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Kinetic equations for desorption
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Starting from a set of rate equations for the bound-state occupation functions for gas-
solid systems in which the surface potential has many physisorbed bound states, we derive
a master equation; its kernel is explicitly calculated for phonon-mediated adsorption and

desorption in a Morse potential. We give the equivalent Smoluchowski-Chapman-

Kolmogorov equation for which we find the Kramers-Moyal expansion. Identifying van

Kampen s large parameter 0 for such gas-solid systems, we establish explicit criteria for
the validity of a Fokker-Planck equation.

I. INTRODUCTION

In a series of papers' we have de@eloped a
quantum statistical theory of desorption of a gas
from the surface of a solid in systems which show

physisorption at low coverage. The most recent
paper was, in particular, devoted to a study of phy-
sisorption in gas-solid systems in which the surface
potential, i.e., the net static interaction between the
particles of the gas and solid phases, develops
many bound states, say, at energies Ep . . . , EN,
into which gas particles can get trapped. Typical
examples are the He-Lip system with four bound
states, the He-graphite system with %=4, the
Xe-W system with N-200. To calculate the
isothermal desorption time for such systems, we
have argued that the occupation numbers n; of gas
particles in the ith bound state of the surface po-
tential are, at low coverage, subject to a set of rate
equations

dn;(t) N

R„+QRp n;
d j p

jap

mal desorption experiment iri which desorbing gas
particles are pumped out as fast as possible.

To include continuum —bound-state and
continuum-continuum transitions simply rewrite
(1) as

dn„(t) =JR„n; QR—„n, ,
dt LQL

where the indices ~ and ~' run over all bound states
and continuum states of a gas particle in the sur-
face potential. Note that as long as the gas volume
is finite, the continuum states are discrete, becom-

ing continuous in the large volume or thermo-
dynamic limit. Rate equations similar to (1) and

(2) can be derived under certain simplifying as-

sumptions using methods of nonequibrium statisti-
cal mechanics.

In Ref. 3 we have calculated the transition pro-
babilities R,j and R„. in second-order perturbation
theory (Fermi's golden rule) for phonon-mediated
adsorption and desorption in a one-dimensional
model assuming that the surface potential is ade-

quately represented by a Morse potential

+JR;.n, i=O. . . , N
j=p
j+i

where Rj,- is the probability for a transition of a gas
particle from the ith into the jth bound state of the
surface potential, arid R„ is the probability for a
transition from the ith bound state into the contin-
uum. In (1) transitions from the gas-particle con-
tinuum back into any of the bound states are
suppressed, as it seems appropriate for an isother-

To find the connection between the isothermal
desorption time t~ and the transition probabilities

R~; and R«we write (1) in matrix notation,

dn(t}
(

where n(t) is the (5+1)-dimensional column ma-
trix with elements no(t), . . . , n~(t), and R is the
(%+I)&&(%+1}mat. rix of transition probabilities.
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To evaluate the formal solution of (4),

n(t) =e 'n(0)

we diagonalize the transition matrix

time"'

(14)

n;(0) = g fjet'j',
j=p

where e j' is the ith component of the jth eigenvec-
tor. Note that the e 's are not orthogonal because
R is not symmetric.

The total (relative) adsorbate occupancy is given

by

N(t) N n, (t} N

N(O) =,.~ N(O) =,.~"'
where

(9)

N(0) =g nl(0)

N
nl (0) . N

; =g N (0)
el" g ek",

1=0 k=p

where e~
' is determined such that

N -(I) (j)=~;j ~

1=0

Writing (9) as

(10}

N(t) ~ kof 1, j (Aj A lf o(12)'N

N(0) .
l So

we see that for times t » (Aj —A,o)
' for

j= 1, . . . , N all transients have died out and the
time evolution can be characterized by a single
time scale

tg =Ap (13)

provided that Sp is not substantially smaller than
any of the Sj for j & 0, which is borne out by our
numerical examples. Also note that g &,Sj ——1.
Under these conditions the mean first passage

R .~(i) g ~(i).e =;e
where all eigenvalues A,; are real and positive and
assumed to be ordered A,o & A, l«" A,lv. Equation
(5) can now be written

N

n(t)= g f;e ' e ',
i=0

where the f; s are determined by inverting the ini-

tial conditions

reduces to (13).
Experimentally determined desorption times are

usually parametrized over limited temperature re-
gions by a Frenkel-Arrhenius formula

0 ggka

where the prefactors td typically vary for phy-
sisarbed gases from 10 sec for helium desorbing
from Constantan to 10 ' —10 ' sec for xenon
desorbing from tungsten. The heat of adsorption
Q/kll varies from 30 K for the He-Constantan to
4662 K for the Xe-W system. In the microscopic
theory of physisorption kinetics it turns out that
the depth Uo of the surface potential (3) is slightly
larger than Q, and that its range y

' determines
the prefactor td. A smaller range y

' implies a
stronger coupling of the gas particle trapped in a
bound state of the surface pote:ntial to the phonon
bath of the solid, increasing the probability for ad-
sorption of a phonon and thus decreasing td.
However, reducing the range y

' of the surface po-
tential keeping its depth UO fixed also implies that
the number of bound states is reduced so that the
number of channels through which the adsorbed
particle can cascade up and down the bound states
af the surface patential is reduced, leading to a de-
crease in the desorption rate compensating the in-
crease caused by the stronger coupling to the pho-
nons. One thus finds for the desorption kinetics in
gas-solid systems with many surface bound states
that details of the surface potential are less impor-
tant than they are in systems with only a few sur-
face bound states.

As the number of bound states in the surface po-
tential becomes large, it seems plausible to approxi-
mate the system of many discrete baund states by a
quasicontinuum ranging from the bottom ( —Uo) of
the surface potential well to zero. Whereas in the
original system the adatom cascades through a
series of discrete bound states, it now performs a
random wal'k through the quasicontinuum of
bound-state energies. Such a picture assumes,
however, that the adatom can be treated as a clas-
sical particle. This, indeed, seems reasonable, e.g.,
for the Xe-W system, which we will from now on
take as the prototype of a gas-solid system that
develops many bound states, as the de Broglie
wavelength Ada

——[2m (E+Uo)] ' /fi of a Xe
atom in the lowest bound state of the Xe-W surface
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potential is about 0.1 of its range, and it is about
10 of its range at E=0.

To quantify the picture emerging from this dis-
cussion we will in Sec. II A perform the continu-
um limit on the system of rate equations (2) to ob-
tain a master equation. The latter will then be
rewritten in Sec. II 8 as a Smoluchowski-
Chapman-Kolmogorov equation, which in turn
will be developed into a Kramers-Moyal moment
expansion. ' Truncating the latter after two terms
yields, in Sec. II C, a Fokker-Planck equation for
physisorption kinetics. In Sec. III, we present the
kernel of the master. equation explicitly as a per-
spective three-dimensional plot. Numerical exam-

ples of its first two moments which enter the
Fokker-Planck equation follow next. For weakly
coupled gas-solid systems we will develop approxi-
mate expressions for the moments, which will serve
to show over which range of potential parameters a
simple Boltzmann distribution obtains as an equili-
brium solution of the Fokker-Planck equation, thus
delineating its range of applicability. The follow-

ing paper by Kreuzer and Teshima' wi11 then be
devoted to calculating various approximate desorp-
tion and adsorption times starting from the master
equation and the Fokker-Planck equation.

An early attempt at a kinetic description of
desorption was made by Kramers who postulated
a Langevin equation for the random motion of a
classical particle. The interaction of the adsorbed
particle with the solid substrate enters this equa-
tion as a systematic binding force, a friction force,
and a fluctuating force. A microscopic derivation
of the Kramers-Langevin equation has recently
been attempted by Caroli, Roulet, and Saint-
James. " Simple Langevin-type equations for
desorption have also been studied in Refs. 12—15.
All of these papers look at the random motion of a
classical particle in front of a solid surface.
Schaich' has recently attempted an appraisal of
some of these theories.

In this paper we will study kinetic equations for
desorption by following an adsorbed particle in its
random walk through the energy levels of the sur-
face potential. Thus our kinetic equations govern
the time evolution of the energy distribution func-
tion of an adsorbed particle in contrast to the
Kramers-Langevin —type equations which deter-
mine the spatial distribution functions. An ap-
proach similar to ours has been advanced by Pagni
and Keck' and Pagni' who, however, base the
microscopic dynamics of the adsorbing particles on
a simple classical model, whereas we employ a

quantum-mechanical calculation of phonon-
mediated desorption. Yet, we will see, particularly
in the following paper, that a number of their con-
clusions can be verified at least qualitatively in our
more refined theory.

II. DERIVATION OF MASTER
AND FOKKER-PLANCK EQUATIONS

A. Continuous master equation

For gas-solid systems for which the heat of ad-
sorption Q in (15) is of the order of half an electron
volt or more, i.e., for which Q/ks &5000 K, the
surface potential, being approximately of depth
Up & Q„will develop many bound states, typically a
few hundred. In such a situation it seems ap-
propriate to replace sums over i in {1)by integrals
over a dimensionless variable which is conveniently
chosen to be

{16)

such that for E=E; being one of the bound-state
energies in a Morse potential (3) one gets

1 2e=e;= (op —i ———) /r,2 (17)

where r =2mcoD/Ay and op ——ZmUp/(A'y) . Here
ficta is the Debye energy of the solid, which serves
as the energy scale for the system. The bound-state
occupation functions n;(t) then go over into n(e, t)
such that

n(e;, t)=nt(t) .

Equation (2) can now be written as

Bn(e,t) de'p(e') W(e,e')n(e', t)
Bt "o

(18)

—J de'p(e') W(e', e)n(e, t) . (19)

where

Up
Qp=

fKOD

2
O'p 1

( —&p) +i/2

2p

2

(20)

and

p«) =
I
~

I

'" (21)

Using the results of Ref. 3 for phonon-mediated
transiton rates calculated in second-order time-
dependent perturbation theory, we get for bound-
state —bound-state transitions, i.e., for —up(6 6' Q {x),
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W(e,e')= 37rr coD (6'e ) (w —& ) I exp[%&—& )] jM,
r

I ((ru )' '—( —«)' '+ —)1((ru )' '+( —«)' '+ —)
X 0" (1—e+E' )0" (e—6 )

I'((ruo)' ' —( —«')' '+ —,)1((ruo)' '+( —«')' '+ —, )

I'((ru, )' —( re'—)' '+ )I —((ruo)' '+( —re')' '+ —)
+8{1—e'+e)8(e' —e)

1((ruo)' —( «—)'~'+ , )1—((ruo)' +( «—)' '+ , )—

where 8 is the step function. Similarily one obtains for bound-state —continuum transitions, i.e., for —uo &
e'&0 and 0&m& 00

W( e, e)= r'~ co& {—ee')' 8(1+e')8(1+e'—e)I exp[5(e —e')] —1 j2 M,

sinh[2n(re)'~ )
sinh [n(re)' ]+cos [m(ruo)'~ ]

(1((ruo)' '+i(«)'~'+ , ) ~'—

I ((rue)'~~+( —re')'~ + —,)I ((ruo}'~ —( —re')'~'+ —,)

and for continuum —bound-state transitions

{23}

W(e',e)= — r' coD ( —ee')' 8(l+ e)8(1+ e e)({exp—[5(e e')] —1 j —'+1)
2 M,

X(e—e')' .
sinh[2m(re)'~~]

sinh [~(re)' ]+cos [n(ruo)'~']
'

~

I ((ruo)'~~+i(re)'~~+ —,)
~

'
I'{(ru )'"+(—«')' '+ —)I ((ru, )'"—( —re')' '+ —' )

(24)

»te that in (19) the lower integration limit must,

be taken as the bottom of the surface potential well
and not as the lowest bound-state energy, which is
shghtly larger. Observe that the kernel W(e,e') sa-
tisfies detailed balance

P;=0(1) .

The continuum functions t)}k are of order L
1.e.)

pk =0(L ' ), (28)

~(e,e')e = W(e', e)e (25) so that for bound-state —bound-state transition
probabilities we get

this is not the case for the kernel used in Refs. 17
and 18.

We now want to show that (a) phonon-mediated
continuum-continuum transitions vanish for a large
system, i.e., as L~~, and (b) that in this limit

R;; =0(1),
whereas for bound-state —continuum and
continuum —bound-state transition probabilities
one finds

{29)

Bn (e,t)
Bt

=0 for @~0. (26) Rkt 0(A,/L)——

(30)
Recall that (2) is the discrete master equation for a
gas in a finite box of length 2L. From the explicit
formulas for a Morse potential, e.g., in Ref. 3, we'

see that the bound state wave functions of a gas
particle are of order 1, i.e., Rat, =0((A/L) ), (31)

R;k 0(A,/L), ——

and for continuum-continuum transitions one finds
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where A, =y ' is the range of the surface potential.
Next note in (2) that for t = i belonging to the
bound-state spectrum, the terms with Rk; and R;k
on the right-hand side still involve a sum over k,
so that

QRk;n; =0 (1)
k

and

QRk;nt ——0
L

(33)

and

QR;knk =0
L

(34)

whereas continuum-continuum transitions contri-
bute terms

QRk'k nk
k' L (35)

and

QRkk nk =0
k

so that

(36)

dnk(t) =0
dt L

(37)

which yields (26) in the limit I.~no.

yR;knk =0(1) .
k

These are the terms, in addition to the bound-
state —bound-state transitions, that have been in-
cluded in (19).

Next look at those equations in (2) with t =k be-

longing to the continuum. The terms with bound-
state —continuum transitions on the right-hand
side now involve sums over bound states, i.e.,

To understand this result, consider a gas-solid
system in which the surface potential does not
develop any bound states. In this case gas parti-
cles, scattering elastically and inelastically in the
surface potential, can undergo continuum-
continuum transitions only. The latter being of or-
der A,/L implies that the time required for a gas to
thermalize with the wall would increase like L
with the size of the system, that is in the absence
of two-body collisions in the gas phase, which we
neglected in our model, treating the gas as ideal.
This assumption obviously puts restrictions on the
gas-solid systems that can be described by the
model as given by (2). To get a reasonable descrip-
tion of the adsorption process, collisions in the gas
must be so frequent that gas particles undergoing
phonon-mediated continuum —bound-state transi-
tions must be replaced from regions in the gas
phase further away from the wall in a time short
compared to the adsorption time. To describe
isothermal desorption with (2) gas particles leaving
the bound states must be removed (pumped out) on
a time scale faster than the desorption time. We
will assume from now on that such situations pre-
vail, in which case (19) and (26) constitute our
master equations in the continuum limit.

We intend in the following to derive from (19)
an approximate differential equation of the
Fokker-Planck type. An accepted procedure en-
tails expanding the integrals in (19) into a
Kramers-Moyal expansion. ' Because our variables
e and e' are confined to the semifinite interval

[—uo, ao ], and due to the appearance of the weight
p(E) in the integrals, this expansion is not as
straightforward as it is on an infinite interval

[—co, ao] and with p(e)=1 due to the intermittent
appearance of surface terms when carrying out the
necessary partial integrations in the Kramers-
Moyal expansion. We therefore prefer the some-
what longer, but safer procedure to first establish
the Smoluchowski-Chapman-Kolmogorov equation
in Sec. II 8 which is subsequently expanded to
yield the differential equation for (19).

B. Smoluchowski-Chapman-Kolmogorov equation

(3&)

The set of rate equations (2) implies that the motion of an adatom in the surface potential is a random
walk through the energy levels and can therefore be described by a Markovian stochastic process. %'e now
want to derive an approximation for the integral operators in (19) in terms of difFerential operators, i.e., find
a Fokker-Planck equation. Following standard procedure' ' we define a propagator g ('e,t;E',t') for the ran-
dom walk by

n (e,t) = de'g (e,t;e', t')n (e',t') .—Qp
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For small time increments b t =t —t' the propagator g (E,t +b,t; E', t) can be related to the kernel W(E, E') of
the master equation (19) by

OO

g (E,t +6 t;E', t) =5(E E'—)+6 t p(E') W(E,E') 5—lE E—') f dE"p(E")W(E",E')—Qo
(39)

(40)

To derive an expansion of the right-hand side in terms of difFerential operators we multiply (40) by p(E) and
a test function r(E} which is infinitely difFerentiable on the interval [—tip ao ] and vanishes at its endpoints.
After integration with respect to e we get

One checks easily that by inserting (39) in (38) and taking the limit b, t~O we recover (19). g (E,t;E',t') itself
satisfies the Smoluchowski-Chapman-Kolmogorov equation for t' & t"& t:

g(E,t;E &t )= dE g(E,t;E,t )g(E &t &E &f ) .—Qp

f 'H E)p( E)g( Et;E,t )dE'= fp(E)1(E)g(E't;E &t )g(E &t '&E &t )dedE

On the right-hand side we expand

co ]
r(E)= g, (E—E")"r'"'(E")

o

and get after using (40)

00

dE' fdEp(E)(E E")"—g (E,t;E",t")g(E",t";E't')r~"'(E")
n=o".

(41)

(42)

dE p(E)r(E)g(E, t";E',t'}+6t g dE"a„(E")g(E",t;E',t')z~"~(E"), (43)
1

n=i"
where for small time intervals At =t —t", we define moments for n & 1

a„(E")= dE p(E)(E E")"g(Et—+At;E",t)=p(E")f dE p(E)(E E")"W(EE") . —
kt —Qo —Qo

(44)

n partial integrations of the nth term in (43) give

a&&

( 1 )II . Bnbtg fdE r(E) [a„(E)g(E,t+ht;E', t)] .
a=i Be

(45)

The term n =0 is next taken to the left-hand side of (41). After division by b, t we take the limit b, t~O and
obtain

fdE p(E)r(E) g(E,t;E',t')—= dE p(E)r(E) g [a„(E)g(E,t;E', t')] .( —1)"
Bt Be"

(46)

Multiplying (46) by n (E',t') and integrating over E' we get

( 1 )&I /IIfdE r(E) —[p(E)n (E,t)]—g [a„(E)n (E,t)] =0 .
Bt pg

7t (47)

As this relation must hold for any test function r(E) we conclude that the expression in large parentheses
must vanish. Thus we can write (19) in a formally equivalent form, usually referred to as the Kramers-
Moyal expansion, as

B &0
( 1 )II 5&I &&&

( 1 )II 5&I—[p(E)n(E,t)]=g, [a„(E)n(E,t)] = g [a„(E)p(E)n(E,t)],
Bt Be i n ~ Be

(48)
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where

a„(e)=p '(e)a„(e) . (49)

Expanding

ai(e) =ai(e)+(e —e)ai(e)+ .

this yields

(57)

C. Fokker-Planck equation —e=ai(e)
dt

(58)

Keeping only the first two terms in (48) we get

ap(c)n (e,t)
Bt

[ai(e)p(e)n (e,t)]
a

Q2
+—,[a2(e)p(~)n (e,t)] . (50)

2

van Kampen ' has explained in great detail the
validity of such a truncation, which, he argues, can
only be justified systematically after the right-hand
side of (48) has been rewritten as a series in a small
parameter 0 '. The latter is introduced by rescal-
ing the time variable

plus terms involving the fluctuations around e.
The question then arises as to what the large

parameter 0 is in our gas-solid system. There
seem to be two candidates. Recalling (14) one could
argue that

0=exp(5uo) .

Attractive as this identification is, it is very diAi-

cult to make the dependence of a„(e) or, in turn,
of W(e,e') on 0 explicit. However, it can be
shown, using perturbation theory (see the following

paper by Kreuzer and Teshima' ), that the relaxa-
tion time td scales for large r for 25up/op++ 1 as

t =Qz

and by defining

(51)
S 1 3/2 5/2 Suo

up e
m 18m

dP(r)
d7

=ai(P(r)), (53)

~=ny(t)+n'"g,

where P(t) describes the macroscopic motion of the
particle undergoing the random walk with g ac-
counting for its fluctuations. p(t) can be shown to
satisfy the macroscopic law

3/2

, M, 1 2IU U

m 1 Sir &2y duo D

=ao=(uor)3 3/2

so that it seems appropriate to identify
' 3/2

2mUp0

Up
exp

(59)

(60)

aP(g,r), , „a(P )

ar

+ —,a2(P(r))
1 a'I

a2'
where

(54)

ai(P(r)) = ai(e)
1

(55)

whereas (48) reduces in lowest order in 0 '~ to a
linear Fokker-Planck equation for the rescaled dis-
tribution function P(g,r) =p(E)n (e,t):

as the large parameter in our system. For exam-

ple, for the Xe-W system with Up/kz ——4662 K
and y=1 A we have 0= 4& 10 . Gas-solid sys-
tems with large 0 are, indeed, those that were
termed weakly coupled systems in Ref. 2. A con-
nection can also be made between Eq. (50) and
Kramers's weak-coupling (small-viscosity) Fokker-
Planck equation by defining an action variable
J/A=2r [uo —( —e)' ] 'and a frequency
co/oiD= de/d(J/A'). A detailed discussion is
planned to be published elsewhere.

with P(r) being a solution of (53).
Note that an equation like (53) also follows if we

multiply (50) by e and integrate over e. We get ob-
serving appropriate boundary conditions

en etpede
dt

E= f ai(E)p(e)n(e, t)de, (56)
dt —uo

III. NUMERICAL EXAMPLES AND DISCUSSION

In this section we want to illustrate and discuss
the results of the previous sections mostly by giv-
ing explicit numerical examples. Note that the De-
bye frequency coD and the mass ratio m/M, are
overall factors in all formulas. We choose them
here appropriately for the Xe-W system; i.e., we set
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coD ——5.3X10' sec ' and m/M, =0.714. In Fig. 1

we display the kernel W(E',E) of the master equa-
tion (19) plotted as a perspective view over a sec-
tion of the (@+e', e e')—plane. (The choice of this
coordinate system is dictated by aesthetical con-
siderations and has no physical significance. ) The
pictures are dominated by the bound-state—
bound-state transition matrix elements for
+ ' 0. In Fig. 1 the transitions up to higher

bound states produce the lower peak on the e t-
hand side. The valley between the down and up

transitions reflects the fact that W(e,e) =0 on ac-
count of the factor (e—e') in (22) —(24). To see
the bound-state —continuum and continuum—
bound-state transitions more clearly we display in
Fig. 2 two enlarged sections around the origin
e=e'=0. Their matrix elements are, indeed, much
smaller than those for bound-state —bound-state
transitions, implying that during the desorption
process the bound-state occupation is reshuAled
into a thermal distribution much faster than parti-
cles are actually desorbing. This suggests that per-

W(e, e') 4969.0
11.56
1.0

4969.0
uo = 11.56
b = 10

0 0

0
g5.0 1

~ O~
0

«6

00 & "O0

1J
~lips"

"L ~ 0

—1.0
—23.0 I

Transitions Into
Higher

Bound States

t
i

I

Transitions Into
Lower

Bound States

—1.0
—23.0

llew

,
I

,
'

I

I

II!III'--q '~

i„l~LII|(alta(II

&~()tjj ':I
0t„

—1.0~—1.0

Transitions Transitions
Into From

Continuum Continuum

1.0

/

IFIG. 1. Perspective views of the kernel 8'(e,e j, Eqs.
(22)—(24), plotted over the (@+e', e—e') plane. Note
the different scales along the two axes. The highest
peaks are 8'(e= —7.385, e'= —7.315) coD 'M, /m =3.4
and 8'(e= —7.315, e'= —7.38S)=3.17. In all numeri-

=5.302 &( 10'cal examples we chose m/M, =0.714, coD ——.
sec

1.0
~81.0

Bound States Continuum

Bound States

1.0-1.0%

FIG. 2. Section of Fig. 1 around the orgin e=e'= .=e'=0.
The maximum in the continuum~bound-state transi-
tion is W(e= —0.071 S5, e'=0.07245) coD 'M, /m
=0.054. The maximum in the bound —state —+ continu-
um transition is 8'(@=0.07245, e'= —0.071 55) ~D '

M, /m =0.0466.
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t(e)= J (61)

implying that the particle moves fastest where
al(e) is largest. But as al(e) goes through zero at
about-e;„= —11.2, the adparticle ceases to loose
energy and will stop at the energy, rather than con-

~ 20
(10 'o sec ')

turbation theory advanced in Ref. 10, which leads
to the simple expression for the desorption time
(59). For increasing temperature the height of all

peaks in Figs. 1 and 2 increases because thermali-
zation and desorption become more e8'ective. In
addition the up ridge grows with increasing tem-
perature to eventually equal the down ridge for
high temperature. The widths of the ridges is
quite insensitive to temperature, because it is main-

ly determined by the gamma functions in (22) ex-
cept at very low temperature. 2

Let us next turn to a discussion of the in-
gredients of the Fokker-Planck equation (50). In
Fig. 3 we plot the moments al(e), al(e), a2(e), and
a2(e) as calculated from (44) and (49) for
r =4969.0, uo ——11.56, and 5=2. To understand
the role of al(e) in (58) we follow an adparticle

whose initial energy is e~„&0. Because aI(e)
& 0, e(t) will decrease as a function of time, i.e.,
the adparticle will loose energy, and move lower
into the potential well. Integrating (58) we get

tinuing down to the bottom of the potential well.
It turns out that e;„is a strong function of tem-
perature or 5 for 5 & 1 as displayed in Fig. 4, ap-
proaching —uo as 5—+no or T—+0, indicating that
desorption kinetics based on the Fokker-Planck
equation (54) can only be expected to be acceptable
for 5 & 1. For 5 (1, i.e., in the high-temperature
regime, multiphonon processes, that have been
neglected in this theory, will become important, in
addition to the expansion (57) becoming dubious.

So far we have only discussed the implications of
the macroscopic law (58) on adsorption. Desorp-
tion kinetics, on the other hand, must be handled
with (50). Note in Fig. 3 that aq(e) )

~

al(e') ~, in-
dicating that higher-order moments in (48) should
be kept. For the smaller value r =550 in Fig. 5
the situation is even worse. However, increasing 5
to 5 in Fig. 6 reduced a2(e) to about half of
fal(e) f.

We would like to comment briefly on our prefer-
ence of working with the nonsymmetric kernel
(22)—(24) for the master equation. It is well

known that such a kernel satisfying detailed bal-
ance (25) can be symmetrized by a transformation

S(e',e}=e~~ W(e', e)es'~2,

X(e,t) =n (e,t)e

with no change implied in the above derivation of
the Kramers-Moyal expansion, which now reads

16

X [b„(e)p(e)X(e,t)], (63)

-12 I I
I

I I I II I I I
1

I' I llf I I I
i

I III

-10- 11.58

-1.0 -e-

C
E -6—

OJ , (hami„) =0

-12

—-16

(10 'o sec ')
—-20

FIG. 3. Moments a„(e) and a„(e) from (44) and (49).

I I IIII
10

FIG. 4. e;„vs 6 where a1(e;„)=0.

100
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12 (10» sec ')

10 r = 4969.0
uo = 11 56
h = 5.0

- 20

(10 &0 sec ')

-4

-12

-6
-16

(10» sec '}

-8

-10

(10-12 sec-1) FIG. 6. Moments a„{e)and a„(e) from {44) and (49).

FIG. 5. Moments a„(e) and a„(e) from (44) and (49).

h„(e)=e +~ a„(e) . (65)

with a„(e) only weakly dependent on e, the ex-
ponential dominates a graph of lnb, „(e) vs e) (see
Fig. 8 of Ref. 17 } swamping the dependence on e
through a„(e). With a2(e) being about minus half
of a)(e) at their respective maxima, one is thus led
to conclude' that

where

h„(e)= e p '(e)

X Jde'p(e')e ~ (e' e)"W—(e',e) .

This symmetrization, of course, changes nothing in
the physics of the problem, e.g., (55) or (61) remain
unchanged. It turns out that in the numerical ex-

amples just given, the exponential under the in-

tegral in (64) can be neglected, so that

to simplify the Fokker-Planck equation may intro-
duce errors and is possibly the explanation for the
difference between the diffusion and iteration ap-
proximations shown in Fig. 10 of Ref. 17.

Recall that the Fokker-Planck equation (50)
should be a good kinetic equation for large values
of 0 which is proportional to r as seen from
(60). We therefore proceed with an asymptotic
evaluation of the moments a)(e) and a2(e) for
large r. From Stirling's formula for gamma func-
tions one gets for large x

r

I (x +1+a), a 2+a
r(x+1) = "P

2x

Using this in (22) and (23) and approximating in
(23)

sinh[21r(re)'~ ]
sinh [m.(re)'~ ]+cos2[n.(rue)'~ ]

2+4 y ( 1)ne —2ws(re)'~'

1 Bh&(e)
h)(e) =— (66)

)(cos[2mn(ruo)'~ ],
a statement that cannot be made at all between
a)(e) and a2(e) and must be regarded as falsehood
construed by the symmetrization (62). Using (66)

we ultimately get for e & 0 and large r (see the Ap-
pendix)
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)1/2g —5 108
a&(e) =72moD —re

8

)1/2g —5
a2(e) = 6m.coD r&—

S

(69)

inate, whereas for small 5 the first
The approximationsterms survive.

are good for

1
uo —( —e)' ))

where

24 1206 2520B
X

~
+

1/2

(70)

Qp+6»
Qp

(73)

Qp

1 rB=
4Qp Qp

Qp
tanh

—1

1/2 —Qp

Qp

(71)

.0 and Qp ——11.56 we need
h ( )E» —11.51; indeed, numerics shows t a

—11.(70) are accepce table for 0&E& —1 .
and (70) to study theWe now want to use (69) an o

equilibrium solution of (50), wh'hich satisfies

1

1+E'/Qp

' 1/2
Qp

tanh
—1

Qp

1/2

(72)

[a)(e)p(e)no(e)]
BE

(74)[ (e)p(e)no(e)] =0,
BE'

a e) andNote that for large e6 the second terms in a& with the solution for E&0,

a2(e)p(e) de
Pp

2a)(0)
+

a2(0)

2a&(e')
de" exp I de'X I deexp —,'„, e (75)

0

which matc es eh th free-distribution function

no(e)=e~"e ', e)0 (76) 5.0

1.0

=0. The solution (75) sim-
e note that for moderate 6

derivative at E= . e
plifies immediately if we note a
such that

O.e

5 2 r
3Qp

' 1/2

(77)

ob~
Ol

1

CU

0.4

(69) and the first term
'
in (70)the second term in

dominate so that

2a i(e)

a,(e)
(78)

0.2

—u + u /r)' Numerically, (78)
r e r and uo valuesbe valid for very arge r anseems to

ith the examples in Figs.s we demonstrate wit e e
7 and 8. If (78) is a good approxim
finds that

0
0-1.0 -'0.2

I

- 0.6 - 0.4

e g00

a e)5, which must be closeFIG. 7. Ratio —2a1(E)/a2(g
Fokker-Planck equation to be accepta e.to one for the Fo er-

X -W system.Parameters r and uo yp't ical for the e-
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1.0

—O.s

—0.6 ~
Ol

C$

p4 Ol
I

—0.2

-1.0 -0.8
I

-0.6
8 /Up

I

-p4 -0.2
0

0

FIG. 8. See Fig. 7. Parameters r and up very large.

Recall that the original master equation satisfies
detailed balance and thus has a Maxwell-
Boltzmann distribution as the exact equilibrium
solution. The conditions for the validity of (81) are
thus necessary for the Fokker-Planck equation (50)
to be an acceptable approximation to the master
equation (19).

In this paper we have derived from the rate
equation (2), a master equation (19}and a Fokker-
Planck equation (50), the latter by truncating the
Krainers-Moyal expansion (48) for the master
equation (19). Numerical examples for the kernel

W(,e e) of the master equation and for its first two
moments ai(e) and a2(e) led us to approximate ex-

pressions for the latter, which in turn allowed us to
establish criteria for the validity of the Fokker-
Planck equation. They are that the gas-solid sys-
tem must be weakly coupled, i.e., r must be large,
and it must not be at too high a temperature, i.e.,
Eq. (77}:

a
ln [p(e)a2(e)] « 1

Be e=p
(79)

5
1/2

3QO 5 up

so that (75) reduces to

a2(0)p(0)
n p(e) =e@&

a2(e)p(e)
(80)

n p(e) =e~"e (81)

which, with the further observation that a2(e)p(e)
varies slowly compared to exp( —5e) and can thus
be approximated by its value at zero, reduces to
the Maxwell-Boltzmann distribution

We are now ready to calculate approximate relaxa-
tion times for desorption and adsorption from the
master equation and the Fokker-Planck equation.
This will be done in the following paper by
Kreuzer and Teshima. '

This work was supported in part by the Natural
Sciences and Engineering Research Council of Ca-
nada.

APPENDIX

%e want to derivant to derive the approximate expressions (69) and (70) fant to deriv
' '

ns an or ai(e) and a2(e). Starting from (49)

a„(e)=f ' de'p(e')(e' e)'W(e', e)—
we split the integral into two parts (a) from — t h
f to 1 }1 i tod

rom —i p to 6 w ere we introduce a ne
uce x =e —e. ote from (22) that W(e', e)=0 for x 1 due

o 1 o - hoo o co 'd d % 'he consi ere . e get with (22} and (23} for e& 0

(Al)

Pl min( l,u0+e)
a„(e)= 3mcoD ( —«) fM,

I ((rup) +( )re+ ')I ((ruP)' ( re}' +—)—
2

I ((rup)' '~[r(x —e)]' '+ —, )I'((rup)' '—[r(x —e)]' '+ —)+2
1

+f dxx"+(e"—1)
p

~

I ((rup)' +i[r(x+e)]' +—)
i

X
2

I ((rup)' +( re)' + —,)n(ru—p)' —( re)' +—)—
2

(A2)
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where in the second integral we made the replacement

sinhI 2m[r(. x+e)]'~ j
1/2sinh I vr[r(x+e)]' 'I+cos [m(ruo)' ']

To simplify the gamma functions we use Stirling's formula,

I (x+ 1)=(2m.)'~ x"+' e " 1+ +1

12x

(A3)

(A4)

and get for x ))a

I (x+1+a)
1

a
I (x+1) x

x+a+1/2
1

e '=x'exp —a +(x +a + —, )ln 1+ — =x'e' +'
x

(AS)

This then gives, e.g.,

I ((ruq)' + —,+ [—r(e+x)]' )I ((ru0)' + —,—[ r(e+x)]'—)

I'((ru )' + —,+(—re)' ')1((ru )' '+ —,
' —( re)' —')

—Ax+Bx2 —Ax( 1+g 2) (A6)

where A and 8 are given in (71) and (72), respectively. Thus we get for (A2)

min(1, u 0+a)

a„(e)=3mcoD ( re}'—~ ( —1)" dx x"+ [(e "—1} '+1]e ""(1—Bx )
M,

1

dx x"+ (e "—1) 'e ""(1+Bx )
0

(A7)

Because A is large for large r and u0, we can set the upper integration limits as oo so that the two integrals
can be combined. Because the x integration is limited roughly to x &A « 1 we can expand the Bose-
Einstein factor

1 1 1 5
6x 2 12

Integration then yields the expressions (69) and (70) for a„(e).

(A8)
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In Ref. 2 we have calculated the desorption time in-

cluding all one- and two-phonon processes in fourth-
order perturbation theory for a gas-solid system that
develops only one bound state at an energy Ep.
Relevant to the discussion here is the observation
above Eq. (87) in the first paper of Ref. 2 that a
Frenkel-Arrhenius parametrization (15) of the desorp-
tion time, calculated in second-order perturbation
theory is possible if ksT «

~
Eo ~, but not arbitrarily

small. This is more or less equivalent to the condition

5up/0'p » 1 for the validity of (59) of this paper, be-

cause a Morse potential of depth up develops N bound
3 1

states with o.p —2 & N &~p —2, so that u p/cTp is the

average spacing between bound states. The numerical
verification of this criterion will be given in the fol-

lowing paper by H. J. Kreuzer and R. Teshima {Ref.
10).

To appreciate the richness of our quantum-mechanical
model as compared to a simple classical model, com-

pare Figs. 1 and 2 of this paper with Fig. 6 of Ref.
17. Note that the kernel R (e,e') in Ref. 17, as calcu-
lated from classical mechanics, does not satisfy the
basic requirement of detailed balance and had to be
symmetrized. Also note that the kernel W(e,e'),
displayed for our model in Figs. 1 and 2, is chosen as
a Gaussian in the difference e—e' in Ref. 13. Using
(67) one finds that for large r, W(e,e') can be approxi-
mated by a function of

~

e—e' ~, with an exponential
factor whose argument is linear in

~

e—e'
~

.


