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Diagrammatic approach to the intermediate-valence compounds
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A model for intermediate-valence compounds is considered that is based on correlated
ionic states with no and no+ 1 f electrons and includes the hybridization with band elec-
trons as a perturbation. The expansion is formulated diagrammatically with Goldstone
diagrams for the strongly correlated on-site processes and Feynman propagators between
different sites. Suitable infinite-order resummations of the on-site processes lead to
Brillouin-Wigner-type self-consistency equations for the f quasiparticle energy shifts. The
imaginary part of the single-site f-level Green s function exhibits a spike above a continu-
um which vanishes at the Fermi level. Deviations from the Ruderman-Kittel-Kasuya-
Yosida behavior are found for the intersite terms. The effect of the shift of the chemical
potential due to the fixed number of electrons is discussed.

I. INTRODUCTION

The intermediate-valence (IV) problem has
remained a challenge to solid-state theoreticians
ever since the earliest attempts to explain the
variety of experimental data on dilute and concen-
trated rare-earth materials. ' Although a consider-
able number of calculations have been done quite
successfully, a systematic treatment, which would
allow —at least in principle —for estimates on the
errors connected with model assumptions and/or
approximations used, is still lacking.

The difficulties encountered have a twofold na-
ture. First, it is not clear a priori which of the
possible mechanisms of interaction is important for
the explanation of any of the variety of specific ex-
perimental data. There exist, for certain, very
strong Coulomb interactions among the electrons
in the 4f shell of the rare-earth ions which have to
be taken into account in the first place. Together
with spin-orbit coupling and possibly the effect of
the crystal field, these are responsible for the mul-

tiplet structure (which resembles that of the free
ions) seen in spectroscopic experiments. Owing to
the (quasi) degeneracy of two 4f-shell configura-
tions with an occupancy differing by one, these
many-electron states become hybridized with band
states (5d, 6s) in the neighborhood of the Fermi
level for some rare-earth ions in dilute or concen-
trated compounds. This is commonly regarded as
the origin of the IV phenomenon. In addition to
this, the residual Coulomb interactions between 4f

and band electrons (electron-hole attraction as con-
sidered by Falicov ) and the coupling to the lattice
degrees of freedom is essential for describing the
collective behavior of the compounds.

Second, the mixture of two very different kinds
of electronic states, one a localized and highly
correlated many-particle 4f state and the other be-
longing to extended and rather weakly interacting
quasiparticles, poses certain technical difficulties.
These difficulties can reveal themselves in different
forms. In models such as that proposed by Ander-
son, which simplify the orbital dynamics by using
s instead off states, the local interactions take a
simple form and may be treated explicitly. Howev-
er, since these interactions are very strong, they
cannot be handled in mean-field theory. Introduc-
tion of a coupling to the band results in a many-
body problem, which is nontrivial. Although per-
turbation expansions in the local interactions may
be set up in the standard way, the necessary
infinite-order resummations are very complicated
and may prove to be insufficient as in the case of
the Kondo problem.

The approximate validity of an ionic level
scheme, as suggested by the spectroscopic investi-
gations, leads to a different starting point for a per-
turbation expansion: The local interactions are ex-
actly included in the zero-order Hamiltonian via
transfer operators between the ionic states, and the
hybridization with the band is treated as a pertur. -

bation. Since the transfer operators, however, do
not obey simple boson- or fermion-operator rela-
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tions, Wick's theorem does not hold for them, and
the perturbation expansion in terms of linked Feyn-
man diagrams is ruled out. In addition to leading
to linked diagrams, the Feynman-diagram expan-
sion of standard many-body theory has the advan-

tage of combining n! elementary excitation
processes (particles and/or holes) into one nth-
order diagram, and the picture of elementary
processes can often be used as a guideline for ap-
proximations.

It appears then that for a perturbative treatment
of the IV problem in terms of the interaction with
the band, a decision has to be made from the onset:
Should the terms be "linked, " even if they cannot
be interpreted as elementary excitation processes,
or should one retain this interpretation and thereby
sacrifice the linked-cluster expansion? In
Hubbard's extensive studies ' of the problem, the
first possibility had been chosen and that was the
basis for several subsequent investigations.
The "linked" terms were Kubo's generalized cumu-
lants, ' and the interpretation in terms of elementa-

ry excitation processes was not possible.
The main guideline for this investigation has

been that all terms of the perturbation expansion
have to represent elementary excitation processes,
but that they should be combined into Green's
functions whenever possible. This idea will be
shown to lead to a mixed Feynman-
Goldstone —diagram formulation in the following
sense: The on-site processes are strongly correlated
and have to be calculated via a finite-temperature
version of Goldstone diagrams, essentially a gen-
eralization to the transfer-operator formalism of
the Goldstone diagrams devised for the single-
impurity Anderson model. ' Infinite-order resum-
mations of the on-site processes result in a
Brillouin-Wigner-type scheme, ' which has been
recognized' ' to be well suited for dealing with
the small energy denominators occurring in the IV
problem. If an excitation travels via the band from
one site to another, it can either be a particle or a
hole, and so it is represented by a band Green's
function. With this view of the processes, it is pos-
sible to obtain the many-particle Green's functions
of a configuration-based model for a single impuri-

ty which may be in the IV regime, as well as
many-particle Green's functions for the full mul-
tisite problem.

The basic formalism of the perturbation tech-
nique is developed in Sec. II. We encounter a new

type of problem caused by the restrictions in site
summations, once a specific topology of a diagram

is fixed. This problem apparently has been disre-
garded in the literature so far. Section III deals
with the mixed Feynman-Goldstone —diagram ex-
pansion and presents the complete set of rules for
the corresponding analytic contributions to the par-
tition function of a concentrated system. Section
IV contains an account of the Brillouin-Wigner-
type technique of performing infinite-order resum-
mations of on-site processes with external lines and
a discussion of the rules for calculating the (local)
many-particle Green's functions of the single-
impurity problem. It is briefly explained how the
Green's functions of the concentrated system may
be calculated using the same techniques. Finally,
in Sec. V several applications of the formalism are
discussed. In the leading logarithmic approxima-
tion the f-level single-site Green's function has an
imaginary part consisting of a spike inside a gap
and a continuum outside. In the next leading ap-
proximation the gap shrinks, and the spike is ac-
companied by a resonance on top of the continu-
um. The simplest intersite term shows deviations
from the Ruderman-Kittel-Kasuya- Yosida
(RKKY) behavior in the IV case. It is demonstrat-
ed how higher-order processes can be summed.
The shift of the chemical potential due to the fixed
number of electrons is shown to lead to the disap-
pearance of the highest logarithmic singularities in
the susceptibility. In leading order it also keeps
the quasiparticle resonance at the Fermi level.

Of the three appendixes, the first is devoted to a
definition and some rules for the ionic transfer
operators. The second elaborates on the formal
steps of rearrangement of the partition function
and the excluded-volume-type problem encountered
in Sec. II. The last Appendix gives a calculation
of the perturbation series for the concentrated case
up to fourth order in the mixing, thus completing
previous work. ' '

II. BASIC PERTURBATION FORMALISM

The class of Hamiltonians to which the follow-
ing perturbation technique can be applied is
characterized by a perturbative part

H'= g [N '~ e "Vz(oM~M2)
vk cr

MlM2

X d g~ +M)M~ +H c ]
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X ~k 0 d k n d k cr + X ~M+MM

Hoband+ g Hov . (2)

which describes one-electron transitions between lo-
cal configurations due to the mixing with band
electrons, represented by creation operators d k .
In the IV case, the operator X~,'~ changes a con-

figuration of 4f electrons of a rare-earth ion at site
v with quantum numbers M2 to one with quantum
numbers Ml. In Appendix A some useful proper-
ties of the X operators are listed. Because of the
large Coulomb repulsion between 4f electrons, it is
usually assumed to be suAicient to include only
two different 4f occupations, no and no+1. The
rest of the quantum numbers in Ml and M2 then
distinguishes the various (crystal-field-split) multip-
lets. At low temperatures only the lowest of these
contribute significantly.

The unperturbed part H0 of the Hamiltonian
H =H0+H' is assumed to be diagonal in the con-
figurations:

All energies are those of excitations with respect to
the chemical potential p and include the magnetic
field splitting. Since many-body perturbation ex-
pansions are most conveniently carried out in the
grand canonical ensemble, one has to keep track of
the changes of JM in order to account for the
electron-number conservation required in the IV
situation.

One further remark seems to be in place here:
In order to present the details of the formalism as
clearly as possible, one should avoid very compli-
cated diagrammatic examples as well as more
"realistic" though more complicated Hamiltonians.
According to this maxim, additional interactions
between the electrons and (or) phonons will not be
discussed here, though they can be dealt with by
the same type of techniques. We shall also restrict
the discussion to the partition function, keeping in
mind that Green's functions can be obtained by
functional derivative methods, or, from a more di-
agrammatical point of view, by cutting lines in the
diagrams. The perturbation expansion for the par-
tition function is set up in terms of time-ordered
products of interaction operators':

Z ao
( 1)a p p=1+ g f dg, . f d~„(T(H'( ()r. . H'(r„)))0'

oo
1 p p= + g —,y f, dr) y f diaz. (T(H„(r, ) H„(„.))),m=i v] v2m

In the next step we arrange the terms according to the set of different sites involved. In 2mth order there
2m 2m —2m

1are (z~ ) possibilities for 2m i interaction operators referring to site v(, ( z~ ) for 2mz of the rest referringm1 m2
to v2, etc., where 2m 1, . . . is any decomposition of the number 2m of interaction operators into non-negative
integers. This results in

=I+X X X X
0 m=1 l=l Iv ~ ~ -v ) m ~ -m =1

1 I 1 I
m. =mJ

E

H(2 ),
~(1) d~(1) . d7(l) . . d~(l)

P
1

P
I

I'
l P

0
~1

0 +2m
1 0 1 0 +2m

&& &T(H', «')") '
Hv, «zm, ) ' Hv, «'i') ' ' ' Hv, «zm, ))&0

~(1) ~(l)
(X) 00 P 2m1 —1 p 2mI —1

f d.(') f d",". f d"," fl=l ( v1 ~ vI I m1 mI ——1

In the last step we eliminated the summation restriction gmj =m by summing over all orders m of pertur-
bation and the combinatorial factors (2mj ). by introducing a specific time ordering at each site (at site j,(j) (j) . . . (j)
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Since Hp is a sum of a conduction-electron part and an f-electron part at the sites, which all commute
with each other, the trace with respect to Hp over the T product in (4) factors into the corresponding contri-
butions, in which the time sequences under the T products have to be kept:

(T(H„,(r'i ') H„,(&2,)))p

1

X ~V. N
j=1

i k'R„
J ~ ~ e

—ik" R„
~J

))p

.J. . ~ ~ ~{ ')

k(y k'cr'
j=l )
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z(l)
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M
I

I

I

I

I

I

M(l)y M5

I s
I M()

~0) g 7
T M('

SITE I

ki ui

—

k2cr2

k3cr3

I

I

I

I

I

I

I

(2) I

(2)IM,
I

I
M"'

(2) I

(2)
IM(

SITE 2

k6cr6

FIG. 1. Graphical representation of a sequence of in-
teractiori operators as occurring in Eqs. (4) and (5).

Here, the sum extends over all possible sequences
of operators at the sites and over all quantum
numbers involved. It is a standard problem to find
a graphical representation of (5). One simply
draws a time axis and parallel to it l dotted lines,
one for each site. Then one distributes dots corre-
sponding to the interaction vertices at each site and
attaches arrowed band electron lines to them (an
arrow leaving the vertex stands for a creation
operator). To complete the representation, the
quantum numbers to be inserted (those for the f
level on top and on the bottom of a site's time axis
are the same). An example for two sites and six
interaction times is shown in, Fig. 1.

It is obvious how to assign a numerical contribu-
tion to such a "diagram" contributing to Eq. (4) or
(5). In Fig. I, for example, at time rq", the dot
stands for

N '~ exp( —ik2 R))V-'„(o2M3"M4")

{1) {1) {1)
3 4 2~2

At each site, a thermal average over the X opera-
tors, the sums over the quantum numbers, and the
time integrals have to be evaluated. Up to this
point, the contributions from the different sites in-

volved in a term in (4) are multiplicative.
The only way to establish connections between

different sites is via the thermally averaged T prod-
uct over the band-electron operators in the se-

quence appearing in Eq. (5). Since Wick's theorem
is applicable here, the average amounts to pairing
the arrowed lines in the diagrams in all possible
ways. Thus, the connections between the sites are
established via band-electron Green's functions. At
each site, however, the fixed time ordering men-
tioned before has to be kept in order to account for
the strong on-site correlations. The absence of
Wick's theorem for the X operators prevents a fur-
ther evaluation of diagrams such as Fig. 1 in terms
of Feynman diagrams. As will be shown in the
following section, it is nevertheless possible to set

up other diagrams for the contributions to Eq. (4)
which can be interpreted in terms of physical
processes occurring at the sites and between the
sites. Finding those diagrams and their precise nu-

merical value, however, is not the only problem: In
dealing with contributions to Eq. (4), one has to
face a problem which is similar to an excluded-
volume problem. To see this, we imagine that the

pairing of the band-electron operators has been car-
ried out. Then different classes of terms occur. In
the simplest class, the band electrons are always
emitted and reabsorbed at the same site. We can
graphically combine all these processes, e.g., for
site j, together into a "superblock, "Sj. The next
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more complicated class of terms contains the
processes in which the band electrons interact with
two sites, e.g., sites i and l. For these sites a super-
block St can be drawn (see Fig. 2 for an illustra-

tion). Continuing with three-site processes, etc. ,
one finally obtains the following expansion of the
partition function:

=1+QS&+ g ($(SJ+$~)+ g (S;S~Sk+SqSk+S+SJ+SiSjk+Sljk)+ ' ' '
0 i lijf (ijk

Here, the first sum is over the single-site contributions, the second sum extends over all difFerent pairs
I i,j I

= Ij,i I, the third over all triplets, etc. To see the problem let us sum all the single-site (SS) contribu-
tions:

=1+QS;+ g S;SJ+ g S;SJSk+ = ff (1+S;)=exp gin(1+S;)
i i&j i&j&k l

Clearly the result is the exponentiated sum of the
single-site free-energy corrections, as expected.
Had we forgotten about the summation re-
strictions, the "result" would have been

exp( g;S;), which is clearly invalid for S; 1.
Similar diAiculties arise in the two-site terms, etc.

. They will be discussed in Appendix B.

III. THE PERTURBATION EXPANSION
REPRESENTED BY MIXED

FEYNMAN-GOLDSTONE DIAGRAMS

from the expectation values.
The remaining thermal average over the X

operators is simply given by [using the result (A6)
from the Appendix A]

~M~MM

with the occupation probability P~ of the initial

In this section we will complete the diagram-
matic representation of the contributions that Eq.
(4) makes to the partition function. We first may
get rid of the explicit time dependence of all X
operators by extracting the corresponding exponen-
tial factors in
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FIG. 2. Examples for superblocks.
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FIG. 3. Example for the decomposition of the expec-
tation value of a time-ordered product of conduction
electron operators via Wick's theorem.
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state M~ at the corresponding site,

pE —1

p 1 g i M

1

M

Next we turn to the thermally averaged T product
of d and d~ operators. It clearly is decomposed
with the aid of Wick's theorem into a sum of prod-

ucts of pairings of creation and annihilation opera-
tors. ' The pairings can be easily visualized di-
agrammatically. An example is shown in Fig. 3.
There, the operators in (5) act from top to bottom
according to the order in which they stand in the
T product. The diagram contains examples for all
the possible types of pairings. The first two types
involve operators at the same site:

(dg~(rf )d g ~ (&f ))p=5~ p,5 exp[ok (r2' —r( )](1—f~ ),

(d z. , (rq')d k (r't"))p ——5k &,5«exp[ep (r2~' —r'&~')] f k

Here fz stands for the Fermi distribution function. The pairing (11) is represented by an ascending full

wiggly line, the pairing (12) by a descending line.
The third type of pairing arises, if operators on different sites are involved:

(T(1tk, .(8 )dq (r~')))p ———(T(d~ (v'J )d~q, (r )))

(12)

=5k g 5oo G k
(r"' r' ') =5k—-„.5 —g exp[in)„(r"' r'"—)]Gp„(i~„) .

n

(13)

In (13), the one-particle Green's function for band
electrons has been introduced together with its
Fourier transform'

Gk (iso„)=(iso„—eq ) (14)

with co„=(2n + 1)m/P. The Green's function is
represented by an arrowed intersite line. We note
that in all pairings the time dependence could be
split oA' in the form of an exponential factor.

The sign of a product of pairings (represented di-
agramatically as the example in Fig. 3) is read off
the diagram as ( —1)'+, where c is the total
number of crossings of solid lines and b the
number of solid lines going back to the left. (In
Fig. 3, b =1 and c =5.) It is understood here that
all solid lines enter or leave the sites at the same
side and always pass a site above its latest interac-
tion vertex. This construction corresponds precise-
ly to the way in which one would decompose the
T-product expectation value in Eq. (S) into pair-
ings. The number b enters into the rule, because
particle and holes are used for the on-site pairings,
but Green's functions for the intersite ones.

As an immediate consequence of the sign rule,
there is a factorization of the contributions from
groups of sites which are not connected by solid
lines. This allows restriction of the discussion in
what follows to block-type structures being part of
the "superblock" structures in Sec. II.

Returning to the example in Fig. 3, we see a
specific feature of the IV problem already built in:
The occupation of the 4f shells is either np or
no+1. If the initial'state at a specific site contains
no electrons, only one band electron can be ab-
sorbed, and the excitation in the 4f shell is a parti-
cle, represented by an ascending wiggly line (see
sites 1 and 2 in Fig. 3). Similarly, if the initial
state contains np+1 electrons (see site 3 in the fig-
ure), only one electron can be emitted into the
band, leaving a hole excitation behind, represented
by a descending wiggly line. So an alternating se-
quence of emitted and absorbed band electrons at
each site arises. We mention in passing that the
formalism presented here can also be applied to
more general situations, e.g., more occupation pos-
sibilities and multielectron excitations.

Having reduced the thermal expectation values
of the 4f and the band electrons to simple expres-
sions, which may finally be interpreted in terms of
physical processes, the final technical step still to
be performed is the integration over times. Col-
lecting the exponential factors from (11)—(13), a
general time integral at an arbitrary site has the
structure

71 7n 1

I = f dr, J dr& J dr„exp g a~bi
J

(15)
where 5J is the total energy at the vertex ~&, e.g.,
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The plus (minus) sign has to be chosen if the solid
line leaves (enters) the vertex, and the imaginary
frequencies are brought about by intersite lines
entering or leaving the site under consideration.
The time differences ~; —~;+~——u; & 0, ~„=u„are
then introduced and fulfill g,."

i U; &P. This ine-

quality can be treated via a Laplace transform, '

after which the integrations over the U; can be ex-
tended to infinity and performed independently,
resulting in

I = . dz e '[(z —Ã0)(z —g', )
( —1)" p,

2mi

)1M
I

~M&

tM„ l

I

2L

Here the path @ of integration encircles all poles
in (17) in a counterclockwise direction. 'The g'; in

(17) are defined by

8'0 ——0

FIG. 4. Family of one-site diagrams with external
lines rotated on a cylinder.

and can be read off from the diagrammatic part at
the site by subtracting the sum of E~ and the en-

ergies of all descending solid lines from the sum of
EM and the energies of all ascending solid linesi+1
appearing between the vertices at times ~; and ~;+~
(r„+i 0} The——int.ersite lines for that purpose
have to be drawn to the bottom of the time axis.

We note that the algebraic sum of all the fre-

quencies ice of the intersite lines, which is pre-
cisely equal to Ã„, can be nonzero in (17), while

one expects zero for corresponding processes of
electronic excitations (these should reflect energy
conservation because of time-translation invariance
of the full problem). Indeed it is possible to
achieve this goal: One has to analyze the contribu-
tions of a "family of one-site diagrams rotated on a
cylinder. " Such a family is drawn in Fig. 4. %e
denote the numerical contribution of the first
member of the family symbolically by CjI~, where

I& denotes the time integral and the operator C~

includes matrix elements, the Fermi factor, sign,
initial occupation probability, and summations over
quantum numbers. The second member of the
family differs from the first in the initial occupa-
tion probability, the character of the on-site excita-
tions, and in the excitation energies. Precisely, one
has

M~ M1
) PE~k

P, (1—f-„)=Pie ' ' e "
fg~

pg (1)
=Pifk 8

=8'; —8'), l =2, . . . , n —1
(2) .(1) (I) ~

(19)

and

pg )
(1)

C2I2 ——C)e I2 . (20)

n —1n+j
X f dze &'g g (z —8';} '.

J=O &=2

(21)

Here 8'„+I——&„+8'I for /=0, . . . , j.
Since 8'„ is given by the algebraic sum of an

even number of frequencies im~, exp(S'„)=1. If
8'„ is nonzero, a straightforward calculation shows
that the residues at 8'I and 8'„+I cancel each other

The result (20) is valid for the first two members of
any family of rotated diagrams. We exploit the ex-
ponential factor in (20) for a shift of variables in

I~, integrating over z+ 8'&". Proceeding with the
other members of the family in the same way, the
full family has a numerical contribution

1 n

g C;I;=Ci 2'
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n —1

X I dze ~' g (z —g';)
i=0

(22)

Equation (22) is the final result for a family of dia-
grams rotated on a cylinder, if for all members the
contributions are different (C;I;QC;.I; for i Qi').
These diagrams are called topologically nonequiv-
alent. The other case, in which after r rotations
the family reproduces itself (r (n/2), requires a
factor r /n on the right-hand side of Eq. (22). For
more details, we refer to Ref. 13, where the discus-
sion is carried out for the single-impurity Anderson
model. With Eq. (22} we are in a position to state
the Ples for setting up and calculating the dia-
grams contained in a superblock with sites
v&, . . . , vh. In 2nth order of the interaction, the
rules are as follows.

(1) Draw I hatched vertical lines, one for each
site, and distribute the 2n interaction "dots" on
them in all possible ways, and at least a pair at
each site. Specify the initial f-electron state at
each site vj by a quantum number M

&

'. If it con-
tains np (or np+1) electrons, the excitation after
the first, third, . . . vertex is an additional electron
(hole) represented by an ascending (descending)
wiggly line. Connect the vertices in all possible
ways by solid arrowed lines ( representing band
electrons}. Draw them in such a way that (a) they
enter or leave the sites at the same side, (b} they
pass a site on top of its uppermost interaction ver-
tex, and (c) the direction of the arrows on wiggly
and solid lines is conserved at each vertex.

(2) Assign further quantum numbers M J' to the
intermediate states of the 4f shell at each site, and
assign momentum and spin for each band-electron
line. A vertex at site vj with M on top of it, M'
below it, and k,cr leaving (entering) stands for
N '~ Vk"(oMM')exp[+( —}ik R„.]. Each line

contributes to the excitation energy 8'; between
subsequent vertices: The wiggly or dotted with
quantum number M;"' contributes EM (J)

—EM (J), an

ascending (descending) band-electron line, which

in (21) for all /. This result is valid also if higher-
order poles occur in (21). This case can be reduced
to the former one by differentiation with respect to
the corresponding excitation energies. Then, with
g'„being zero, the sum in (21) may be replaced by
differentiation with respect to z of the product
given below, and after a partial integration one ar-
rives at

n

g C;I;= C) . ( —1)"
27Tl

(j)
X ff g P J M J W'J I'J' .

j=1 intern
(24)

does not leave site j, furnishes the energy E k~
( —ek ). This line furthermore contributes a sta-
tistical factor 1 f-„—(or fk, respectively), fk

being the Fermi distribution function. In order to
determine the contribution of the intersite solid
lines to the excitation energies at site vj, one
should think of having them drawn to below the
lowest vertex at that site. An ascending (descend-
ing) line carrying the frequency icbm then contri-
butes idiom ( ice—) to the excitation energy g' J', if
it is present between corresponding vertices. The
sum over the frequencies of lines entering equals
that of lines leaving the site.

(3) A solid line running between two sites and
carrying k,o. and frequency iso stands for a
band-electron Green's function (1/p)G k

(idiom

), as
given in Eq. (14). The overall sign of the 1-site dia-
gram is given by ( —1) +', where c is the total
number of crossings of solid lines and b the
number of Green's-function lines going to the left.

(4) In 2nth order, the numerical value C„,
"

of the sum of 2n diagrams consisting of one speci-
fied family at each site involved is obtained as fol-
lows. At each site vj one adds the contributions of
the family of n'~' (—:number of vertices) rotated
diagrams. Write down a product; its factors are (a)
the products of matrix elements, denoted by M'~',
(b) the initial occupation probability P'J', (c) the
product of statistical factors, denoted by P'J', and
(d) an integral I'~', containing the excitation ener-
gies O',"J'. (a) —(d) are taken for one (arbitrary)
representative of the family. The integral

a r(j)I'J'=,
,

dze ~' g (z —8' J'}-'
2~)' (j)

(23)

contains the symmetry factor r'J'/n'~' of the fami-
ly, and the path K encircles the poles counter-
clockwise. Then perform the sum g,'.J,', over all
internal quantum numbers M'~', k',o' at the site,
and finally form the product of all these on-site
contributions. Multiply by the intersite Green's
functions, and perform the sums $,„„„overall in-

te."site quantum numbers k,o.;.. .;k ',0' as well as
over all independent frequencies ice, . . . , idiom .

The result is

c2'
V]p ~ ~ ~ p VI

—G- (iso ) —G-, , (ia) )( —1)
1 O ~ b+c

kyar m
p

k'a' m
inters
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The rules so stated, for an illustration of them,
representatives of the four families up to 4th order
have been drawn in Fig. 5. In Appendix C, the
numerical contributions are listed. Although Eq.
(24) gives a compact expression for 2n diagrams,
an easy way does not seem to exist for performing
further summations of diagrams with it. To
achieve this goal, one can distribute the contribu-
tion equation (24) of the representative diagrams to
the 2n members of the contributing families of dia-

grams. Among the different possibilities for such
distributions, there is a particularly appealing one,
leading to Goldstone diagrams' at finite tempera-
ture. For that purpose we assign at site vj to the
representative diagram (1/aoj') )& residue of I"' at
z = g'0 ' (aoj' is the order of the pole at z = g'Oj'), to
the first rotated family member ( I/a'(j') X residue
of I'j) at z = g'ij', etc. As before [see Eq. (20)], the
residue contributions of the rotated diagrams can
be combined with the statistical factors P'~' and
the occupation probability P' ' to the P'J' and
P' ', which can be directly read off the rotated di-

I

MI I

I

M, I

I
Mq kyar + M~ I

M MI}k'
'

M(l
I

(c)

I

M~I

M, f)~
I+ M
i

M,gl' '

M, I

I

M(

+ Mq

M,
I

I

I

Vp

FIG. 5. Representatives of the families up to fourth
order in V: (a) second-order process, (b) and (c) fourth-
order on-site processes, and (d) fourth-order intersite
process.

agrams according to rule (2). Therefore, instead of
working with the sum of g. in' ' diagrams given
in Eq. (24), one can replace rule (4) by the follow-
ing:

(4') The contribution of an individual diagram is
given by

—G- (ice ) —G-, (leo )( —l)1 p p ~ b+c
kg m

p
k'a' m

inters ~

t (j) l . n~ —i

X g g p''M''5''( —p) (., Res . , )
~' g ( —8' j')

j=1 intern
(j) s=t( )=0

i=p
(25)

where P' 'M' 'P'' ' and 8' ' have to be read off the
diagram as suggested in rule (2).

We note that the on-site contributions to (25) are
thc finite-temperature vcrs1011 of Goldstone dia-
grams, while the intersite contributions are ex-
pressed via Green's functions. The advantage of
this mixed Feynman-Goldstone expansion is the
built-in concept of physical processes with excita-
tion energies and statistical factors restricting the
available states. This concept is helpful for partial
summations that are carried out in the next sec-
tion.

IV. INFINITE-ORDER SUMMATIONS OF
ON-SITE GOLDSTONE DIAGRAMS AND

RELATION TO SINGLE-IMPURITY
GREEN'S FUNCTIONS

As a result of the previous sections the problem
has been divided into two parts: the strongly
correlated on-site processes and the intersite con-

I

nections by propagating band electrons. This is re-
flected in the structure of the diagrammatic contri-
butions, if we assign to them numerical values ac-
cording to the rules developed in the last section,
especially Eqs. (24) and (25). This structure sug-
gests the following approach: Since the intersite
propagators feed into a specific site quantum
numbers and frequency only, similar to time-
dependent external sources, we can sum on-site
processes with a given number of external lines in-
dependently. For that purpose we use generaliza-
tions of the techniques applied already to the
single-site problem. ' As is already evident from
the physical picture of processes, the quantities to
be calculated are essentially the on-site Green's
functions.

We start from the expansion in terms of on-site
Goldstone diagrams, as given in Eq. (25). Here a
technical complication must be mentioned, related
to the replacement of sums over wave vectors k by
their continuum limit. While in the contributions
of families of rotated diagrams, there are no diffi-
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culties with vanishing energy denominators as may
be seen from the integral equation (23), the contri-
bution of an individual Goldstone diagram may be-
come singular for accidentally vanishing energy
denominators (O' J') '. Here "accidentally" means
that 8' ' is zero only for specific values of the e&

contributing to it. The singularities may be avoid-
ed by a regularization procedure. A physical ex-

ample, in which the difficulties appear, has been re-
viewed by van Vleck. ' For the problem under
consideration, the same regularization procedure as
that for the single-impurity Anderson model' can
be used and will not be repeated here. It should be
understood, however, that from now on the regu-
larization of Goldstone-diagram contributions is
implied, whenever necessary after performing the
continuum limit.

Next we turn to partial summations of on-site
diagrams. One should note here an advantage of
the diagrams: These partial summations do not
depend on that contribution to the sign of the mul-
tisite diagram which results from the crossings of
external lines. We define a part of an on-site Gold-
stone diagram as linked if it does not contain exci-
tation energies between its vertices, which are
identically zero, and if the two excitation energies
above and below the part are identically zero. A
glance at the diagram in Fig. 5(b) then quickly re-

veals that this diagram consists of a product of two
linked parts if M& ——M3,' on the other hand, if
Mi+M3, this diagram is just one linked part. To
see the property of being "linked" more directly
from the topology of the diagrams, we may con-
veniently close the dotted. line to the left starting
from the top and let it run into the first vertex
below which there is an identically vanishing ener-

gy denominator. Then we proceed with the second
linked part in the same way, etc. The dotted lines
closed to the left always carry the quantum
number of the initial f state. The internal quan-
tum numbers of a linked part have to be restricted
in such a way that no identically vanishing energy
denominator occurs. An example is given in Fig.
6.

(a) (b) (c) (e)

M4

Ma

I
I

I

M, I

M~l

I+
I

I

M, l P'
I'

I

+ I

I

M, l

L

FIG. 6. Redrawing of diagram (a) with "unrestrict-
ed" internal quantum numbers into four diagrams with
restricted ones: In (b) M3 and M7 must be different
from M1, in (c) Mi M&, M——7+M, ; in (d) M7 ——M1,
M&+M1, in (e) M1 ——Mq =M7.

The matrix elements, sign factors, statistical fac-
tors, and energy denominators of the full diagram
factor into those of the linked parts, as do the sums
on internal quantum numbers (Mi is kept fixed).
This factorization property survives the regulariza-
tion procedure. All Goldstone diagrams on site vj
can be divided into classes according to the
number o.—1 of identically vanishing energy
denominators. These energy denominators separate
cx linked parts from each other. There are linked
parts without any external lines and linked parts
with an even number of external lines. We denote
the sum of the numerical contributions of all
linked parts at site vz with initial quantum number
M and with ~ specified external lines
(i'd=0, 2, 4, . . .) by

~M(+Oikl~ 11~1~ ' ' ' 1~K)

(Of course, the algebraic sum of the external fre-
quencies is zero; ) Graphically, I M( ) is
represented by a block with a external lines at-
tached to it.

The sum of contributions of all diagrams at site

vz without external lines is just the superblock SJ-.
It is given by

go —O
(26)

Here, the residue at z =8'0=0 is inserted explicitly [compare Eq. (25)]. Formula (26) generalizes the result
for the single-impurity Anderson model. ' It may be cast into a more transparent shape with the aid of
Lagrange's formula2: Let 4(E) and f(E) be analytic functions of E in the environment of E = 5'o, and let E
be the solution of
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E =g'p+t4(E)

nearest to 8'p, then P(E) can be represented by a power series in t:

'I 0'( @'p)[~'( N'p)] IP(E)=g(&p)+ g —,ot d&o

Applied to Eq. (26), Lagrange's expansion yields

S.+1=gP e
M

with EM determined from

EM rM(EM) '

(27)

(28)

(29)

(30)

Equation (30) resemble a Brillouin-Wigner expansion. The new energies EM are the corrections due to the
change of bare particles into "statistical quasiparticles".

The generalization of Eqs. (26) and (29) to the case with several linked parts (= blocks) with a fixed se-
quence of specified external lines within each block is straightforward. Let there be n of those blocks at site
v . There are a(a —1) . . (a —n +1) possibilities to arrange them with respect to a —1 energy denomina-
tors. Note that each permutation of blocks leads to an even number of additional crossings of external lines.
Denoting the sum of all contributions of diagrams with those n linked parts containing the aforementioned
external lines by C~( ) the analog of Eq. (26) is

a(a —1) (a n+ 1—)
ata=n M)

P ".) ' ' M", (&P" )[rM, (@'P)]

gga —1

8'o——0

K) K
'rM', (&P ) rM", (&P . )[rM, ('P)l I= —P VP

& rely g @a+n —1
a=0M) 0 Ko——0

(31)

The nth derivative with respect to 8'p of Eq. (28) yields the formula to be used for the sum in Eq. (31):

a" dE a
"

dE B
" dE, ~ t d+" 'If'@'p[@&p] I

go d80 ~E d8'0 BE do =0 al dgo

(32)

From Eq. (27) we obtain

dE
1

d@(E)
d 8'0 dE (33)

With the aid of Eqs. (32) and (33) CJ( ) is expressed as

d
CJ( )= p+PM 1 — — — —

1
dEM dEM

PE K K

Xe I M(EM, . . .) ' ' rM(EM ) . (34)

Here again EM is determined from Eq. (30).
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The meaning of the factor in the parentheses may be guessed from the simple example with just- one block
with two external lines (n = l, zi ——2)

CJ((koi co„),„„(k'o'iso„);„)= —P g PM l—
M

0d ~M (EM ) P—EM
e I'M (E~ ,( k'vari co„),„„(k 'cr 'i ro„);„}.

dEM
(35)

Going over from bare particles to "statistical quasiparticles" requires a quasiparticle renormalization con-

stant (Z factor), which deviates from one if the "self-energy" I M(E~) depends on energy. Furthermore, the
initial occupation probability is modified. The interpretation of the right-hand side of Eq. (35) in terms of
the one-particle Green s function for the single-impurity problem, for X operators changing the occupance of
the f level (Mi and M2 containing no electrons},

im„v (v&)
~ (i~„)=—, dre " (T(xM M (r)xM''I')}

1 2™12
v) (36)

(Heisenberg picture, normalized expectation value with respect to the full Hi ——Hob, „d+Ho, +H„of the

single-impurity problem), however, at this stage fails because of the following reasons. Firstly, the propaga-
tion off electrons has to be calculated with a properly normalized initial occupation probability of the f lev-

el

~ (i)
@+M++M—' «&M—++M' 0 —& MM' M' P e M

M' Z (&)
(37)

where Z'" and Z0" are the partition functions of the full single-impurity problem and the noninteracting
one. Secondly, we have to take out the matrix elements, by which the external band electrons couple to the
site and have to confine the corresponding sums to the terms with the external quantum numbers. Thirdly,
in Eq. (35) only half of the processes contributing to the Green s function is contained. The other half fol-

lows from interchanging the two external lines, which acquire a minus sign from the additional crossing of
external lines. Finally, the factor ( —p) has to be left out because of the definition (36) of the Green's func-

tion. Introducing blocks of diagrams for the Green's function via

z(i) i(k —k ') R„
CJ((km~„),„„(k'o'i~„);„)=—p „, g e & V-„(oM,M, ) V'-„,(o'M', M', )

0 M)M2

MiM2

X g&sr
M

dI ~(E~}
BM (EM, MiM2, Mi M2,'iso'„),

(38)

[BM (EM&1M2%1M2 ilCOn) BM (EM', M1M2iM1M2, 'iCOn)]

(39)

we finally arrive at the desired diagrammatic expansion of the single-impurity one-particle Green s function:

dl sr«M)
2™~ 2 M dEM

The rules for the diagrams contributing to the 8
blocks follow from Eq. (38}and those of Sec. III.

One should note that the procedure of distin-

guishing external and internal lines, of cutting out
matrix elements, etc., which led to Eq. (39), is in
fact quite in the spirit of generating Green s func-
tions from the logarithm of the partition function

by functional derivatives. Diagrammatic expansion

for many-particle single-impurity Green s functions
can be set up along the same lines which led to Eq.
(39). The topology gets more intricate, however,
because the external lines can run not only into a
single block, but also into several ones, and the
resulting expressions, corresponding to Eq. (39) are
lengthy. Perhaps the most straightforward way to
visualize the resulting diagrams is the following:
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One takes a pair of scissors, which acts like a dif-

ferential operator, but in addition cuts lines in all
possible ways, cuts out matrix elements and pro-
jects out f-level quantum numbers, furthermore re-

places the cut pieces of lines by external ones, and

gives a minus sign, whenever an upgoing line was

cut. Denoting such an operative tool by
P'(M&M2i co„~&M2ico„), one has for the one-

particle Green s function of the single-impurity

problem

~ I I ~

(iso„)= — P'(M—)M2ico„;M, M2ico„)
1 2& 1 2

X ln(l+S;) ~;„
(40)

Then, applying a second pair of scissors to Eq.
(40), one gets the two-particle Green's function of
the one-impurity problem minus a product of two

one-particle ones, bearing in mind that 1+SJ is
Z"'/Zo" for the single-impurity case. One then

continues with the three-, four-, etc., particle
Green's function.

It is clear how this scenario is generalized to the
full many-site problem: Instead of 1+SJ in (40),
one inserts the full diagrammatic expansion of the
multisite partition function Z/Zo as outlined in

Sec. III. The operative tool P' is kept to act on a
specific site. By subsequent application of A,
however, on different sites, one may produce two-

site many-particle Green's functions, etc. It should

be emphasized that this scenario leads to a di-

agrammatic expansion in which the contributions
from the "denominator" Z/Zo cannot be divided

out from the numerator. The on-site correlations,
which prevent a Feynman-diagram expansion in

the present case and lead to summations with site
exclusions, also prevent a linked diagram expansion
for Green's functions. To what extent resumma-

tions of diagrams nevertheless can be carried out
separately for denominator and numerator follows

from the first part of this section.

V. APPI. ICATIONS OF THE PERTURBATION
TECHNIQUE

Leaving the results of finite-order perturbation
technique to Appendix C, we directly turn to sim-

ple infinite order resummations of diagrams, need-

ed for the intermediate-valence situation.
Since in finite-order perturbation calculations the

most divergent terms are found in the on-site
processes represented by simple buckle diagrams,
such as those in Fig. 5(a) —5(c), if the diagrams

there are viewed as Goldstone diagrams, we start
by summing the chains of buckles. We. note in
passing that this approximation in fact includes all
highest order divergencies. It is simple to handle if
we assume an isotropic situation and the following
average over the Fermi surface leading to

E,N, = g TN, N, «.,N, )

N1

(42a)

~no+1N( g SNON)(+no+ 1 N) ) ~ (42b
Wo

where the decomposition Mo ——(no, Eo),
M] =(np+ 1 E~ ) has been used, and the functions
T and S are given by

TN N (z)

g ~
V-„(oMOM))

~

Z —EM, +EM0+ek

SNON (z)

1 k=—g [ V-„(oMOM)) I

EM +EMko 0 1 kcr

(44)

In the continuum limit, both functions develop a
branch cut along the real axis and consist of two
analytic pieces, holomorphic in the upper and
lower half z plane, respectively. After the ap-
propriate regularization procedure, the real part of
S and T enters in Eqs. (42a) and (42b).

To be consistent with the approximation for I
one has to introduce the corresponding S and T as
self-energies for the f-level Green's-function equa-
tion (39), which for zero hybridization is given by

~~ M iw ('"")=4M ~~ ~ ( ~+ I )
0 1~ 1~ 0 1 1 0 0

X(iso„EM, +E~,)
' . (45)—

Expressing the self-energies in terms of S and T,
one obtains the following approximation for a [see
Eq. (39)]:

d Qk
V-k ~M,M, V-*k ~M, M,

'

&M M' ~~M M
o o

(41)

(. & F is the density of states per spin at the Fermi
surface). Then the initial state is repeated after
each buckle. The 1 's in Eq. (30) are then approx-
imated by simple buckles [Fig. 5(a)], and Eq. (30)
reads
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d
Mo — + X ~" ( Mo)

M0 Ntt

' —1

X ic0„EM—, +EMo+EM —g S&«& (EMo EM~—+EM +i'„)
Nt I

0

+~Mi '—
dE (i'll N0

' —1

own —EM, +EMo EM, + y—TN „(EM, EM +E—M,
—i~/ )

Nt I 0 1

1

(46}

The result (46) for the single-impurity Green's
function generalizes the one given in Ref. 23 for
the simple three-state situation. The relation to the
result of Barabanov et a/. has been established
there. We note however, that the energy shifts E
are crucial for the removal of the singularities oc-
curring in finite-order perturbation expansions.
They are determined self-consistently from Eqs.
(42a) and (42b). Since the functions S and T in

Eqs. (43} and (44) have essentially a logarithmic
structure, one can replace them by

EM, m'g I M——,M.
,

ln(
I EM, +E EM I

CMF)—
N)o

(47a)

EM, =~ ' g 1'~M M, 1o« I EM, +EM, EM, IC'~—F) ~

N0o

(47b)

Here the 1 are defined in Eq. (41) and the con-
stants C and C' are of the order of unity. For I
independent of the quantum numbers, and in the
intermediate valence situation E~ —E~, the sums

in Eqs. (47a) and (47b) furnish essentially the de-

generacy factor (equal to the number of states with

no or no+1 electrons). This degeneracy factor
(present in one level only} is the essential feature of

I

the model considered by Ramakrishnan. '~ If the
degeneracy factor is large in one configuration
compared to the other, Ramakrishnan's conclusion
that the highest logarithmic terms are the impor-
tant ones in the intermediate-valence situation is
valid. If one proceeds to the stable moment re-
gime, however, lower order divergences, reflecting
the Kondo effect, have to be included self-
consistently in a way suggested in Ref. 13 for the
single-impurity Anderson model. Since these cal-
culations have not been performed, we are reluctant
to follow Ramakrishnan's claim' that the
Brillouin-Wigner —type expansions break down
completely in the local moment regime. It is the
transition from the charge fluctuation dominated
intermediate-valence region to the spin Quctuation
dominated local moment region, which must be in-
cluded properly in the higher-order approxima-
tions.

In the intermediate-valence regime, the energies
E are negative, as may be seen from Eqs. (47a) and.
(47b). We recall the fact that the difference of
these quasiparticle energy renormalizations is
essentially determined by the difference in the de-
generacy factors. We also note that this is an
essential feature in Anderson's scaling approach
applied to the intermediate-valence problem. ' It
is not surprising that the scaling equations ob-
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tained there are equivalent to the first approxima-
tion of the Brillouin-%igner self-consistency rela-
tion, if the renormalized energy of the "local f lev-
el" is identified with the diA'erence of the quasipar-
ticle energies.

The fact that the self-consistently determined E
from Eqs. (47a) and (47b) are negative yields im-

portant features for the f-level Green's-function
equation (46). At zero magnetic field, at zero tem-
perature, and in the intermediate-valence situation

EM EM, , the imaginary parts of the functions S
and T vanish for z =co+i6 approaching the real
axis if co & 0. Thus, in the self-energies in Eq. (46)
an imaginary part on the real axis is nonzero only
outside the interval —

~ EM, ~
& co &

~ FM, ~

around

the Fermi level cp =0. From Eq. (42) it follows
that there is precisely one pole of the f-level
Green's function at z =E~ —E~ on the real axis,

1 0

which obviously lies inside the gap. There it
represents a sharp resonance in this approximation.

For small arguments the dependence of the f
level Green's function on the degeneracy factors
can be seen as follows: Replacing the sums over
angular momenta by degeneracy factors and denot-

ing by gp (and by gi) the degeneracy of the states
with np (or np+ 1) electrons, one obtains from Eqs.
(47a) and (47b)

If we neglect the quasiparticle renormalization fac-
tor to the same accuracy, we have

~ ~ M ~ M "~'= ~M ~ ~M M (~M +I'M )
MOM1 M1 MO ~ M1M 1 MOM 0

I CO~—

(49)

Note that the position of the f resonance relative
to the Fermi level depends on the relation of the
degeneracy factors.

The highest-order logarithmic approximation
clearly gives rise to two questions: (1) Is there
indeed a gap for the f-level excitations, and does
the resonance remain sharp? (2) Can the resonance
move away from the actual chemical potential in
the intermediate-valence compound?

Before discussing these two questions further, we
proceed with calculating the simplest intersite
processes in Fig. 5(d), using Eq. (49). As shown in
Appendix C, the contribution to the partition func-
tion evaluated with M from Eq. (45) diverges as
T in the intermediate-valence situation. With M
from Eq. (49), the contribution for the simplest f
quasiparticle intersite process is given by

gpEM glEM +o«»
I EM, l~~) ') (48)

-4 1V +

M .M M ( Rico'—)&m,M, ;M, M, (cc0 )

I I
NON1

(Lco+ )
0 1 r 1 0

(50)

Here we introduced the band Green's function, weighted by the matrix elements

(Rico„)=N 'g Vq(aMpMi) V-'„(oMi Mp ) exp(ik R)(icp„—e-„)
0 1' 1 0

ko

MOM—2g « tx exp
MOM1

——
~

n + —,
~

+i sgn(co„) (51)

and the following abbreviations have been used:

cc=2kFR, y =Pk~l2k~(p),
2

y '~' =g . f V-„(crMpMi)V'„(crMiMp )e'"
sin kR 4a

J
k l=kF

(52)

(53)

In order to obtain the last line in Eq. (51), band-structure effects have been neglected by taking into account
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only the pole at ek ——icon in the energy integration. In the same approximation the matrix elements y have
to be taken at the Fermi surface. In contrast to Eq. (41), Eq. (53) does not furnish a simple selection rule for
the M quantum numbers. In the simple case of the many-site Anderson model, discussed in Appendix C,
the f-level quantum numbers on the second site are uniquely determined by those on the first site due to
spin conservation. The generalization of this feature to the model under consideration, which then would
provide simply a degeneracy factor for the simple intersite process, as assumed by Ramakrishnan, ' needs
further inspection, however.

With Eqs. (49), (51), and (53) inserted into Eq. (50), we obtain

X @Re exp
a

7TA +i+ 4 exp
2p

na 2i . p go
Mo2' g)

(54)

where 4 stands for the doubly-generalized g func-

tion

4(z,s,v)= g(v+n) 'z".
n=0

(55}

f(g} y p cosa ~~/2y (56)
pb, a a

if a » (y/ph) » a/pb, . The exponential factor
gives the temperature damping. For smaller dis-
tances (a «y/ph), a in the prefactor F
=y/pb, a has to be replaced by y/ph, so F

', and cosa ~sina; for larger distances (a
»y) it has to be replaced there by y, so F
~l/pb, .

If pb, « 1 (e.g., if there were no quasiparticle re-
normalization), the RKKY regime is taken over by
the small distance zone. Here and in the large dis-
tance zone b, has to be replaced by P ', changing
F —+p in both cases. Therefore in this situation
(which, of course is the intermediate-valence situa-
tion of finite-order perturbation expansions —see-
Appendix C) the contribution of the simplest inter-
site quasiparticle process to the free energy
diverges proportional to p, and the corresponding
intersite interaction is of longer range than the
RKKY one. The latter result agrees with

It has been assumed in Eq. (54) that EM, E„, ——
E~, ——E„,+i in zero magnetic field.

The part in Eq. (54) following the R sum is the
part of the free-energy density f(R) due to the in-
teraction of the two sites. Its properties are reflect-
ed in the analytic structure of 4. Introducing 5
=(go/gi —1)E„,and denoting the first-set of
large parentheses in Eq. (54) by y, we obtain the
usual RKKY behavior:

(o)

I I

I IJ J

r
I I

I ~ I

I/C

FIG. 7. (a) Two-site processes with general ladder
structure; (b) many-site processes with ring structure.

I
Tsveljk.

%ith a finite 6, the divergence is cut off' at a
temperature T -A. The size of 6 obviously is
'determined by the ratio of the two degeneracy fac-
tors. Before drawing final conclusions on the im-
portance of the intersite interactions, however, one
has to examine (a) the detailed structure of y, e.g.,
in which cases it is proportional to the degeneracy
factor, as assumed in Ref. 15, (b) improved approx-
imations for the f-level Grmn's function and in-
clusion of more complicated two-site and multisite
processes, and (c) the shifting of the chemical po-
tential, resulting from the conserved number of
electrons.

While leaving problem (a) aside, and before deal-

ing with (b) and (c},we want to briefly 'comment

on the inclusion of more complicated intersite
processes. If one sums all two-site general ladder
structures indicated in Fig. 7(a), one obtains a
result C of the following form (in which the
single-impurity partition functions have been ex-
tracted; see Appendix B):
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2 ( —I) — — "m —1 "m —1 ??Ig= —p g g gPMPMDM DM tzMiM exp( pE—M pE—M)[FMM(EM, EM )] ]I!R~P gyes =] MM'
(57)

with

dI (E )

dEM
(58)

M —I (59)

and [M = (n, X), M' = (n', X') ]

FMM'(EM ~ EM') ( 1) g g BM (EM~™1M2~M3M4i! pl!)+M M . M'M' (R~!apl )
1 2I 1 2

MiM2M3M4 I
I I I I

Mi M2M3M4

XBM (EM ', M1M2 iM3M4 ~i p! )+M'M'. M ( R~&~l) ~ (60)
3 4I 3 4

The blocks B! ' in Eq. (60) are those of Eq. (39). Because of the two difFerential operators, one for each site,
there is no closed expression for the m sum in Eq. (57). In particular, there is no resemblance of Eq. (57)
and the intersite quasipaiticle energy correction given in Ref. 1S, which is derived from a Brillouin-Wigner
equation involving two sites. We emphasize again that the Brillouin-Wigner-type expansion used in the
present paper is restricted to on-site processes.

The largest contributions to Eq. (57) at low temperatures result from the differentiation of the exponential.

They can be summed to give

y PMPM' I exp[ ~MiM'P FMM'(EM kM')]
R @pMM'

(61)

One should note here that the structure of the result (61) reflects the strong on-site correlations and differs

markedly from a standard "disconnected" diagram summation in the partition function of the interacting

electron gas, for example.
We would also like to briefly mention that simple multisite processes can be formally summed. For in-

stance, the contribution of all the ring-type structures, Fig. 7(b), with just two band Green s functions con-

nected to each site, to the partition function can be written as a determinant, as explicitly shown in Appen-
dix B. This formal rearrangement of the contributions shows again that due to the excluded-site problem

the algebraic structure of the partition function is more intricate than the one known from standard many-

body problems. Disregarding the excluded site problem would result in destroying the strong on-site correla-
tions. The strong on-site correlations are thus the origin of both of the diAiculties discussed.

We next turn to an improved approximation for the f-level Green s function, as shown in Fig. 8. It in-

cludes the next leading logarithmic terms (compare Ref. 13). Instead of Eqs. (42a) and (42b) one obtains

E„N =I n N (E„N )=y—'y
i

V-. (uM pM1 )
I
'f-„.

Ni kcr

En No EM1+EM0+~g~ g~N'N (EnoN&& EM1+EM +ek~)
I 0

No

0 1
Eno+1N1 n 1+pl (N1Enp1+N ) —1p +p i Vg (17MpM1)

i
'(1—f-„)

No . kyar

X E„ iN, —E~ +E~,—
—1

gTN N' (Enp+1N1 EMp+EM1 ep((y)

(62a)

(62b)
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Repeating the discussion of Eqs. (42a) and (42b), the E are clearly negative and again differ essentially by a
degeneracy factor in the intermediate-valence situation. The approximation for the Green s function, which
seems to be consistent with Eqs. (62a} and (62b} is

aMoiiri. sriM (iro„)=PuozMO[ico„E—M +EM +E„ohio re—~iivi(E„ iv EM—+Elf, +iso„)]

gP— z —g ~
V~(oMoMi)

~ f~ E Esr—, +E +as

—+Slav„iv (E iv. EM +—EM +e-„)
0 1 ~0 0 ~ 0

0

X E —EM +E +&q —l~„
)jpN p p Mp

' —1—gT (E E~ +—EM +ek iro„—)
NpN ] 1gpNp p Mp

(63)

where W represents two terms with initial occupan-
cy no+1.

Discussing Eqs. (62a) (62b), and (63) as before (in
zero field, low temperature, and in the intermed-
iate-valence case), we find a reduced gap for the
imaginary part of the f-level Green's function,
which is determined by the difference of the quasi-
particle energy corrections as calculated from Eqs.
(42a) and (42b) and Eqs. (62a) and (62b). So ap-
parently this gap is an artifact of the approxima-
tions and we expect it to close at the Fermi level in
higher-order approximations. Outside of the gap
the imaginary part increases, reflecting the excita-
tions of the Fermi sea. On top of this background
there is again a quasiparticle resonance, lying
below the chemical potential for go &g~ and above
it for go Qg&. This resonance consists of a
broadened part and a spike growing out of it. The
spike corresponds to virtual excitations at the cor-
responding energy, while the width of the reso-
nance reflects the lifetime of real excitations.
Technically the origin of the broad background
above the chemical potential p comes from the
first term on the right-hand side in Eq. (63) and
from the last, while the background below p comes
from the other two terms. For go &g~ the spike
results from the first term and has a large spectral
weight compared to the resonance resulting from
the third term.

We emphasize that there is no imaginary part of
the self-energy of the first and third term in Eq.
(63) at the chemical potential, and also no in-
coherent background (technically this results from
the fact that in subsequently higher quasiparticle
renormalizations the E become more negative).

We further stress that the approximations yield one
f-quasiparticle resonance. These features can be
traced back in the calculations to the fact, that the
E and the self-energies have been treated on the
same footing. Such a procedure is characteristic
for particle-conserving approximations. The ex-
istence of a sharp resonance also prevents a simple
connection between an intrinsic fluctuation tern-
perature and a virtual level width. We do not ex-
clude, however, that the latter may be obtained if
many-site processes are taken into account.

Although part of the f resonance is sharp at low

FIG. 8 Approximations including the leading [first di-
agrams of (a) and (b)] and next leading (other diagrams)
logarithmic terms: (a) for the single-impurity partition
function, (b) for a block with two external lines appear-
ing in diagrams for the single-impurity f-electron
Green's function. A double line stands for a sequence of
buckles as shown in (a).
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temperature, it would be naive to conclude that the
zero-field magnetic susceptibility diverges. In fact,
the simplest approximation, which leads to a sharp

f resonance [see Eq. (46)], has been shown to give
a finite susceptibility [calculated numerically'
from the partition function equation (29) for the
single-impurity problem with E taken from Eqs.
(42a) and (42b)]. As already noted in Ref. 14, the
decisive contribution to the susceptibility at low
temperatures is

a2

+PM —
2 (EM+EM )

3H

where the sum extends over the states of the confi-
guration with lower degeneracy. If EM is a smooth
function of the magnetic field H at low tempera-
tures, which is the most likely outcome of the self-

consistency equation (30), the susceptibility remains
finite.

For the intermediate-valence compounds, howev-

er, an important correction to the results presented
so far has to be included. Since the total number

Ed of electrons is conserved, the direct approach
for calculating thermodynamic properties would be
to use the Helmholtz free energy F(T,N,i+I). The
grand canonical potential Q(T,pgX), which is the
convenient quantity in many-body calculations, is
related to I' via the Legendre transform

F(T N,i/I)= Q(T p+)+p-N, i,

which go like powers of Pin(P/~F ), these
In(p/MF) powers must be contained in 0 and its
derivatives with respect to p at p =pp, appearing
on the right-hand side of Eq. (65). Th coupling of
the magnetic field to the conduction electrons may
be neglected, as it leads to corrections of the order
of Zeeman energy over bandwidth for a metallic
band. The prefactor in front of the logarithmic
terms can be expressed as a function of the number

nI off electrons per site. Within the same approx-
imation, the magnetic field derivatives at fixed N, ~

then are those at fixed n~. So the leading loga-
rithmic temperature dependence of F is cancelled
in its derivatives with respect to H.

As another drastic consequence of the shift of
the chemical potential we discuss the position of
the f-quasiparticle level with respect to the correct
chemical potential. For simplicity we take the
magnetic field equal to zero and characterize the
intermediate-valence situation precisely by

E„+i—En, —Po(0) =0 (68)

dI'M(EM )

+PM 5MM
i
+zM

M ~EM)

at T =0 in the noninteracting system. The number
off electrons per site is obtained from

1 BlnZ
nf no (XMiMi ~

i

(Tp&) .
an
Bp

=PM =(gi+goe~&)-' . (69)
Thermodynamic quantities at fixed X,~

can be cal-
culated from 0 and its derivatives at pp, the chem-
ical potential of the noninteracting system, by cal-
culating the p shift from Eq. (66) and by properly
relating thermodynamic derivatives, e.g.,

~ ~ ~

BH z;g]

~ ~ ~ BPp ~ ~ ~

+
aH T,„, aH ~,~„a~,

(67)

The correct treatment of the chemical potential can
change the results of renormalized perturbation ex-
pansions quite drastically. For example, it has
been shown up to V that the leading logarithmic
terms, resulting from on-site contributions, in the
zero-field susceptibility are cancelled. ' ' The fol-
lowing argument shows that this holds true in any
order. Since the zero-field susceptibility as calcu-
lated from 0 in direct perturbation expansions in V
contains at most corrections to the Curie law,

E„,+i E„, 5i—u(0) =0—. — (70)

This determines the shift 5}M(0) of the chemical po-
tential. If inserted in the self-consistency equations
(47a) and (47b), relation (48) is again obtained. In-
stead of having the finite value (go/gi —l)EM, as

in Eq. (49), the effective f-quasiparticle energy b, in
the denominator of the Green's function (46) van-
ishes to leading order. So we have 5 -I instead
of r 1~~,r.

In this discussion only the leading logarithmic
terms arising from on-site processes have been tak-
en into account. Both the next leading terms and
the intersite contributions are expected to influence

Equation (69) is valid to leading logarithmic order.
A general value of the valence (excluding nI no—
=O,gi ', 1) at T=O in the interacting system can
only arise, if
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the above results quantitatively.
We conclude with a speculation as to how the

shift of the chemical potential influences the result
of higher-order approximations. The f-level reso-
nance should move towards the correctly deter-
mined p, and one might ultimately find just a
spike at p. This may result in a depletion of the
density of states of the conduction electrons near p
leading to a low conductivity, similar to the effect
found in recent alloy analogy calculations.
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APPENDIX A: PROPERTIES OF THE IONIC
TRANSFER OPERATORS

gXMM
M

(A7)

In the restricted manifold of states assumed for
treating the mixed valence problem, (A7) holds
only approximately at low enough temperatures in
an averaged sense. A thermal average over X
operators gives

The completeness relation for ionic states takes the
form

(Al)

n& factors
F(v)t L( II f t

1N,O

The ionic transfer operators can be defined in the
following way:

(v) (v)f (v) (v)
XM, M, =FM, P-PM, ~ (A2)

Here P„'« is the projector onto the 4f vacuum:

In this appendix we list some properties of the
ionic transfer operators XM 'M introduced by Hub-

1 2

bard, ' which are needed in the main text. For
this purpose we assume that the states of the 4f
shell relevant for our problem are characterized by
sets of quantum numbers M—:(nI, N), where n~ is
the 4f occupation number and N an assembly of
angular momentum and/or crystal-field level in-
dices. For .the lowest lying multiplet of a rare-
earth (RE) ion for example, N =S,L,J,J„where S,
I., and J are determined by Hund's rules for each
particular occupation n~, and J, =—J, . . . , +J.
Any many-electron state, specified by a certain M,
can be created from the 4f vacuum at this ion by
application of a unique linear combination of prod-
ucts of ny single 4f-electron creation opertors f~~
(v is the site index; m =—3, —2, . . . , 3;o=+1):

iM&„=FM"'
i 0&„,

(XMM &o=e /Z, Z, =pe '. (A8)

Here an unperturbed Hamiltonian

+Ov gEMXMM (A10)

has been used. For a treatment of the many-site
problem X operators on different sites have to be
chosen as (anti-) commuting according to their sta-
tistical character. In general, one has

[XM M «XAAM ]+=5vp(XMiM45M2, M3

+XM3M
2
5M ),M~ ) « (Al 1)

where the + sign and the anticommutor have to
be used if both X are of Fermi type (hnj odd) and
the —sign and the commutator otherwise. All the
above properties are simple consequences of formu-
las (A4) and (A6).

The Anderson model can be reformulated in the
transfer operator language, as the special case of an
ionic s orbital with M =(n,o), n =0,1,2 and o.
=+1 if n =1, and 0 otherwise. One readily iden-
tifies

The time dependence in the interaction picture is

(v) ~ (h (v) ~ Ov 1 2 (v)
(E —E )r

XM M (r}=e XM M2e .
e XM M2

(A9)
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X,", =n, (1 n—, ~), X22' ——gii, , (A12)

In a situation appropriate to mixed valent Sm with
a (nearly) degenerate nf ——6, J =0 state ( Fo) and
an nf =5, J =5/2 multiplet ( H5~2, J,
=5/2, —3/2, . . . , 5/2) as lowest lying states (crys-
tal field neglected), the Hamiltonian Hp„reads

It is straightforward to translate the Hamiltonian
from one picture to the other. For example,

5/2

Hpv E6X66 + g E5JzXSJz,5'
(v) (v)

J =—5/2

(A14)

with (A13)

E =Ei Ep, U—=E2+Eo QEi—

Ho =QEMXMM =Eo+g(E + , «—)&—.
M 0'

%ithout a magnetic field the nf ——5 multiplet is
sixfold degenerate. It is interesting to notice that
such a degeneracy in both of the configurations oc-
curs only for Th and not for Ce, Sm, Eu, and Yb.

APPENDIX B: FORMAL REARRANGEMENT OF THE PARTITION FUNCTION

The first aim of this appendix is a direct al'gebraical rearrangement of the partition function (4) and (5)
into a form in which the superblock structure is obvious. For this purpose we start by classifying the dif-
ferent possibilities of connecting subsets of the I sites vi, . . . , vi occurring in (5) by band-electron contrac-
tions. We denote a contracted pair d-„(r)d-„, , (r') by the symbol c and a complete set of contractions

Ici, . . . , c~ I of the time-ordered expectation value of band-electron operators in (5) by C. Let ( —1) be
the characteristic sign of K (X~ is the number of transpositions necessary to perform successively all con-
tractions in Ã). Since Ho is bilinear in d,d, Wicks s theorem holds and therefore

(
I () ()

j=l C6

Iv, . . . , v I

g( —1) g (T(c)), . (81)

The meaning of the new symbols introduced in the second line of (Bl) is as follows: The first sum goes over
all (different) partitions of the set t vi, . . . , v& I into nonempty disjunct subsets, H(„. ..)

= IP, , . . . , P& J,
with P;CIvi, . . . , viI, Pi UPq U . UP& ——Ivi, . . . , vol, P;+e, P; QPJ ——e. The second sum takes
into account only those complete systems of contractions which establish no connections between difFerent
subsets P;, but connect all the sites in each subset separately. These systems can obviously be written as S~

X( X.=(Ci, . . . , Cz), where C; operates in P;, and the sign factor can be decomposed, ( —1)
' =+~ i( —1)

With (81) inserted into (5) and the resulting expression into (4), the following rearranged expansion is ob- .

tained:

(82)

The quantity

L; =L(P;,(mj/vj CP, ),C;)

Xc ik ~ R„=(—1) '$' g . g '~y. g,'~P'*. . . e ' . e
v EI';

—ik'R„
l o ~ o

(v. )

r2 1P ( )
2m. —1

( ) (v. ) (v. ) Tl (T(c))odr' . dr'(T(. . X '(r' ). . . X'(~' }.. . )}1 l c E, CE.

(83)
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(84)
m, . . . , rn- =1 C.

incorporates all processes of (g„~p 2m& }-th order which connect all the sites in P;. By summing all orders
V)

these can be co&lected into a superblock

S,.=S(P,.)= g gL(P;, (m;, , . . . , m,.„),C;),

which contains now all processes which take place
between and actually connect the sites of I'; to a.
cluster. The final result then is

(85)

where M denotes the set of all sites. This expres-

sion is equivalent to formula (6), in which the

terms of (85) have been ordered according to the

magnit;ude of the superblocks involved.

The problem now is to rearrange the partition

function expansion equation (85) to an exponential

structure needed for the free energy. The difficul-

ties encountered come from the exclusions in the

summations on sites in Eq. (85}. Similar difncul-

ties occur in other fields, e.g., in multiple scattering

theory, in concentrated impurity systems, and for

the hard-core gas. They can be attacked quite gen-

erally with cumulant expansions, of which, e.g., the

Ursell-Mayer expansion is a special case which

may be used for this problem. These expansions

are forrnal, however, and can be rearranged in

many ways' into cluster cumulants. In principle,

the rearrangements should improve the conver-

gence and also should reflect the physical intuition

one has developed for the problem.
In.the present problem, the single-site contribu-

tions are of particular importance, so they should

be singled out in the first place. Indeed, from Eq.
(85},we immediately get

~J J.~J+1~J+1
OAKUM 1

X (RJ + ]—RJ I ECgp )] (8&)

(where I+1 1 and MD=no&0, M~ no +1——~,}.
The corresponding contribution for the partition
function, including products of chains with any
number of sites and any sequential order can be
written with the aid of two matrices 5 and k,

(5)„=5 „5„
I'n &m

(89)

should be included. Without any detailed
knowledge about the numerical contribution and
the structure of the superblocks, however, the obvi-
ous procedure would be to try to factor out the
two-site superblocks from Eq. (86), etc. But this
cannot be performed in the same way as before,
since there is no unique decomposition of any
given set of sites into subsets with two elements.
On the other hand, the possibility of summing in-
tersite processes of a sufficiently simple structure
remains. In particular, the chain structures of Fig.
7(b) give rise to a determinant structure in the par-
tition function. The contribution of a chain, in
which the sites v~, . . . , v~ are linked consecutively,
is

g [1+s(I&]}]
VG:t

x 1+& g g s(p)
XC V +[Z) PZZ(2]

where H~' contains only partitions of M using
subsets with at least two sites. The quantity S(P}

'is given by

s(p)
g [1+S(Iv] )]
VEP

To proceed further, one has to decide whether
higher-order two-site processes are important and

MRMR M "M" 'p
O. 1 1 0

X +srn PE.MmMm(RIH —RII'IlCOp )5m IR0""1~ 1 0 P„P

in the following way:

(810)

z
Z g [1 S(] ])]

— y y Det 5+k
VE. f"

(811)

From Eq. (Bl 1) one may realize the intricacy of
the excluded-site problem.
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APPENDIX C: SECOND- AND FOURTH-ORDER CONTRIBUTIONS TO THE PARTITION FUNCTION

First we list the contributions of the diagrams displayed in Fig. 5 according to rules (1}—(4} of Sec. III us-

ing a convenient decomposition of the sets M; of quantum numbers:

Mi=(nf =noN;} (i =1,3), MJ =(nf =no+1NJ) (j =24),
pEM

1 —pz

C,' '(a)= g —gfq i Vg(crMiM2)
i . f dz

(Cl)

(C2)

pEM
1

C', '(b)= —, g ~ g g fk fk, , Vk(oMiMp)Vk(crM2M3)Vk, (cr''M3M4}Vk, (o'M4Mi)
Ni N2 0 + k ~k
N3,N4

—pz

x . Jd.
2~i & z(z EM +E—Mi+~k )(z EM, +E—M, )(z EM4—+EM|+ek, , )

'

pEM
2

C„', '(c)=
z g g g (1—fk )(1 f&, , )Vk(crM—tMi)V&(crMiM4)V& (cr'M.4M3)Vk, (o'M3M2)

NiN2 0 k~k 0
N3,N4

x J' dz
+EM —ek }(z—EM +EM )(z EM3+EMi

i(k —k') (R —R„
( —1)e

(C4)

x g
NI, N2

pEM
1

Zp
Vk(crMiM2) Vk (O''M2Mi )

x-P
EM +EM

1
+i ~n )

x g
3,N4 0

V-*„(crM4M3 ) Vq, (o'M3M4)

x 21' & z(z EM +EM +Ecoz—) (CS)

In the following we consider the special case J(nf =no) = —,, J(nf =no +1) =0, Vk(oMiM2)
= V-g z M (Anderson model with nf ——1,2 and U ~co), in which the above expressions simplify consid-

erably:
pE ~ p

——pz
dz'

P~l & 2

o 0

C'„", (.)=g T (z),
0 0

—pzI dz [T (z)t

(C6)

(C7)



24 DIAGRAMMATIC APPROACH TO THE INTERMEDIATE VALENCE . ; . AAA3

—PE

0

C„',„',(d) =—gg
a n

J dz
2 QS(z)

0'

PE
e

Z0

1 e-@'
9' (bR)g,'ia)„) . J dz

277l + z z —6 o+EcoII )
(C9)

Here E and E2 are the energies of the singly and doubly occupied local level, 5 —=E2 —E, and

To(z) =—g I Vq IN
k

" z+ek —5 (C10)

so(z)= —g I vq I z —ek +6
lk.{R„-R„)

l 1 2
9' (BR&2,iCOH)=-

k le n

The single-site contributions (C6)—(C8) are evaluated by residue techniques with the result

C„' '(a) = gP oP—[To(0)+e So(0)],

(Cl 1)

(C12)

(C13)

Ie-'[T.(»]2].=0+2e —,X I Vk I

'
I Vv I'

f~ f~.
(ego —~ o) ego Ep'o

(C14)

C„', '(c)= , p p ——e ~" gS (x)
X

x=0

C„',„' (d)= —P2+(1+e ) [9' (bR)2'icoH)(h o ia)„) ']—
o,n

=2pP2+(1+8 )2p
ma

'2

Re exp +ia 4 exp
2/7

ipse
2 —+

2$
~ (C16)

Equation (C16}is a special case of Eqs. (50) and
(54) (without the summations over the sites). The
quantities a,y, 4 are defined there and I
=BCMF( I Vz I )E„. In the intermediate valence

case ph « 1 one has 4 —+( —,} and clearly the
contribution diverges proportional to p . For ph» 1, however, 4 -p ' and the contribution
diverges only proportional to p, so the free-energy
contribution is finite. The divergencies of the other
terms can be easily seen if one realizes that the real

part of So(z) and To(z) from Eqs. (C10) and (Cl 1)
diverges logarithmically in T, 0, or 6, whatever is
the largest of these quantities, if they become
small. So in the intermediate-valence case the
second-order contribution diverges as

pin(~F max IH, T [ ), and the fourth-order contri-
bution has a quadratic divergence in this quantity,
coming from the x derivative of the exponential.
The sums over k and k' contain one logarithm less
in their leading divergence.
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