) "" ~
' ~-E.+E",

1 1 1 1

Similarly we obtain

(&d+ co,"~')G& '(&o) = ' +4 p q' " g z G&'&(~) ~y ~~ ~+ G&»(~)
c( '~' —.~) C ~ -Z)

7&(&d+Q~y) y (4+0 g
~L & &

&dp E (39)
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The value of G&"(&d) from E&I. (39) can be substituted into E&i. (38) to get

(
&,&) &,&( )

1 C(q'A. ', —q&&) g ~

~2
8&, -N„„, C(q'A. ', —q&&)

(~+Q. ') ~
' ~-Z~+Z", ~(~+Q, '

Z '" "'()+ gl .I' ' ""' g '", '"()
Qg A

e+Q ~
'» ' CO-E +8k ~ u+Qk k k+q qg g qg

4 +k +k+ +k ~k +e {g)
(&&& + 0 &)(&d -Z&&+ Z&+~) ((d —Z +&&Z ~g&q)

To simplify E&I. (40), we neglect the last term and we can express E&I. (4o) as

(40)

(40 )

where

c(q'v, -qz& g ~~ ~, n, n„,-~)
&&(~ + Qq' &, ') y + Zk Zk+q

Iterating Eq. (40'), we get

(41)1,~ 2$C(qA. , —qA. )Q, y 4~ &C&C(q&&&&,
—q&&)A„& Qa&xz

Q Q Qg 1 Qj g Ql

&,&( )
$&1&,C(q, &&&,

—q&&)C(q,&» —q&)

To terminate the series, we find a suitable substitution such as q,A.,= qA, . We get the solution of the
Green's function as

G», , ( )
(1&2~)6„6~&,

QQ (g (g(&)
qX qX

where

g C(q, &&» —qA)C(q&&, —q&&)Q, yQa, &„

((o+Q, ,)((a+Q,
&

)(u) —(o,"'„)
We neglect other correction terms; we can now explicitly write

(42)

(45)~,"&+~,.= &.&".&+ fi'..(~»
where b, ,~(&u) and I', ~(~) are the phonon widths and phonon lifetimes which result due to different phonon
scattering processes in the presence of lattice defects and chemical impurities. One can show that

—16»'Q ~5((o+Q „) Q „&Q" ' C(q,z„—q&&)C(-q, A.„q&&)[5((o—(u,"&~ ) —6(a)+Q, ~ )],x+Q (46)

I
& ((d) = 16&l'Q y Q &g& C(q&Xgy q&&)C( qy&&& p q~)

1 1 & 1 1 1

(d (&d +Q

+P 5 (d —(d )
—5 &+Q (47)
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Using the Green's functions expressed by Eq. (43), we can obtain the correlation function by Eq. (10).
Substituting Eq. (10) into Eq'. (9), the thermal conductivity can be obtained as

iSk„pK(T)=11m ~ (d g+ g~gV ) 'V g~g
&~0+ q Xq' X'

Ph(oq~g~ Pl!(uqagn

(e ""~~"~- 1)(e ""~2&2 —1)(ar „ - ur )(~ —~ fq )

[Gage ~ ( ) Gk]A
~ (~ g)][Game ~ (~+ 'e) Gay (~ fs)]

Following Deo and Behra, Eq. (48) can be further simplified by interchanging & ~ with z ~ and using
the identity

[((8 y
—(0 y

—'L&) —((d y
—CO y + lE) ] = 27Tgg((d &

—(0 & ) .

Finally we get

where

I',x(~)~ ~qxvqx. ~
(

Sh~ I)2 ([ 2
( )]2+1,2 ( )]

2 ~ (50)

(51)

Considering the small values of I', ~(&u), the integrand is peaked around the value &u = c,„(up), the thermal
conductivity is then approximated as

(52)

lf we assume that

y, ((g) = I/2r, „((u),

the thermal conductivity K(T) can be reexpressed as

@2/ P2 e 858

x( 8 g 1)qX.

which is the same as that obtained previously by solving the phonon Boltzmann equation (Callaway).

III. RELAXATION TIMES

Equation (53) clearly shows that the thermal conductivity depends upon the relaxation time, which is
nothing but the measure of the phonon lifetime as given by

(53)

(54)

21'„(co)= r,,'(~) . (53')

From Eq. (45) we observe that I',„(+)is the imaginary part of e,'„"+Z,~ and the phonon frequency is finally
changed to (&u, ~+g&u, „). We now calculate the shift in the phonon frequency b, ar, ~ and the phonon lifetime
from the sel.f-energy Z,',"as

g(l) yah+ pep+ limy
qX ql qA, qA,

sa 'sa ~ p
C(qx~x q~)C( Ql~a q~)+ x~ai&x

To the lowest approximation, i.e. , g= 1, if we assume that

(55)

~Rah+ Zpa+h
ql qk . qX

Jam
~

ll ll+0 gag+ ping
q

4+q

limy gimp + spiny
qX ql q)t (56)
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we find that

E(l) (gnnh+ 1hep+ ntmp)+ (1 nnh pep+ ptmp)
c& q)t c)t q)t a& q)t qX

4~, &,'~, I'~~, and I',~ have been previously calculated by many workers; therefore we calculate the
phonon width and phonon lifetime in the presence of other phonon scattering processes such as electron-
phonon interaction and anharmonic interactions. Equation (46) gives the value of the phonon broadening
depending upon the changed frequency &,1 or +,'„" and lifetime can be calculated from Eq. (47). However,
for simplicity we consider (td,',"-ll„)

I'™P=SttQ,„, sin8d8dp C(-q&, qp, ) 'q, dq, &~ &
~5(&-~...)

V (58)

where 8 and &f& measure the direction of q1 with
respect to q. After doing the integration, we find
that

where

1 Mo I2

A=2'.c ) f" f'

6 h
= td 1(1+a) .

(59)

(60)

Here a is a constant which depends upon the an-
harmonic constants and electron-phonon interac-
tion constants. Comparing Eqs. (45) and (57), we
find that the total lifetime is

IV. MODIFIED CALCULATIONS OF KUMAR AND
JOSHI (REF. 23)

Previously Kumar and Joshi have extended the
calculations by Kazakov and Nageav to calculate
the phonon conductivity of n-Ge at temperatures
between On5 and 4.2 K. A deviation was observed
between experimental and theoretical results
above 2 K, which was supposed to be due to the
neglect of phonon-phonon interactions. We, in the
present calculations, find that the phonon fre-
quency becomes modified due to other scattering
processes, such as electron-phonon interaction
and phonon-phonon interaction. Within the as-
sumption of the validity of Kazakov and Nageav's
calculations, we can recalculate these results by
considering the modified relaxation time for mass
difference scattering as

.
Z

tot panh+ Z gp+ limy
qA. q)t q)t qX (61)

Equation (61) can be reexpressed in terms of the
relaxation times as

Following Kumar and Joshi, we get the phonon
conductivity as

-1)tot
(

-1)anh + ( -1)ee + ( -1)tmp (61')
4

K(T) =Ko(T) 1-A(1+a)n-
Cg 5

(62)

It is thus observed that the inverse of the relax-
ation times should be added to get the effective
relaxation time —this is nothing but what had been
assumed by Callaway before. However, there is
one important difference in not finding the addition '

of the inverse of the relaxation time for the phonon
boundary processes. It should be noted that this
difference is completely artificial and results
simply because heat transfer across the crystal
boundary was not included in the formulation of
the problem in our treatment. We can partially
consider the effect of the finite size by using it as

, boundary conditions to calculate the phonon Boltz-
mann equations as done previously by Erdos,
Kazakov and Negeav, and Kumar and Joshi. If we
do not assume g= 1, we find that in our calcula-
tions we must consider the interference terms
such as Mattheissen's deviation term.

where

(63)

oo x dx =7 2xy0
0 e" —&

In previous calculations by the author and Joshi,
Eq. (62) had been used with a = 0 to analyze the
phonon conductivity of a sample of Ge. A devia-
tion has been observed between theoretical and
experimental results above 2 K, which is now to
be analyzed. Using Eq. (62) we have calculated
the phonon conductivity for Ge for a=O, whose ex-
perimental data has been given by Bird and Pearl-
mann. " Now we take a = 0.2 in Eq. (62) and find
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S- interference term a for more accurate calcula-
tions. Figure 1 shows the agreement between the
theoretical calculations and the experimental data.

'to

V. CONCLUSIONS

I 2

1D

CO

I

I-
16

%e find that the additi'vity of the inverse of the
relaxation times is valid to a lowest approxima-
tion; otherwise, we must consider an interference
term such as Mattheissen's deviation term. It is
also observed that one can partially consider the
effect of finite size of the crystal through the
boundary conditions while calculating the phonon
Boltzmann equations as done by Kumar and Joshi
instead of adding it to obtain the total relaxation
time as done by Callaway.
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that the agreement between theory and experiment
is very good. This suggests that the deviation
was due to the interference of the other scattering
processes and hence it is advisable to consider the
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