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A set of rate equations for the bound-state occupation functions with transition proba-

bilities calculated microscopically serves as a basis for a detailed study of various approxi-
mations available for the calculation of desorption times in gas-solid systems exhibiting

physisorption. The exact time evolution of the adsorbate during the desorption process
shows that quasiequilibrium is only maintained at low temperatures, where perturbation

theory of the master equation yields a simple analytic expression for the desorption time

in weakly coupled gas-solid systems. At intermediate temperatures we derive another

simple expression from the Fokker-Planck equation. Classical and phenomenological

equilibrium theories of desorption are critically assessed. Lower limits for the preex-

ponential factor in the desorption time of the order of 10 ' sec proportional to the in-

verse of the heat of adsorption are derived.

I. INTRODUCTION
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In the preceding paper' we have derived kinetic
equations that govern the kinetics of adsorption
and desorption in gas-solid systems that show phy-
sisorption, i.e., in which the adsorbed gas particles
do not undergo any substantial modification, elec-
tronic or chemical, apart from a weak polarization.
%e have concentrated on systems in which the sur-

face potential, i.e., the net interaction between the
particles of the gas and solid phases, respectively,
develops many bound states, as it happens, e.g., in
the Xe-W system which has a few hundred bound
states. Gas particles trapped into these bound
states constitute the adsorbate. In the specific
model that we examined the surface potential is
taken to be a Morse potential and the adsorption
and desorption process is mediated by phonons.
Moreover, we restricted ourselves to physisorption
processes at low coverage so that the interaction

between gas particles in the adsorbate can be
neglected. Also, our model is one dimensional. In
Ref. 2 we have studied desorption kinetics on the
basis of the set of rate equations

Here n;(t) is the time-dependent occupation of the
ith bound state, Rj, is the probability for a transi-
tion of a gas particle from the ith into the jth
bound state, and R„- is the probability for a transi-
tion from the ith bound state into the continuum.
Continuum —bound-state transitions were not in-
cluded as we concentrated on the calculation of the
isothermal desorption time. Recall that in an
isothermal desorption experiment the gas is
pumped out.of the system so that no transitions
from the continuum back into any of the bound
states can occur. Including them now in order to
be able to consider adsorption as well, we get in-
stead of (1)

dn, (t) = QR„n, —QR;,n, ,
4 QC l QI

where the indices i and ~' run over 'all bound states
and continuum states of a gas particle in the sur-
face potential.

Though the ingredients of the theory as
developed in Ref. 2 are plausible and seem neces-
sary for a realistic description of physisorption
kinetics for systems such as Xe-%, He-graphite,
He-LiF, etc., it appears desirable that a "simpler"
theory be developed. At this stage we would like
to stress that the theory, as developed in Ref. 2, is
conceptionally very straightforward. One starts
with a quantum-mechanical Hamiltonian of the in-
teracting gas-solid systems
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H =Hg +H, +H;„, . (3) 1, from (2) a continuous master equation

Here Hg is the Hamiltonian describing the gas
phase, H, is the relevant part of the Hamiltonian
of the solid, typically chosen to describe phonons
in the harmonic approximation, e.g., by a Debye
model with a cutoff frequency coD, and H;„, ac-
counts for the interaction between the gas and the
solid. The latter is conveniently split into two
parts. The first is a static part, namely the effec-
tive surface potential which we have chosen in
Refs. 1 and 2 to be a Morse potential:

(4)

A dynamical part in H;„, accounts for the
phonon-mediated interaction between the gas parti-

cles and the solid. To evaluate the transition pro-
babilities R„ in (1) and (2) one typically employs
Fermi's golden rule or higher-order perturbation
theory. Lastly, the set of rate equations (1) or (2)
must be solved by matrix diagonalization to find
the time evolution of the gas-solid system. Its
kinetics is thus known.

What one still might want to do, and this is
what we started in Ref. 1 and want to continue in
this paper, is to develop approximations to the
above theory that will allow one to derive simple
analytic expressions for desorption times. Because
we start with a well-defined model, namely (2) with
the transition probabilities R„calculated quantum
mechanically from first principles, and because we
have obtained the exact relaxation times —exact
within this model —by matrix diagonalization, we
will be able to state precisely for what gas-solid
systems and for what temperature regimes such ap-
proximate analytic expressions for relaxation times
are valid. This last point is very crucial and has
been overlooked by too many workers in the field

who have argued that, because quantum-mechan-
ical calculations of desorption times are too in-

volved (they are conceptually simple, though) one
is justified to set up simple classical models to cal-
culate desorption times. Inevitably the range of ap-
plicability of such models cannot be delineated.
We therefore feel that it is crucial to start from a
realistic, i.e., microscopic quantum-mechanical
model, and then, after having solved such a model
satisfactorily try to develop approximations to find
analytic expressions for relaxation times whose
range of validity can then also be given.

We have started this program, based on the
model developed in Ref. 2, by deriving, in Ref.
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where

By studying the moments a„ in detail we showed
that (6) should yield an acceptable description for
the kinetics of weakly coupled gas-solid systems
characterized by large values of the parameters r
and up but restricted to a temperature range

5 2 r
3Qp 5 Qp

' 1/2

where

fiCOD

k T
2mcoD

Under such conditions we showed in Ref. 1 that
the equilibrium solution of (4) is a Maxwell-
Boltzmann distribution

n(e} = e~"e (10)

where p is the chemical potential of the gas phase.

where e = Elficop and uo ——UolficoD with coD'the

Debye frequency of the solid, n (e,t) = n;(t), and

p(e) = (
~

e
~

) ' with the kernel W(e,e') given in

Eqs. (22) —(24) of Ref. 1. We rewrote (5) as a
Smoluchowski-Chapman-Kolmogorov equation
and derived from it via a Kramers-Moyal expan-

sion the Fokker-Planck equation
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In this paper we continue the discussion of Eqs.
(2), (5), and (6) by calculating various analytic ex-
pressions for the desorption times. In Sec. II we
look once more at the exact time evolution of the
adsorbate as it emerges by solving (2). We will see
that only at low temperatures is a quapiequilibrium
maintained in the adsorbate occupation function,
restricting the validity of "equilibrium theories" of
desorption and perturbation theories to low tern-

peratures where systems like Xe-W have, inciden-
tally, immeasurably long desorption times. Look-
ing next at the high-temperature regime we will
show' that the time evolution of the adsorbate dur-
ing the desorption process is controlled by several
time constants so that an attempt at its characteri-
zation by a single time, e.g., the mean first passage
time, seems futile. We comment further on equili-
brium theories of desorption and extract sticking
coefficients from our desorption times, not without
misgivings though. Section III presents the pertur-
bation theory for the master equation (5) from
which we derive a simple analytic expression for
the desorption time in the low-temperature regime,
where it approximates the exact result rather well.
In Sec. IV we calculate desorption times from the
Fokker-Planck equation (6) which we show to be ac-
ceptable for intermediate temperatures. The results
of this paper are finally put into perspective by
some remarks on classical and equilibrium theories.

Equation (1) then reads

N
X;—(t)= g $&Xj(t)

j=O
JP

N

j=O
jQi

(13)

(Rcbj = —5ijRci ~

we work now with the symmetric matrix

S= So+ R,

with elements

(15)

5(e —e; )/2
(So);j = —$;j+ 5;jg e " ' $~

v=O

—5(e; —e. )/2 N

R;j+5;jg R„. .
v=O

(16)

Let us rewrite (13) as

Whereas in Ref. 2 we diagonalized the asymmetric
matrix R = Ro+ R, with elements

N

( Ro)ij R(j + 5ij g R
&&

II. PERTURBATION THEORY
OF THE RATE EQUATION

In this section we want to develop an appropri-
ate perturbation theory for the calculation of the
desorption time from (1) or (2). Rather than solv-
ing (1) directly as done in Ref. 1 we recall that,
after inclusion of the continuum —bound-state tran-
sitions in (2), its equilibrium solution satisfies de-
tailed balance (the Greek indices (, ,(,

' run over
bound states and continuum states whereas Latin
indices i,j run over bound states only):

—56 —56R„e ' =e 'R„.
The matrix R„, thus far asymmetric, can therefore
be symmetrized by a transformation

(17)
cjt

= —S.X,

where 7 is a column vector with components g;,
i =0, . . . , N. Diagonalizing S we get

S. Ml) g MI)

N

X(t)=g [j-(&) i(O)]
j=O

(19)

which yields

n;(t) = g A;je
j=O

where

with real eigenvalues A,;, assumed to be ordered
A,o Q A [ Q. . . Q A,N and an orthonormal set of eigen-
vectors p ". The solution of (17) then reads

5e,/2 —5e, /2
Sc ' = e Rgc'e ' =Sec

X,(t) = n, (t)e

(12)

(j)m (j) (0)
+ k;j=e p; ~~pk nk e

k

Here nk(0) is the initial occupation of the kth
bound state and p

' is the ith component of the

(21)
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jth eigenvector. We have shown in detail in Ref. 2
that as the temperature in the gas-solid system is
lowered, the lowest eigenvalue A,o splits off dramat-
ically from the others becoming much smaller.
This implies that after initial fast transients with
time scales Aj ', j~ 0 have died out, the time evo-
lution of (2) is controlled by a single time scale A,p

'

which one can identify as the desorption time
4969.0

UQ
= 1 1.56

8=2.0

1.0b=

8= 0.5

—1.0

0.8
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0.6

C
—1

td =A,p (22)

et E;/fmn —— (op i ————,—) /r—,
1

(23)

where

Op= rttp . (24)
I

We choose the depth Uo/ficoD ——11.56 so that for a
range y '= 1.5 L (chosen arbitrarily) the lowest
bound-state energy is ep=Ep/ktt = —4662. K
= —Q/kit equals the heat of adsorption for the
Xe-W system. We thus have r =4969.0 and

oo——239.66 so that this particular Morse potential
develops 240 bound states. Diagonalizing (18) we
find that at 5 = 1.0 A,o ——3.7895)& 10 sec
A,

&

——1.7352' 10' sec ', A,2 ——2.5647)&10'
sec ', . . . , A,240

——1.8680&10" sec '. More gen-
erally we find that for 5 & 0.5 all A,

&
&& A,o, j & 0.

This confirms our earlier assertion that for times
t » (AJ —Ap) ', j&0 all fast transients in (20)
with frequencies AJ, j & 0 have died out and the
time evolution settles down to a steady state

n;(t) =A;pe (25)

which is characterized by a single relaxation time

In Fig. 1 we plot the deviation of the nonequili-
brium distribution function n;(t) from the initial
equilibrium one for t » (AJ —A,p) ', i.e., we plot

Let us look at an explicit numerical example.
We want to choose a gas-solid system whose sur-
face potential develops many bound states. Recall
from Refs. 1 and 2 that for phonon-mediated gas-
solid interactions all transition probabilities R„
calculated in second-order time-dependent pertur-
bation theory, are proportional to the Debye fre-

quency co~ of the solid and to the ratio m/M, of
the masses of a gas particle m and of a particle of
the solid M, . To be specific, in our examples we
choose fuuz/k~ ——405 K for tungsten and
m/M, =0.714 for the Xe-W system. To fix the
parameters Up and y of the surface potential (4),
we recall that the bound states in a Morse potential
are at energies

04 C

0.2

-1.0
I

-0.8
I I

-0.6

8/ Up

I

-04

1

I I

-0.2 0

FIG. 1. Steady-state occupation of the bound states
for various temperatures 5=AcoD/k&T. Parameters:
AcoD/k =405 K, m/M, =0.714 appropriate for the Xe-
%' system.

nt(t)e /n;(0) . (26)

Deviating markedly from the value 1 at higher
bound-state energies indicates that the desorption
process removes particles from these bound states
faster than bound-state —bound-state transitions
can manage to rearrange the bound-state occupa-
tion into an equilibrium one. Decreasing the tem-
perature such that 5=2.0 yields A,o

——74.691 sec
The desorption process slows down considerably,
allowing the bound-state —bound-state transitions
to become more effective, so that (26) is closer to 1

up to higher bound-state energies. Also note that
at higher temperatures, e.g., at 5=0.5, the lower
bound states are relatively more occupied in the
steady state than in equilibrium simply because
desorption depletes the higher levels too fast. The
parameter dependence of these results can be seen
by comparing Figs. 1 and 2; for the latter we
choose r =550 and 0.0——79.734, so that this Morse
potential, of the same depth Up as the previous one
but of a range y '=0.5 A, develops only 80 bound
states. Because a smaller range implies a stronger
coupling of the adparticle to the phonons of the
solid, bound-state —bound-state transitions become
more effective maintaining the adsorbate closer to
equilibrium during the desorption process.

These results confirm fully similar conclusions
reached by Pagni (see his Fig. 2 for comparison),
who based his calculations of the transition proba-
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FIG. 3. Inverse desorption time in various approxi-
mations as indicated. Heavy line: mean first passage
time.

FIG. 2. See Fig. 1.

bilities R,J. on a simple classical model. They cer-
tainly encourage one to try a perturbation calcula-
tion of Ap at low temperatures based on the decom-
position (15). We write

evaluating the perturbation series (31) up to third
order. The results. are given in Figs. 3 and 4. It is
fair to say that lowest-order perturbation theory,
i.e., A,p, is a poor approximation to td through-(&) ~ ~ —1

out the range of 5 depicted in particular for
1(6(4, where td can be measured in the Xe-W
system.

For larger 5, A,p
' becomes immeasurably large,

implying also that the ratios A,PA, ; for i & 0 of the
exact eigenvalues A,; of S become very small,
indeed, smaller than 10 . Once A,PA, ; becomes
smaller than the accuracy of the computer used to
diagonalize S, the latter cannot be done anymore.

(27)

' 1/2
PE;(0)

vj ——e (28)

Because S is symmetric we can, starting from S
do straightforward perturbation theory on (18) and

get td
' from(59)
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(30) 0.4 r = 55pp
uo = 11.56

ko"——g R„n;(0)/g nk(0) .
k

(31)
0 o

I

6 7

D/kBT
The calculation of A,p" thus presumes that the ini-
tial equilibrium distribution n;(0) is maintained
during the desorption process. We have calculated
A,o by exact diagonalization of (18) and also by

( )/y2f
5 U0

5
3 Uo

FIG. 4. See Fig. 3.

and observe immediately- that the lowest eigenvalue
(0)is A,p

——0. The corresponding eigenvector v ' ' has
components
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We were, therefore, not able to calculate A,p exactly
beyond 5-2.5. This, however, is not too discon-
certing, because the low-temperature region with

5 & 2.5 is physically not too interesting because t~

becomes too large and because in this region
third-order perturbation theory works very well, in
particular, after one resums (31) in a Fade-type
fashion as

p(2) /Z(1)
()) (2) (3) ~(]) p p+ (3) (2) (2) (&)I+A,p /A, p

—A,p /A, p +. . .
(32)

This last expression leads to the dashed curves in
Figs. 3 and 4. Let us stress once more that in the
temperature region of most interest, namely for
1(5&4, the exact diagonalization as that used in
Ref. 2 yields the only trustworthy desorption times.
Lowest-order perturbation theory A,p" is unaccept-
able. However, the latter is used without question
in the so-called "equilibrium theory" of desorption
by physicists who believe that the bound-state oc-
cupation function does not deviate from an equili-
brium distribution during the desorption process.
Figures 1 —4 demonstrate clearly that this as-
sumption is not warranted, except at such low tem-
peratures where the desorption process becomes
unrealistically slow. Pagni has made the same
point very strongly. Armand has tried to justify
the equilibrium approximation by quoting that the
error thus introduced is less than 15% if
Up /ks T) 5 and less than 10%%uo if Up /ks T) 10.
Figures 3 and 4 do not confirm these numbers. To
get a 15%%uo agreement between A.p and Ap one(1)

needs AcoD/k& T & 9 in Fig. 3 and AcuD/k~T & 4.5
in Fig. 4, implying with Up/fun~ ——11.56 that
Up/kg T & 100 and 50, respectively. Indeed, the
ratio Uplks T is not the crucial parameter to assess
the validity of the equilibrium assumption at all.
Rather, it is a question of time scales: If the
bound-state —bound-state transitions are much fas-
ter than the bound-state —continuum transitions,
then equilibrium will be approximately maintained
during the desorption process. But these transi-
tions are caused by the energy-dissipating coupling
of the gas to the solid and not by the static surface
potential alone, so that Up/k~T cannot be the crit-
ical parameter that determines the validity of the
equilibrium assumption. We will return to a dis-
cussion of equilibrium theories at the end of this
section.

We have seen above that in the examples studied
so far the time evolution of the adsorbate density

N(t)
S;eN(0),. p N(0)

(33)

is for 5& 0.5 dominated by a single time scale A,p ',
which we identified with the desorption time. We
want to show quickly that in this situation the
mean first passage time

(34)

yields the same time scale. Indeed, if A,p &(AJ.,
j & 0 we know from Table II in Ref. 2 that
Sj« Sp 1 0 so that t Xp This can also be
substantiated straightforwardly by perturbation
theory for 5» 1 and confirms similar conclusions
by Kim.

Things are different in the high-temperature re-
gion 5 &0.1, which we want to explore now. We
should note first that for 5 &0.1 we are really
stretching the limits of applicability of our model
because we know from Ref. 10 that for such high
temperatures, multiphonon processes become im-
portant and second-order perturbation theory
which is used to calculate the transition probabili-
ties R„ is no longer sufficient. Keeping these
warnings in mind, we give in Table I a few exam-
.ples of eigenvalues A,; and coefficients S; in (33)
and the mean passage time t from (34), for some
unrealistically high temperatures. We see that for
very small 5 the S; approach some fixed values
such that the mean passage time t is about a factor
of 2 larger than the inverse of the lowest eigenvalue

This implies for the time evolution of the ad-
sorbate density (33), plotted in Fig. 5, that only the
long time tail is dominated by a single time scale,
namely A,p ', whereas over the time interval in
which N(t) drops to a value N(t)le many terms in
(33) have tc be kept, indeed, as many as thirty
terms for the example in Fig. 5 to get N(t)/N(0)
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TABLE I. Eigenvalues A,; from Eq. (18), coefficients S; in Eq. (33), and first mean passage time t from Eq. (34) as

functions of inverse temperature 5=Ace~/k&T. Other parameters: m/M, =0.174, co~ ——5.302)& 10" sec ', r =4969.0,
op ——239.66.

A3

0.25
0.1

10
1P—10

4.5877' 10'
2.2946 g 10'
3.3466' 10'
3.3584)& 10'

4.4713 g10"
1.2106g 10"
1.3165)(10'
1.3177' 10"

1.0245 y 10"
2.5610)& 10"
2.5612' 10"
2.56124)( 10

1.1394&& 10"
2.9361 )& 10"
3.0393 && 10"
3.0406)( 10

3.2067' 10"
8.0175 )& 10'
7.2243 X 10"
7.2243 )( 1P22

7.4678 )& 10'
1-.8671 X 10'
1.8672 X 10'
1.8672 &( 10

within 1% of its correct value one at t =0. The
mean passage time t from (34), on the other hand,
seems to have little relevance for this time evolu-
tion.

We therefore would like to make the following
point: If during the desorption process the time
evolution of the adsorbate is controlled by a single
time scale td, then td ——A,o '-t, i.e., the mean pas-
sage time coincides with the inverse of the lowest
eigenvalue A,o. At high temperatures, the time evo-

lution is transient in nature with many exponential
terms contributing, and it is futile to try to charac-
terize such a situation by a single time scale such
as the mean passage time. In any case, the latter
can then only be calculated if all eigenvalues A,;
and coefficients S; are known, in which case one
might as well calculate (33) properly. " It would be
interesting whether a time evolution in the adsor-
bate controlled by several time scales as depicted in

Fig. 4 can actually be observed experimentally.
For the Xe-W system we expect significant tran-
sients for T) 1500 K; however, the time scales in-

volved are very short, i.e., of the order of 10
sec, presumably too short to be measured. Also re-

0~ 4z
3

z

0 1 2 3
t/t

FIG. 5. Time evolution of the adsorbate for a very
high temperature. t = mean first passage time. Param-
eters as in Fig. 1.

call that at such high temperatures multiphonon
processes are expected to contribute significantly
also modifying a simple exponential time evolution.

Let us briefly return to the high-temperature re-

gion and observe that for very small 5 all transition
probabilities R„ in (1) and (2) are proportional to
5 ', so that we find for 5« 1

and

ko-A5 e
—5Qp

5up ~ A 5up

kBT'

(35)

(36)

where for the example in Table I we find that

A =3.3584)&10,8 =1.48)&10 ', and

S =8)&10 . Equation (36) is a very suggestive

result. Recall that a one-dimensional theory is ex-

pected to be most adequate for gas-solid systems in

which the gas particles in the adsorbate are totally

mobile along the surface of the solid. In such a

situation "equilibrium theory" predicts that the

desorption time should be given by a formula such

as (36) with S beiilg the stlcklilg coefflclellt. Pleas-

ing as this result may be, it must be regarded with

caution, because we know from Figs. 1 and 2 that

an "equilibrium theory" should only work at low

temperatures, i.e., for large 5, whereas (36) is valid

for 5« 1, so that it is not clear whether the coeAi-

cient S in (36) still has the significance of a stick-

ing coeAicient. %'ithout an independent and opera-

tional statistical mechanical evaluation of the stick-

ing coefficient such speculations are futile, the

more so, because we do not know whether multi-

phonon processes expected to be important for

|i(( 1 modify (36) significantly.
Before we pick up our discussion of equilibrium

theories let us brieAy comment on our choice of

plotting td 'e as a function of 5 in Figs. 3 and 4.
Phenomenology assumes that the desorption time

can be parametrized by a Frenkel-Arrhenius for-

mula
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TABLE I. (Continued, ).
4477

Sp S) S2 .S3

0.845 04
0.619 59
0.437 86
0.43606

0.053 67
0.125 13
0.16893
0.16928

0.01 344
0.03 25
0.00490
0.0492

0.23 658
0.058 64
0.087 27
0.087 55

5.387X 10
1.344 X 10-'
5.077 X 10
5 0975X 10 "

9.49 X 10
1.11X 10-"
1.57 X 10-"
2.8X 10

5.3832X 10'
3 522X10
6.7145X 10'
6.758 X 10'

p Q/k~ T
(37) that the left-hand side of (38) can be calculated mi-

croscopically so that
where Q is the heat of adsorption. Figures 3 and 4
demonstrate that for the exact desorption time as
calculated from (2) Q cannot be identified with Uo
without assuming some less than linear T depen-
dence in tq. Identifying Q with the lowest bound-
state energy Q = Eo prod—uces the dotted curves
in Figs. 3 and 4, which make td somewhat less T
dependent. There is thus no natural way to
parametrize our theoretical desorption time accord-
ing to (37) without identifying Q by some other
means, calculational or experimental, as the heat of
adsorption.

Let us finally add a few clarifying comments on
phenomenological equilibrium theories of adsorp-
tion and desorption kinetics. ' One typically ar-
gues that the rate of adsorption, i.e., the number of
gas particles getting adsorbed per unit time and
unit surface area, is

r, =p/(2nmktt T)' 'S(.T,&}, (38),

where p/(2trmktt T)'~ is the equilibrium flux of
gas particles passing in one direction through a
unit area in the gas with p the gas pressure and T
the gas temperature. Within the gas phase an

equal flux, of course, flows in the opposite direc-
tion. The latter is assumed absent at the wall. If
during the adsorption process the gas in the surface

region is not kept in equilibrium by rapidly replen-

ishing those gas particles that got adsorbed with

particles from the gas phase, thenP (2/irmkTtt) i 2 is
not the flux arriving at the surface, and its appear-
ance in (38) is of no significance. The factor
S(T, g ) in (38) is the sticking coefficient, i.e., the

probability that a gas particle hitting the surface
with coverage 0 gets stuck. '

Because any adsorbed

gas particle desorbs after a while, it is virtually im-

possible to give a satisfactory microscopic defini-

tion of S(T, 8}outside equilibrium theory from
which S(T, t}}can be calculated. Note, however,

S(T, 8)=p '(2n.mk&T)' r, (39)

In equilibrium the pressure in (38) can be calculat-
ed according to Fowler' using equilibrium statisti-
cal mechanics by equating the chemical potentials
of the gas phase and the adsorbate. One finds, e.g.,
for localized adsorption the generalized Langmuir
isotherm

k Ts
(2 k T)3/2 Qlk~ T

h
(41)

where Q is the heat of adsorption. Using (41) and
writing

—1
rd ——N, tg (42)

where N, is the number of adsorbed particles per
unit area and td is the desorption time, one finds
(37) where the prefactor is

kgT 2~mk~T
(td ) '=

2
S(8,T)

1 —0 h
(43}

for localized adsorption or

kgT
(t,')-'= S(e,T)

h
(44)

for mobile adsorption of particles without excited
internal degrees of freedom. The macroscopic time
evolution of the gas-solid system is then controlled
by a phenomenological rate equation

(45)

can serve as a definition of S(T, 8).
Because one assumes overall equilibrium the ad-

sorption (38) is cancelled by an equal amount of
desorption such that in terms of rates we have,

(4O)
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If 8 assumes its equilibrium value for given p and
T, then r, = r~ and dX, /dt =0. Reducing p to
zero then causes the adsorbate to deplete exponen-
tially with a desorption time t~.

In deriving the generalized Langmuir isotherm
one uses the fact that the total partition function of
noninteracting subsystems, i.e., adsorbate and free
gas, in equilibrium factorizes into a product of two
partition functions. This implies that the dynamic
part of the interaction H;„, between gas particles
and the solid in (3) is neglected, an approximation
that seems reasonable for the calculation of equili-
brium properties. Note, however, that H;„, con-
tains the dynamics of phonon-mediated desorption
that determines the desorption time in our model.
We thus see that in (43) and (44) the sticking coef-
ficient contains all the important dynamic informa-
tion about the desorption mechanism and should
never be guesses or approximated. One can extract
the sticking coeAicient from the calculated desorp-
tion time using (43) and (44) in a temperature re-

gion where the adsorbate is maintained in
quasiequilibrium throughout the desorption pro-
cess, i.e., where first-order perturbation theory
works. For the example in Fig. 3 this is the case
for 5 & 10, the low-temperature region where
desorption times are ridiculously long. In the
physically interesting region 100 & T &400 K, one
gets typical values like S(100 K)=0.73, S(200 K)
=0.19, S(300 K)=0.1, S(500 K)=0.03, etc. But
even these values cannot be trusted, because we
know from Fig. 1 that for these temperatures the
adsorbate is not maintained in quasiequilibrium
during the desorption process, so that (40) is not
valid. Moreover, the derivation of (44) assumes
that t~ is factorized uniquely by a Frenkel-
Arrhenius formula. To get the above-mentioned
values for S we assumed as indicated in Fig. 3 that

Q = Uo. We might with equal a priori right
choose Q = Eo, in which c—ase the sticking coeffi-
cients would turn out somewhat lower. We would
therefore like to make the following points: (a) It

seems that a sticking coefficient can only be intro-
duced without difficulty in "equilibrium theories"
of desorption, which themselves are of limited vali-
dity. (b) To relate the sticking coefficient to the
preexponential factor t~ in the desorption time, one
must assume that the Frenkel-Arrhenius parametr-
ization is given uniquely, a feature that does not
have a rigorous basis in a microscopic theory. It
seems therefore advisable to base a discussion of
desorption phenomena on desorption times directly
which appear naturally in kinetic theories based on
nonequilibrium quantum statistical mechanics.

III. PERTURBATION THEORY FOR THE
MASTER EQUATION

p(e)=(
i
e

i
) (47)

and the bound-state —continuum transition proba-
bility is given by Eq. (23) in the preceding paper,
namely,

For gas-solid systems in which the surface po-
tential develops many bound states we have seen'
that the discrete set of rate equations (2) can be ap-
proximated by the continuous master equation (5).
Desorption times calculated in various approxima-
tions from either (2) or (5) will obviously be very
similar so that there is no need to redo the calcula-
tions of the previous section for the master equa-
tion. Instead we want to develop here, based on
first-order perturbation theory of the master equa-
tion, a simple analytic expression for the isother-
mal desorption time at low temperature and for
systems with large r. As derived from the master
equation (31) reads

0 00

de'p(e') f dip(e) W(e,e')e
~ (1) —"n
Ao 0

J de"p(e")e

(46)

where the density of states is

p (e e ) = r co ( —ee )' 8( 1+e')0( 1 +e' —e) [ exp[5(e —e')1 —1 ]

X (e—e')' .
sinh2[n(re)'~ ]+cos [n(ruo)'~ ] I ((ruo)'~2+( re')'~ + —,)I—((ruo)' ( re) + —,)—

(48)
I

where 8 is the step function. To find an approxi-
mation for large r, we use the following asymptotic
expansion for gamma functions for large x, deriv-
able from Stirling's formula

I (x+1+a) B„(—a) —B„(0)——=x'exp1(x+1) „, n(n —1)x" '

(49)
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=2+4 g ( —1)"e ~"'"" cos[2nn (ruo)'~ ]

(50)

in (48) and, writing

I,() N/D-—,

N =No(1+Ni+

we find

(51)

(52)

where B„(y) is a Bernoulli polynomial. ' We use
the expansion

sinh[2n. (re)' ]
sinh [m(re)' ]+cos [m(ruo)' ]

class = 2Uoy
(60)

defined microscopic model by means of mathemati-
cally acceptable approximations. It is important to
note its nontrivial dependence on the parameters
Uo arid y of the surface potential and on the Debye
frequency orD of the solid as a consequence of the
phonon-mediated dynamic coupling between solid
and gas. This is in contrast to certain equilibrium
theories' where the preexponential factor td is
identified as proportional to the inverse of the fre-
quency co,~„, with which an adparticle of mass m
oscillates classically at the bottom of the surface
potential, i.e.,

18+up m
2

+0 3/2 D Mr S

N&
——(a —a+ —,)

1 5 2

3(ruo)'r 2r 3rup

105 2+
3r 9ruo

where a is the fractional part of (ruo)'
Furthermore, for large 5up we have

0

Su,'"

(53)

(54)

0 2g 1 Ms r
18m m up

2 2 (61)

To get this one argues that the rate of desorption is
given by the frequency, with which the adparticle
at the bottom of the surface potential well hits the
wall of height Q, times the probability that it at
that time acquired the activation energy Q, pre-
sumably supplied by the thermal motion of the
solid, to escape. Such a line of thought can at best
serve for an interpretation of the result of a micro-
scopic theory but cannot serve as a basis for one,
as it does not allow for any dynamics.

Rewriting (59) with (60) we have

so that for large r and 5up such that

25uo/00 pQ 1

we finally get

5/2
(, ) 18+up

~o =No/Do= „, coD e
r 3/2

S

Comparing this result with (37) and identifying

t~
' ——A,o", we find that

=Uo

(56)

(57)

(58)

and the qreexponential factor is for 25up/vp » 1

or 5» —,(r/uo)'~

3/2
pT p ] s r

td ——COD 5/2m 18aup

'4 3/2
Ms I'D 2m Uo

m Up &2y
(59)

the superscript PT indicating that this expression
has been derived in perturbation theory. This ex-
plicit expression has been obtained from a well-

and find that for the Xe-W system with r =4969
and up=11.56 the factor in large parentheses
amounts to about 0.3. The fact that numerically
2m./co, ~„, is quite reasonable, however, is. no justifi-
cation for accepting it as a basic ingredient of a
theory of desorption. Let us also note that in (59)
td is proportional to the ratio M, /m of the masses
of an atom of the solid M, and of an adparticle m.
Classical theories will typically produce a depen-
dence of td on (M, /m)'~, which is simply a reflec-
tion of a similar dependence of the classical fre-

quency (60) of the harmonic oscillators used in
such theories. We have plotted (59) in Figs. 3 and
4 and see that indeed for 25up/o'0&& 1 it is an ac-
ceptable approximation.

Classical theories that produce prefactors td

that only depend on static parameters such as co,i„,
and k~ T typically do not calculate desorption
times per se, but rather delay times experienced by
a gas particle scattering off the surface of a solid.
Such delay times are obviously not identical to
desorption times and can indeed be quite different
as one can see by considering a situation where the
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IV. RELAXATION TIMES FROM THE
FOKKER-PLANCK EQUATION

In this section we want to calculate the desorp-
tion time from the Fokker-Planck equation (6)
which we showed in the preceding paper to be an
acceptable approximation to the master equation
(5) for large r and for intermediate temperatures
such that

' 1/2

3up 5 up
(62)

Let us look again at isothermal desorption. We
must solve (6) with the boundary conditions that

n(e, t)=0 for e&0, ty0 (63)

reflecting the fact that all desorbing particles are
pumped out of the system instantaneously. As a
second boundary condition we demand that

dn(e, t)
BE'

=0 for E)0, tp0. (64)

We have argued above that at temperatures
kq T(AeD the strong bound-state —bound-state
transitions guarantee that an equilibrium occupa-
tion is maintained within the surface potential with

the total number of adparticles decreasing exponen-

tially. We therefore solve (6) approximately by an

ansatz;

gas-solid interaction is such that gas particles can-
not gain or loose energy to the solid. Desorption is
then not possible and td is infinite. However, a
particle scattering from the solid will still be de-

layed in an elastic collision.

1
0

7d= ,—5a2(0)/f „dep(e)no(e),

which for large enough 5up simplifies with equa-

tion (70) of the preceding paper to

(68)

2
Fp i 1 i s r

d —~d — ~D
5up

(69)

valid for large r and intermediate temperatures
such that the inequalities (62) are satisfied. We
have plotted (69) in Figs. 3 and 4, where it is
denoted as the Fokker-Planck approximation "

td

to the desorption time. It is amazing to see how

good an approximation (69) is for larger r, see Fig.
3, particularly in the temperature region 0.5 &5 (3
of interest for the Xe-W system.

It has been the aim of this paper to derive from
the microscopic model (2) simple analytic expres-

sions for the isothermal desorption time. In the
limit of large r and up we found two, namely td,
given in (59) and derived from perturbation theory
in the low-temperature region 25up/o. p &g 1 and"

td given in (69) and derived from the Fokker-
Planck equation in the temperature region (62).
These two approximations are plotted again togeth-
er with the exact desorption times in Fig. 6 for
three diAerent systems. We see clearly that td is
a lower bound on td in the low-temperature region,
whereas "

td gives a bound in the temperature re-

gion (62). Indeed, these bounds are better for

larger op or r and can therefore be used with confi-

dence to estimate desorption times for such gas-

solid systems. Note that the preexponentials in

(59) and (69) depend quite strongly on the heat of
adsorption, i.e., curn grano sahs on up. The r
dependence of the preexponentials can be used to

—A,gt
no(e, t) = pn( )ee

no(e) =A(e + I) . —

Integrating (6) over e we get
0

—Ad f dep(e)no(e)—Qp

I Ba2(e)p(e)no(e)—a~(&)p(&) no(e)+—
2 BE

(65)

0

—Qp

(66)

O

Ql

0.8

Co o.e

0.2

Ba2(e)
a)( —uo) =a2( —uo) =

BE
=0, (67)

so that (66) reduces to

But note that in the large-r limit we see from Eqs.
(69) and (70) of the preceding paper' that

FIG. 6. Test for the approximate desorption times
~tq (dashed line) and "

td (dotted line) for three dif-

ferent systems. The curves with up ——11.56 have
AcoD/k& ——405 K and m /M, =0.714 appropriate for
the Xe-W system. The lowest curve with up ——42.5
has Acoa/1& ——450 K and m /M, =0.277 for the CO-
Ru system.
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estimate the range of the surface potential.
In summarizing the main results of this paper,

let us repeat once more the motivation behind it.
Theoretical attempts at physisorption kinetics fall
basically into three classes. Starting with the most
sophisticated there are first the microscopic models
based on quantum statistical mechanics, in which
the dynamic phonon-mediated coupling between
gas and solid supplies the necessary energy for a
particle in the adsorbate to desorb. ' Up until very
recently such models were restricted to deal with
one-phonon processes, calculated in second-order
time-dependent perturbation theory (Fermi's gol-
den. rule), . i.e., to gas-solid systems where the ad-
particle was trapped in a shallow bound state of-

the surface potential from which it would desorb
by adsorbing a single phonon. Recently this re-
striction has been removed in two separate exten-
sions of the model. In Ref. 10 we have performed
a complete fourth-order calculation of one- and
two-phonon processes, which among other results
yields explicit criteria for the validity of one-
phonon the'ories. In addition, various approximate
multiphonon theories have been proposed. ' The
second direction of extending the microscopic
theory is the study of gas-solid systems in which
the surface potential develops many bound states
from which desorption takes place via multiphonon
cascades and controlled by rate equations such as
(1) and (2}.' Based on the latter with the indivi-
dual transition probabilities R„accounting for
one-phonon processes only, we have studied phy-
sisorption kinetics in Ref. 1 without any further
approximation, calculating desorption times for a
varieity of gas-solid systems such as He-I.if, He-
graphite, Xe-%, etc. Because these studies are fair-
ly involved both analytically and numerically we
have addressed ourselves in this and the preceding
paper to the problem of simplifying the theory in-
voking well-defined and numerically justifiable
mathematical approximations. The desorption
times in (59) and (69}are the main results of this
endeavor. They can serve as estimates in their
respective temperature range of validity for weakly
coupled gas-solid systems as Figs. 3, 4, and 6
demonstrate.

The second class of models for physisorption
kinetics are those based on classical dynamics.
The most sophisticated of these is the cascade
model by Pagni and Keck' and Pagni, which
starts from a master equation similar to (5), howev-
er, with the kernels 8'(e', e) calculated using classi-
cal rather than quantum mechanics. Many of their

conclusions remain valid under the scrutiny of the
quantum-mechanical models. The bulk of the clas-
sical models, however, is far less sophisticated.
Most of them assume from the onset that, the ad-
sorbate remains in quasiequilibrium during the
desorption process. This is generally not warrant-
ed as Figs. 1 and 2 demonstrate. Prefactors t~ in
(37) calculated in many such theories typically
depend on T, the depth of the surface potential Uo
and perhaps the classical frequency (60). We
would like to repeat our argument that such
theories are principally incomplete, because adsorp-
tion and physisorption processes are energy dissi-

pating and cannot be described by the above static
parameters alone. Indeed, what is assumed impli-
citly in such theories apart from the (unjustified)
equilibrium hypothesis is that the sticking coeAi-
cient S is unity. But as we argued below Eq. (45},
S reflects the dynamic information about the
energy-dissipating processes. The simplicity of
these models can thus be physically quite mislead-

ing. As the mathematics involved in some of these
classical models is at the same level of complica-
tion as the more fundamental quantum statistical
models, and as their logical foundation is some-
times quite shaky, we feel that classical theories
have outlived their usefulness, in particular since
we are now able to derive simple analytic expres-
sions for desorption times similiar to (59) and (60)
from sophisticated quantum statistical models.

The third class of attempts to understand phy-
sisorption kinetics is phenomenological in nature,
.with an example outlined in Eqs. (38)—(45).
Though such models can be useful in evaluating
experiments, one must always bear in mind that
their a priori equilibrium assumption is quite fre-

quently not warranted.
As for the quantum statistical model based on

Eqs. (1}and (2), we should be aware of its limita-
tions as well. Sharing this feature with most clas-
sical models, it is one-dimensional and thus most
adequate for gas-solid systems with mobile adsor-
bates. Attempts at three-dimensional theories'
imply that the dimensionality of the problem does
not affect the order of magnitude of the desorption
time. Yet a fu11-fledged three-dimensional version
of the present theory would be desirable and is in
preparation. Similarly, the use of a Debye spectrum
for the phonons can be relaxed, and more realistic
spectra including su'rface, modes can be incorporat-
ed but are not expected to change numbers by
more than a factor of 2 or 3.'

The transition probabilities R« in (1) and (2) are
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so far calculated in second-order time-dependent
perturbation theory (Fermi's golden rule) and thus
take account of one-phonon processes only. This
obviously puts restrictions on the kind of gas-solid
systems that can be described. In particular, we
must demand that any two neighboring bound
states in the surface potential can be linked by a
one-phonon process. As the deepest two bound
states are separated the farthest, this implies for a
Morse potential that

ficoD )
~
Ep Ei

or in terms of our dimensionless parameters

2(op —1)&r or r)4up,

(70)

(71)

where we used the fact that for most gas-solid sys-
tems op+& 1. This inequality implies a lower limit
on the preexponential factor in (39) which we can
get from either (59}or (69). From the former we
find for 5« , (r/u—p)'~

pT p ] Mg 4
t~ &boa

m 9m up

~, 4e 1

m 9m Up
(72)

and the latter yields for 5/3up » o.» (2r/Sup)'

Fp p J ~s 2 1 }~s 2 kBT
I'g 0 cog) =COD 0

m 9~ up5 m 9~ Up

(73)

Note that these two estimates, resulting from two
quite different approximation schemes and valid in
two diferent temperature regimes, are identical

1

apart from the temperature factor —,kii T/fuuD in" t~. Also recall that both''are valid for large r
and up. Let us apply (72) to the Xe-W system for
which up=11.56. We get t~ )3.2X10 sec,
whereas experiment says that td -10 ' — sec. We
would, however, caution the reader that our esti-
mate above is not too stringent and out at 6=1 by
about a factor 15 because r =4up ——46.24 is not a
large number for (59) or (69) to be good approxi-
mations. Such an r value implies that the Xe-W

D

surface potential would have a range y
' =0.15 A

which, it seems to us, is too small to be acceptable
without reservation. ' It might actually reflect the
fact that Xe gets weakly chemisorbed on W, Let
us then look at gas-solid systems with large heats
of adsorption. They typically show chemisorption,
i.e., the gas particle undergoes some structural re-
arrangement as it gets adsorbed. We feel that such
a process cannot adequately be described by a
model, appropriate for physisorption, in which the
gas particle otherwise unchanged gets trapped into
the bound states of the surface potential. With
these misgivings in mind, that seem to be of amaz-
ingly little or no concern in some of the literature,
let us look at the CO-Ni system. Ibach et al.
measure in the low coverage regime Q = 150
kJ/mol and I~ -10 ' sec. With fez/kB ——400 K
for Ni, we get from (72) that td ) 10 ' sec, i.e.,
not quite as fast as the experiment requires. For
the CO-Ru (001) system measured by Pfniir et al.
we get with up ——42.5 t~ & 10 ' sec overlapping
with their experimental value td ——10 ' sec. Simi-
lar conclusions can be reached for the systems Cu-
W, Ag-W, and Au-W measured by Bauer et al.
Our microscopic model is thus quite capable of
producing very small preexponential factors td .
Let us, however, stress once more that the ability
of our theory to yield very small preexponential
factors td does not explain fast desorption in chem-
isorption systems but should only be taken as an
encouragement to extend our line of attack, so far
restricted to physisorption, to phenomena in chem-
isorption. An analysis of desorption data with
Eqs. (59) and (69}or (72) and (73) should at this
stage be viewed as complementing the phenomenol-

ogy based on equilibrium or transition state
theories to get a more complete understanding of
desorption kinetics.
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