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New method for calculating electronic properties of superlattices using complex band structures
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The electronic structure of semiconductor superlattices is analyzed in terms of complex bulk band structures. The

details of the complex bands and the matching conditions at the interfaces are found to be crucial in energy ranges of
experimental interest. The limits of applicability of the Kronig-Penney and two-band models are shown.

A wide variety of phenomena in semiconductor
superlattices has been investigated experimentally
in recent years.? As long as the widths of the
alternating superlattice layers were large (2100
A), analysis of the conduction- and valence-band-
edge electronic structure in terms of the Kronig-
Penney (KP) or two-band models was adeq\.xzx.te.1'5
More detailed calculations for thinner layers using
empirical tight-binding® or pseudopotential meth-
ods” were possible, but lacked the intuitive clarity
of the simpler models. Without a clear physical
basis for the choice of the parameters in the tight-
binding or pseudopotential models, wide disagree-
ment over such basic properties as band gaps was
possible. 8

In this paper we introduce a new method for sol-
ving the superlattice tight-binding Hamiltonian.

It incorporates the detailed descriptive ability of
previous tight-binding methods with the intuitive
clarity of the simple KP and two-band models.
For the first time, superlattices with arbitrary
layer thicknesses are represented by full (at least
S, Py Dy, and p, orbitals per atom) tight-binding
Hamiltonian matrices of the same dimension (30
%x 30 in this case). Unlike methods employing
Green’s functions, the electronic states are found
directly.

Using this method, the limits of applicability
of the simpler models can be investigated and
understood in terms of complex bulk band struc-

tures. We present here the results of a calcula-
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Here Z is the direction perpendicular to the inter-
faces, ¢ is the superlattice wave vector in the Z
direction, L denotes the superlattice unit-cell
position, C‘” and d,” are the expansion coeffi-
cients of the bulk states and As planar orbitals,
and ¢ denotes the position of each of the two in-
terfaces in a unit cell.

The coefficients are determined by diagonalizing
the superlattice Hamiltonian using this basis set. 1

24

tion for the GaAs-AlAs(100) superlattice and com-
pare them with the results of the simpler models.
The concepts involved can be applied to other
semiconductor superlattices as well.

An empirical tight-binding Hamiltonian with
nearest-neighbor interactions and including ex-
cited anion and cation s states in addition to the
normal s, p,, p,, p, basis is used.? The excited
s states allow the lowest bulk conduction band to
be fit well. For the superlattice, the on-site
parameters of the interfacial As atoms are taken
to be the average of those in bulk GaAs and AlAs.

To find the superlattice states and energies, an
initial estimate of the energy, E, of the super-
lattice state of interest is chosen. Next, the bulk
states in both constituent materials, including
evanescent waves, with that energy are found.
This is accomplished by solving the bulk tight-
binding Schridinger equation, det[H(K,,%,) - E]=0,
for both GaAs and AlAs. Here, K, and %, are bulk
k vectors parallel and perpendicular to the inter-
face. E-and K, are specified and k&, is found by
solving the polynomial equation resulting from the
determinant or from an equivalent eigenvalue equa-
tion.1°

The superlattice state is then expanded in terms
of the ten GaAs and ten AlAs bulk states (3\”; o
=1,2; n=1-10), and ten As orbitals summed over
atomic sites in the interface plane (qﬁf’; c=1,2;
a=1-5) (five at each inequivalent interface):

-(L+t‘"’2]).

i
Since, in general the resulting superlattice state
energy, E,, is not the same as E, this procedure
must be iterated until the two energies coincide.
The advantage of this method is that since the
superlattice state is found as a linear combination
of bulk states with complex K, the complex bulk
band structures provide a simple physical guide
in understanding the electronic structure. Figure
1 shows the complex band structures of GaAs
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FIG. 1. Complex band structures of GaAs and AlAs
along the [100] direction. Both the real bands (Imk, = 0)
and the purely imaginary bands (Rek, =0) are denoted by
solid lines. The complex bands (Rek,= 0 and Im %, # 0)
are denoted by pairs of long dashed lines. The lines as-
sociated with Rek, and Im£%, are plotted in the right and
left portion of each figure, respectively. Also included
are the corresponding band structures for Kronig-Pen-
ney (dash-dotted) and two-band (short dash) models.
Energy is relative to the GaAs conduction-band mini-
mum.

and AlAs in the [100] direction in the energy range
of their band gaps. Energy bands with nonzero
values for the imaginary part of K are seen to
emanate from the extrema of the conventional
real bands.!? The complex band structures in
the energy range of the conduction-band minima
are of particular interest in analyzing the low-
lying superlattice conduction states. There are
two important bands in this region: one which
connects the direct valence-band maximum and
conduction-band minimum and one which connects
with the X-point conduction-band minimum. The
third band shown does not contribute to the super-
lattice conduction-band-minimum state by sym-
metry. The superlattice valence-band maximum
states can similarly be analyzed by examining
the complex bulk valence-band structure. How-
ever, since the spin-orbit interaction (omitted

in this calculation) is important in determining
the valence-band-edge structure, these states
are not adequately described in this model.

The limitations of the KP and two-band models
can now be discussed. The first difficulty is that
the Kronig-Penney model does not describe the
E vs K relationship in the bulk material correctly
for complex k,. For example, Fig. 1 compares
the KP parabolic dispersion curves with the tight-
binding results. For energies near the GaAs
conduction-band edge (the bottom of the “well”)
the KP model predicts too large a value for im-
aginary &, in AlAs. Therefore, the decay lengths
of the superlattice states in the AlAs layers will
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FIG. 2. Superlattice conduction-band-minimum dis-
persion curves in the z direction for superlattices
with two layers of AlAs alternating with N layers of
GaAs. N=3,4,5,8,10,15,20 as indicated. Solid curve:

tight binding. Dashed curve: Kronig-Penney. Dash-
dotted curve: two-band model. Energy is relative to

the GaAs conduction-band minimum. L is the total
number of alternating GaAs and AlAs layers.

be too short. This should lead to superlattice
energies which are too high. The KP interfacial
boundary conditions (matching the wave function
and its derivative) are also in serious error.
More detailed studies'® demonstrate that the KP
boundary conditions are the limits of one-band
tight-binding boundary conditions with unrealist-
ically large transfer matrix elements. This tends
to lower the superlattice energies somewhat. 3

The two-band model is a better approximation
in that it can describe correctly the complex band
which connects the bulk conduction and valence
bands at the zone center. Furthermore, it does
not have KP boundary conditions. With properly
chosen parameters, the decay lengths for that
band in the AlAs layers can, therefore, be ac-
curately described. The GaAs dispersion curve
will also be improved over the KP result. The
two-band dispersion curve within the band gaps
is shown in Fig. 1.!* The two-band-model para-
meters were chosen to produce the average of the
conduction and light-hole effective masses and the
correct band gaps and band discontinuities.

Figure 2 compares the results of calculations
obtained using the tight-binding, KP, and two-
band models. Shown are the superlattice conduc-
tion-band-minimum dispersion curves in the z
direction for superlattices consisting of two layers
of AlAs alternating with a varying number of GaAs
layers. For a large number of GaAs layers, all
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three models give similar results. As the num-
ber of GaAs layers is decreased, the KP model
energies increase faster than those predicted by
the two-band and tight-binding models. In ad-
dition, while the discrepancy between the tight-
binding and two-band-model results are approx-
imately constant across the band, the KP energies
have somewhat less dispersion. At energies ap-
proaching and above the bulk X-point conduction-
band-minimum energy (~0.52 eV in both GaAs and
AlAs), both the KP and two-band-model curves
diverge from the tight-binding curve. Below this
energy, the two-band model is a reasonable ap-
proximation to the more complete tight-binding
model.

The failure of the two-band model near that en-
ergy is due to its inability to describe the complex
bands emanating from the X-point conduction-band
minima. At these energies the superlattice state
has a large component of bulk states with complex
K near the X point and therefore it cannot be ig-
nored. Since the X-point energy is much less than
the AlAs direct gap energy, this occcurs much be-
low the top of the direct conduction-band well. The
tight-binding superlattice dispersion curve flat-
tens out as soon as the X-point energy is reached.®

Finally, we compare the results of our calcula-
tion with available data. Table I shows the the-
oretical and experimental band-gap energies of
several GaAs-AlAs superlattices. Overall agree-
ment is good. Discrepancies are most likely due
to the experimental uncertainties in the determina-
tion of band gaps and layer thicknesses and in the
inherent approximations of the tight-binding meth-
od.

In summary, we have developed a new technique
for calculating superlattice electronic structure

TABLE I. Theoretical and experimental values of the
band gaps of GaAs-AlAs superlattices with M layers of
GaAs alternating with N layers of AlAs.

Theory Experiment
M/N Egp M/N Egap
6/3 1.87 6.13/3.37 1.85%
7/4 1.87 7.3/4.4 1.90°
9/4 ©1.79 9.4/3.85 1.77°
18/4 1.63 17.67/3.53 1.66°
19/9 1.64 18.73/8.83 1.65¢
16/16 1.68 15.9/15.9 1.63¢
11/18 1.78 10.60/17.67 1.81°¢

2Reference 15,
b Reference 16.
¢Reference 17.
dReference 18.

within the tight-binding approximation. It has
been used to explore the limitations of simpler
models in terms of complex bulk band structures.
The KP model fails to describe the superlattice
state in the AlAs layers and uses incorrect bound-
ary conditions. The two-band model can provide
an approximate description of the complex band
structure for superlattice energies near the GaAs
conduction-band minimum. For superlattice
energies near and above the bulk X-point energies,
and elsewhere, the more complete tight-binding
model is necessary.
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