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We study the motion of a particle or elementary excitation that hops between nearest

neighbors in a one-dimensional array of traps. The trap depths and transition probabili-

ties are random, but they may show correlations over short distances. When certain aver-

ages of the inverse transition rates exist, the low-lying eigenvalues of the master equation

for the system are distributed like those of some equivalent regular chain. However, the

nature of this equivalent regular chain depends on the degree of correlation of the random

transition rates. Moreover, for a chain with periodic boundary conditions the degeneracy

of the eigenvalues in the regular chain is lifted. The amount of this splitting depends on

the degree of randomness and on the chain length. The density of low-lying eigenvalues

is closely related to the asymptotic form of the probability for finding the particle at some

large time at the same place where it started its random walk. Our results are obtained

by studying the moments of the reciprocals of the eigenvalues, in which the distribution of
low-lying eigenvalues leaves a characteristic "fingerprint. "

I. INTRODUCTION AND SURVEY

In this paper we study the diffusive motion of a
particle in a linear chain of N traps of random
depth. The particie may jump only between
nearest neighbors. The jump rate is allowed to

. vary from site to site, subject only to the constraint
of detailed balance. The model has received much
attention recently. We refer to a recent review by
Alexander, Bernasconi, Schneider, and Orbach' for
a history of the model and the different physical
systems to which it may be applied. A typical ex-

ample would be an amorphous polymer in which a
particle or an electronic excitation may hop along
the polymer chains, but not between them. The
randomness may be provided either by substitu-
tional disorder in the chains, as in a copolymer, or
by the inQuence of neighboring chains on the in-
chain hopping rates. The model is moreover close-
ly related to the classical problem of the random
harmonic chain. We are particularly interested in
the distribution p(A, ) of the eigenvalues of the mas-
ter equation governing our system, especially in the
limit of low A,. The quantity p(A, ) is related to the
averaged probability (G«(t) ) that the particle is
found at time t at the same site where it was at

t=0:
, 0

lim (G«(t)) = lim —f p(A}e ~ ~'dl,
N~go N~ao N

Our results therefore bear upon the asymptotic
behavior of (G«(t}) for large t.

The emphasis of our treatment differs somewhat
from that of the work reviewed in Ref. 1. The au-

thors of Ref. 1 consider only the leading term in

p(A, } for small
~

A,
~

and treat the trap depths and

jump rates at different sites as independent random
variables. However, they provide a detailed treat-
ment of the case that the average of the inverse

jump rate does not exist; this means that the long-
time behavior of the chain is dominated by
bottlenecks. We confine ourselves to the case that
the inverse jump rate does have a finite expectation
value; this implies that the low-frequency behavior
approaches that of an equivalent homogeneous
chain. On the other hand, we consider corrections
to the leading term in p(A, } and we are able to in-

clude the effects of correlations, provided they are
of reasonably short range. In addition we obtain
some aspects of the distribution of relaxation times

24 4329 1981 The American Physical Society



4330 U. M. TITULAER AND J. M. DEUTCH

that do not manifest themselves in the ensemble
averaged p()1,). When one imposes periodic boun-

dary conditions, eigenvalues occur in almost degen-
erate pairs with spacings that exhibit a characteris-
tic dependence on A, and the chain length.

The method used to obtain our results is a vari-
ant of the moment method devised by Domb,
Maradudin, Montroll, and Weiss for the random
harmonic chain. Whereas these authors considered
the regular moments, we consider the moments of
their reciprocals

N

(1.2)
g =2

where the sum runs over all nonzero eigenvalues
(weighted by their multiplicity in case of degenera-

cy). The moments Mz are related to the first p
coefBcients in the characteristic polynomial

(1.3)
p 1

whose roots are the eigenvalues A,;. The coeAi-
cients Cz, and hence the moments Mz, approach
relatively simple forms in the limit of large chain
length X. We explicitly calculate the leading terms
and corrections up to relative order X for a
slightly simplified model, namely one in which the
trap depths are random but the heights of the bar-
riers between them are a11 equal. We can also treat
the case when only the barrier heights fluctuate or
when bath parameters fluctuate independently of
one another. Correlated fluctuations of trap depths
and barrier heights, however, would require a
modification of our scheme.

The first few moments contain significant contri-
butions from eigenvalues outside the asymptotic re-
gion. Higher moments Mz settle into a pattern
that can be recognized as the one generated by a
specific eigenvalue distribution. This distribution
is obtained by sampling a curve of the type

expressian for the Green's function of the problem
and show hom its trace is related to the density of
the eigenvalues.

In Sec. III we evaluate the coefficients in 61v(k)
asymptotically for large N; some of the combina-
torics involved is relegated to Appendix A. In Sec.
IV these results are converted into expressions for
the moments M„. Subsequently we show how
these moments can be reproduced up to first order
in X '

by a sequence of regularly spaced almost
degenerate pairs of eigenvalues. The pattern of
spacings between the members of these almost de-
generate pairs is equal to that of an exactly solv-
able case: a continuous diffusion model with a sin-

gle strang inhomogeneity, approximated by a local-
ized singularity. This model is discussed more ful-

ly in Appendix B. The results in Sec. IV do not
lead to a change in the low-frequency eigenvalue
density in the thermodynamic limit when com-
pared with a homogeneous chain in which a11 tran-
sition probabilities are replaced by their averages.
Such differences do appear when we carry our
scheme one order further in X '. This cannot be
done for the polynomial biv()1, ) itself, but only for
its ensemble average. In Sec. V we first justify the
use of this average for the specific problem we
mant to solve and subsequently apply the formal-
ism of Sec. IV to find the averaged eigenvalue den-

sity p()1,). Section VI contains a few concluding re-
marks.

II. PROPERTIES OF THE SECULAR MATRIX

We consider a circular array of N traps in which
a particle can jump between neighboring traps.
The rightward and leftward jump rates are anP„
and a„p„ 1, respectively, where a„ is the equili-
brium occupancy of the nth trap. This choice for
the jump rates automatically fulfils detailed bal-
ance. The occupatian probability for the nth trap
obeys the master equation

A,(q)= D1q D2q +— — (1.4)
dpn

an(Pn —1+Pn )Pn +an —1Pn —1Pn —1dt
at the regularly spaced points qi =(2vrl/N) and at
certain additional points very close to the regularly
spaced ones.

The paper is organized as follows: In Sec. II we
define the model and determine the characteristic
polynomial b,N(A, ). We observe that this polyno-
mial contains the parameters for the trap depths
and barrier heights in a symmetric fashion. This
feature is related to the existence of a unitary
transformation that interchanges the role of the
two types of parameter. We also give an explicit

+an+ iPnPn+1 ~ (2.1)

(P ~P ):QPn Pn an=hajj'
~(j) ~(j') (j) (j') (2.2)

and corresponding eigenvalues Aj that are the zeros
of the determinant hN(A, ) of the secular matrix

The system of equations (2.1) has a complete set of
eigenvectors p'J' satisfying the orthogonality condi-
tion
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S~(«)= 0 0

aiPN

0

0

a—i(PN+Pi } «— a2pi

a1P1 a2(P1 +P2)

0 a2P2

0

aip2
—as(P2+P3) —«

a3P3

0

aNrpN

0

0

aN ( PN —1 +PN }

(2.3)

All zeros of bN(«} are negative and real, except a single eigenvalue «1 ——0, corresponding to p„=a„. As a

preliminary towards determining hN(«) we first consider

—a„+,(p„+p„+,)—«

a„+ip„+,
D„~(«)= 0

0

an+2P. + i

—a.+2(P.+ i+P. +2) —«

a.+2P. +2

0

0

0

0

—a 1(P 2~P, ) —«

(2.4)

For D„(0) one readily finds (e.g., by induction)

m —1 m —1

D„(0)=(—1) +'+' g, g P B„(2.5)
j=n+1 k=n

I
Of course, the reduction process used to evaluate
D„(«)'works equally well for hN(«}, for which
we find

with a„(«)=(—I)"g(a, P, ) g VCg' (2.9)

m —1B„=+Pi '.
l=n

(2.6)

with

m —n —1

B„(«)=B„+ g B„'&1«&,
p=l

(p)B IP

& kp

—1 —1 —1
Bnk Ak& k&k2 k

(2.g)

In order to evaluate D„~(«) we first note that each
term contributing to the coeAicient of V consists
of a product of p+1 factors of type D;J(0). The
result may be written as

m —1 m —1

D„(«,}=(—1}"+ +' g g P B„(«) (2.7)
j=n+1 k=n

with

Cg() g(ak, 'Bk,k„,»
1&k] &k2 &kp &N 1=.1

(2.10)

where k&+1 =—ki+N, pN+,.=p;. Note that bN(0)
vanishes due to the presence of the eigenvalue

«1 ——0 (this is also readily verified explicitly).
The results (2.9) and (2.10) are the main results

of this section and the starting point for the
developments in the subsequent ones. We conclude
the section with two observations. First, the tech-
nique used to calculate hN(«), which relies on the
fact that only jumps to nearest neighbors are al-

lowed in our model, can also be used to determine
the resolvent matrix S '(z). It is the Laplace
transform of the Green's function G„(t), describ-

ing the probability that the particle is at n at time t
when it was at m at t =0. One finds using
Cramer's rule

N

b N(z)[S '(z)]„„=(—1) 'a„'g (a P )B„„(z), .
j=1

(z)[S '(z)]„=(—1) 'a„'g(a p )[B„(z)+B N+„(z)] (rii ) )

(2.11a)

(2.11b)

a [S '(z)] „=a„[S '(z)]„ (2.11c)
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with the B„(z)defined in (2.8). We employed the
convention at+tv =at, pt+x ——pt. Of particular in-

terest is the residue of S '(z) at an eigenvalue,
which equals

Resf [S '(z)]„ I, x a——p„'J'p'J'. (2.12)

It now follows from (2.2) that the residue of the
trace of S '(z) is unity. The inverse Laplace
transform of Tr[S '(z)] is therefore equal to
QJexp( —

~
)1J

~

t). This establishes the fact, men-

tioned in the Introduction, that the eigenvalue den-

sity and the trace of the Green's function form a
Laplace transform pair. We note in passing that
the relation (2.12) allows one in principle to deter-
mine the eigenvectors p' ' when the eigenvalues are
known.

We conclude this section with the observation
that the coefficients C1I1

' occuring in b.N(k) [see
(2.10)] may also be written, using (2.6), as

Jn =&npn &n+1pn+1

obey the master equation

djn

dt Pn (an p 1+an )Jn +Pn —1an Jn —1

(2.14)

+pn+ ian+ 1Jn+ 1 (2.15)

Comparison with (2.1) shows that the transforina-
tion (2.14) switches the roles of the a and p coeffi-
cients (to reach complete equivalence one must also
change one's convention as to "left" and "right").
The transformation (2.14) transforms the eigenvec-
tors p"' of (2.1) into eigenvectors j"of (2.15)
obeying the orthogonality rdation

(2.13)

with k~ &E, kz & l~ ~ k1+N, i.e., as a string of al-

ternating a ' and p ' factors. The symmetric
way in which the a ' and P ' occur is easily un-

derstood. The variables

p„' may be used to supplement the set of eigen-
vectors. A particular case of the unitary
equivalence connected to the transformation (2.14)
is that' between a model in which the a„are all
equal and the p„are arbitrary (random barrier
model) and the one for which the p„are equal and
the a„arbitrary (random trap model).

III. THE COEFFICIENTS OF
THE SECULAR EQUATION IN

A LONG CHAIN

The purpose of this section is the evaluation of
the coefBcients C„'~' of the secular equation

N

C„(X)=gJ&Cg'=0,
p=1

(3.1)

with CN1" given by (2.10) or (2.13) in the limit of
large Rand for p &~X. %'e treat the a; ' and

p;
' as random variables with averages (a ') and

(p '). Furthermore we assume that the devia-
tions 5J and 5&~ defined by

'&+~'&p '&-'

p-'=&p-')+~'( -')-' (3.2)

+p —1)
+ ~

2 1 )f~ '(a +att)+gCg'"',
2p —1

with (~ ) the usual binomial coefficients and

(3 3)

(3.4a)

are correlated at most over distances d short com-
pared to ¹ If we substitute (3.2) into (2.13) and
order the terms according to the number of factors

5J or 5&~ we obtain, using the combinatorial results
of Appendix A,

'Pi
~ (N+p —1}

( 2p —1

(2.16)

t=X~' (3.4b)

from which the unitary equivalence of the opera-
tors in the master equations follows. A slight
complication arises with the A, =O eigenvector

is mapped into zem by (2.14
One readily sees, however, that the vector j„'"=

The term Carpi'"' consists of a 2p-fold sum of
terms containing r factors of type 5. To obtain an
estimate of the range of variation of the Cg'"' we
consider its mean square ((Cg'"') ). Inside the
brackets we have a 4p-fold sum containing 2r fac-
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tors of type 5. Owing to our assumption that the
5J- are correlated only over a distance d, a term
does not contribute to the sum unless each 5J can
find a partner no further than d steps away.
Therefore we have

zeros of CN are simple. In that case the deriva-
tive has opposite sign at consecutive eigenvalues of
CP and so has CJ'). Therefore a zero of C~(')

must lie between both consecutive zeros of CP.]

((Cg(;r))2) 0(N4P r)— (3.5)
IV. EIGENVALUE MOMENTS AND

EIGENVALUE DISTRIBUTION

Thus we are justified in treating Cg'" as a quanti-

ty of order N ' relative to the main term in
(3.3), at least for low p. As we shall argue in the
next section, the low-lying roots of (3.1) depend
mainly on the lowest Cg', so it makes sense to try
and determine them by truncating the series (3.3)
at some low order r.

Truncating all Cxtp' after the first term amounts
to replacing the random chain by a regular chain
which all transition probabilities equal f i . The
eigenvectors are sines and cosines and the eigen-
values are

The coefficients Cz of the polynomial

b~(A, )=1+ g CpiLP (4.1)

are related to the zeros K; of hN(A. ) by means of
ihe relations

AJ. ——2f i [cos(2' /N) 1]—
(j=0, 1,2, . . ., [N/2]),

(3.6)

with [N/2] the largest integer not exceeding N/2
All except the lowest, and for even E the highest,
are doubly degenerate. Including the second term
in (3.3) does not alter the density of eigenvalues. If
we denote the polynomial obtained by truncation at
order N "

by CN")(A, ) then

(4 2)

N —1

Mp= g( —A,;) p (4.3)

by means of simple relations. The first few are

where the primes at the summations indicate that
each il must be different from all preceding ones.
The coeAicients C& are furthermore related to the
moments

M1 ——C1,

(3.7)
M2 ——C1 —2C2, (4.4a)

At all double zeros of CP(X) its first derivative
vanishes and its second derivative is positive, as
follows from its representation g. i(A, —AJ),
where each double eigenvalue occurs twice in the
product. Therefore, C„(')(A,) vanishes at all zeros of
CP(A, ) (except at the highest for even N), and its
derivative has the sign opposite to that of cr +cd.
The latter fact implies that CN(')(A, ) must have an
additional zero between any two consecutive double
zeros of CN( )(k). Moreover all double zeros of
C~( )(A, ) are single zeros of CP(A, ). In the next
section we shall be able to obtain still more de-
tailed information about the additional zeros.
[Note that a correction term as in (3.7) will not
change the eigenvalue density either, when the

M3 ——C1 —3C1C2+3C3,

M4 ——C1 —4C1C2+4C1C3+2C2 —4C4,

and the general expression is

Mn =n

I
m~ (( )'

xg (4.4b)

The summation in (4.4b) runs over all partitions W
of n objects into l groups (1 & l & n):



4334 U. M. TITUI.AER AND J. M. DEUTCH 24

m&

n =pl;n;, i=pl; .
i=1

(4.4c)
'2

Mi ——2f i g(2)
N
2'

[As an example: the partition (9) ~ (4)(2)(2)(1) has
n =9, m& ——3, l =4, (li, l2, l3)=(1,2, 1); (ni, n2, n3)
=(4,2, 1); its coefficient in (4.4b) would be —27.
One may show that all coefficients are integers. ]

Before one applies this formalism one must first
eliminate the eigenvalue A, =O by means of a
division through CN". The moments are then

X (1+X—X'+ X' —X'+ ),
'4

M2 ——2f i g(4)
2m'

X (1+2X+3X2+8X3+13X4+ ),

N

l =2

They are obtained from (4.4) by substituting

(4 5) M3 ——2f i g(6)
2m'

X{1+3X+—,X'——,X'+24X'+. . . ),

Cq ——Cn)'+ "/Civ" . (4.6)

If this program is carried out with CnP' approximat-
ed by

etc., with X=(o~+op)INf i and

g(q)= gn (4.9)

2N'~ 0'~+ CTp
[Ci~t"]'"= f'i 1+p

(2p!) Nf i

+O(N'i' ') . (4.7)

2'i' 'IB
I

g(2p) = (4.10)

the Riemann g function, which for even q assumes
the values

%e obtain a sequence of approximate moments
starting with

with 8& the pth Bernoulli number.
For 3 &p &7 the results we obtain satisfy the

formula

I'2p) (2p& , /2p') , t'2p'I

g(2p) 1+ (1)X+I, 2
IX'+ (3)IX'+ (4

IX'

'2

12 N
g(2p —2)[2p X +2p (2p —1)X~]+0(X')

(4.11)

(4.12)

with k„ the solutions of the equation

cosNk+ —,NkX sinNk =1,
which may be written in the form

2&n
k2n =

(4.13)

(4.14)

2%Vi
k2n+i =

2
1 1 2mn X

1+2 12 N 1+2

+O(X )

Of course, retaining the X terms is not justified in
view of the errors in (4.7). They have been re-
tained merely to facilitate the pattern recognition.
The pattern of zeros responsible for this sequence
of moments is

A,„=—fi 'k„' (n =2,3, . . ., ~)

The pattern of zeros satisfies the general proper-
ties derived in Sec. III after (3.7). The dispersion
relation (4.13) is derived in Appendix B for a
specific model, namely diffusion along a circle with
a single bottleneck. (The corresponding oscillation
spectrum is that of a thin elastic bracelet with a
single heavy point mass in it.) It is clear from
(4.12) and (4.14) that k2„+i —kz„ is of order
nN, whereas k2„—k2„2 is of order nN
Therefore, the doublets become narrower with in-

creasing N, even when one keeps nN ' (and hence
the value of A,) constant in the process. We con-
clude our discussion of the results (4.8) and (4.9) by
noticing that all correction terms for M& and the
last two in M2 correspond to divergent expressions
when the substitutions (4.14) are made. It is there-

fore not surprising that, but for the first one in M],
they do not conform to the pattern (4.11).
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V. THS EIGENVALUE DENSITY IN
THE LOW-FREQUENCY REGION

The eigenvalue distribution (4.14) does not lead
to an eigenvalue density different from the one ob-

tained by retaining the term CP(A, ) in (3.3).
Thus, the results obtained in. the preceding section,
though of some interest in their own right and as
an illustration of our moment method, are not very
relevant for the behavior of our system in the ther-

modynamic limit. To obtain results which do have
some relevance, we must consider higher-order
terms in (3.7}. However, then our program cannot
be carried out for the C~(A, ) themselves, but only
for their ensemble average. Fortunately, this is all

one needs for determining the low-frequency densi-

ty of states, as we shall argue presently:-
The expression for CP(A, ) as defined before (3.7)

cannot be cast in a simple form like the one
derived from (3.3). However, as we show in Ap-
pendix A, the ensemble average of CP(A, ) does
have a simple form in the limit of high ¹ an ex-
plicit form is derived there for the case where all

Pz are equal, and only the aJ are allowed to fluctu-
ate.

The relevance of the ensemble-averaged polyno-
mial for determining the averaged distribution of
eigenvalues can be argued as follows. From the
considerations in Sec. II it is clear that the number
of eigenvalues on a certain interval on the real line
can be expressed in the contour integral of the
trace of the resolvent along a curve encircling that
interval. By comparing (2.8) and (2.10) (see Ap-
pendix A for further details), one sees readily that
the sum over n of the right-hand side of (2.11a) is
just the derivative of b,iv(z) with respect to z. For
large N and small ~z ~, and at some distance from
their zeros, which all lie on the real line, both
b,iv(z) and its derivative have only small relative
fluctuations. Thus, it is justified to replace the

2N2p N2p —2«."')= " f, + " f, '(f, -,', f, )——
(2p)! (2p —3)!

+O(N" ') (5.1)

with

N

fz gg——(j —i)(N+i —j)(5 5 ) .
N I i)

(5.2}

Owing to the short range of the correlations only
terms with j—i «N or N +i —j«N contribute
to the sum, and f2 is a quantity of order unity.
The factor j —i arises from the fact that factors
a ' and P ' alternate in (2.13). For a similar
term containing the correlation function (5; 5J ),
this restriction is irrelevant. The presence of such
a correlation would lead to a term of order N
between the brackets in the second term of (5.1).
This would require an essential modification of the
procedure to be used to derive the density of eigen-
values.

If we apply the procedure of Sec. IV with the
averaged coefficients (5.1), we obtain for the first
few averaged moments

average of their quotient by the quotient of their
averages. If we make that approximation along the
entire contour, we obtain the number of zeros of
(b'av(A, ) ). The approximation breaks down when

Imz becomes of the order of the spaying between
the zeros of h~', for large N this part of the con-
tour becomes relatively unimportant. Note that
our argument relies crucially on the smallness of

~

z ~; for larger
~

z
~

the "method of the average
eigenvalue equation" can be justifiably criticized.

If we expand the coefficients in (Civ( }) in

powers of N ' and retain only the first nonvanish-

ing correction term, we obtain (see Appendix A)

Mi ——2
N
2m'

2
2

6
fi+(f2 ——,fi»

'4
4

'2

M2 ——2
N ir g N
2m 90 2m 6 fi(f2 ——„f» +o(N), (5.3)

M3 ——2

'6 ' '4

f,'(f, ——,', f, ) +O(N'},
2~ 945 2~ 90
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which suggests the general expression

Mp ——2
2p

P2p)ff2'
2p —2

P2p —2}ff '(f2 fl)

+0(N" ') . (5.4)

We did not prove (5.4) but verified it by explicit
calculation for 2(p (7. In particular, the emer-

gence of 8&z ——691/2370 in Ms and M7 was com-
forting [cf. (4.10)]. The moments (5.4) for p & 2
can be reproduced by assuming for A,; the, values

2&n
~2n ~2n +1 f 1

which may be considered as the main result of our
paper. The corresponding asymptotic decay of
(G„„(t))is

(Gnn(t)) = ——,, /~
. (5.10)

(rrf, t)'~ 4 (rrf(t )'~

For a random harmonic chain the variable —A,„
corresponds to the square of the nth phonon fre-

quency con. The density p(to) at a low co is related,
e.g., to the low-temperature specific heat of a
chain. The leading term in (5.9) is well known. '

The explicit expression (3.4a) for f~
when both a;

and P; are random may not have appeared in the
literature, but its form is clearly indicated by the
scaling considerations in Sec. IX of Ref. 1. The
correction term in (5.9} is new.

4

VI. CONCLUDING REMARKS

(5.5)

and substituting the Taylor expansion

2p 1

pn' f2 —uf~
2mn

' 4~2 f,

in the expression

j=2

(5.6)

(5.7)

p(A, )=2 dlA,
dn

(5.8)

Even the discrepancy for M, in (5.3) becomes
understandable. Substitution of (5.6) in (5.7) yields
a divergent result; the actual Mi includes contribu-
tions from high-lying A,„ for which the approxima-
tion (5.5} is not adequate.

From the considerations earlier in this section it
is clear that (5.5} need not be the actual zeros of
any particular r'ealization hn(z). They do, howev-

er, lead to the correct average eigenvalue density.
This density is given by

' —1

p(n) (A, &0),

The result (5.9) basically states that as far as the
low-frequency density of states is concerned, a ran-

dom chain behaves very much like a homogeneous
one. The terms with f&

in (5.9), and in (5.5) on
which it is based, are simply the Taylor expansion
of the expression (3.6) for a homogeneous chain.
However, correlations do influence the first correc-
tion term. If the inhomogeneities are sufficiently
large and positively correlated over some distance,
they may even change the sign of this term. Of
course all this presupposes that f~ and f2 do have
a thermodynamic limit. Our discussion of this
point in Sec. III did not cover the case when the
a ' and P ' both fluctuate and have nonvanishing
cross correlations. Similarly, it is not clear wheth-
er extending our calculations by including more
terms from the expansion (3.3) will provide further
well-behaved correction terms.

A particular case for which the corrections are
well-behaved, albeit trivial, is that in which no
correlations exist at all. Then all correction terms
in (3.3) have vanishing expectation values and the
density of states is exactly given by that implicit in
(3.6):

where p(n), the density of integers, is of course'uni-
ty, and the factor 2 stems from the double degen-
eracy. Substituting (S.5) and converting to the
variable A, yields

p(~) = [1——(fz ——fi) I
~

I + 1

3 1

rr(f,
l

A,
l
)'~

(A, & 0), (5.9)

po(~) =
m[1 —(1——,f) l

A,
l

) ]'~

( 4f, '&A, &0) . (—6.1)

Of course, the expression holds only for small

f~ l
A,

l
since only terms in (3.3) with p &&N have

the property that their mean square is small, which
in turn is a requirement for the applicability of the
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"averaged eigenvalue equation method. " Indeed,
numerical results on the eigenvalue distributions
in random chains show that the irregular peak
structure characteristic for spectra of random
chains sets in for "wave vectors" that are an appre-
ciable fraction of the maximum wave vector of the
corresponding homogeneous chain. (For any one-

dimensional chain, regular or random, with period-
ic boundary conditions, the eigenvectors p2„and
pi„+i have exactly 2n nodes, hence N in may be
interpreted as an average wavelength of this eigen-
vector in units of the distance between successive
traps. )

The moment method used certainly has the
disadvantage that the distribution of zeros must be
guessed from the fingerprint" they leave in the
form of the moinents Mp; no general methods are
known to us. On the other hand, the method is
free of approximations and it may at the least serve
as a check on approximate methods. %e note in
this connection that the contour integral justifica-
tion for the average eigenvalue equation method

may be avoided. Instead one may multiply the
characteristic polynomials b,z'(A. ), 1 &i &M, and
determine the distribution of zeros of this polyno-
rnial of NMth degree using our moment method.
Dividing the resulting eigenvalue density by M
leads again to the results in Sec. V, under the as-

sumption that M is large compared to N . This
would be typical for three-dimensional samples in
which excitations may diffuse along one-

dimensional chains that are long on a molecular
scale, but not quite as long as the dimensions of
the sample.
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APPENDIX A: SOME COMBINATORIAL
RESULTS

The first problem addressed here is how many
ways are there to distribute (p —1) a ' at points

k~ and p P ' at points I; subject to the restrictions
(2.13) with kz

——M+1. To answer this, first
choose 2p —1 numbers from the set
(1,. . .,M+p —1) and label them mj in ascending
order. Then set

l; =mq;+i (i ——1),
k. =m2 +2 —j .

The set t I;,kj I obeys the restrictions imposed.
The number of ways the mj can be chosen is obvi-
ously

M+p —1 ~ p —
&~ (p)= I 2 1

—— g(M' —q') .
p —

2p —1!
(Al)

This explains the coefficient of o in (3.3); the coef-
ficient of 0'p is obtained by a minor modification of
the same argument. To find the number of ways
in which p a ' and p P ' can be arranged on a
ring, first fix the label of one of the a '. The
remaining labels can be distributed in A z(p) ways.
The a ' singled out at first can occupy any of N
places, but it may be any of the p a ' in any given
configuration, hence the additional factor N/p in
the first term in (3.3). Expanding this factor in
powers of N using (A 1), one obtains

N fN+p —1! N2s

P ( 2p —I ) p(2p —1)!,N +

2N J'

1
p(p —1)(2p —1)

O N g 2N ~

(2p)! 6N' (2p)!

g2p —2

+O(N ~ ),
12(2p —3)!

(A2)

which explains the coefficients of the terms with fi
in (5.1). The "cutting argument" used to relate the
.coefficients in (3.3) can also be used to show that
the sum over n of the right-hand side of (2.11a);s

I
the derivative of hz(z) with respect to z. The coef-
ficient of AP in this sum contains g„a„'B„'~~+„.
The sum of all terms in Cg' that correspond to
taking a factor ( —A, ) at the nth diagonal site con-
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tains a„'8„'„+'N. Summing this over n yields
pCiiIi" since each term is counted p times. This es-

tablishes the required relationship.
To calculate the contribution to Cg' ' in (3.3)

containing the product 6; 5J we must find the
number of ways one may distribute p P»

' and

(p —2) at ' over the remaining sites. Both the
inner and the outer gap must contain at least one

P» ', since at ' and P»
' must alternate, including

the two fixed aI ' at sites i and j. Thus one ar-
rives at

N p —i (j i +—q —11Cg" =fbi 'y y-y l~ 2q

(N+t —j+p —q —11
xl

2p —2q —1

&(5; 6J

for the case when all 5,~ vanish; the index q stands
for the number of p» on the segment [i,j) .This is
is not simply a multiple of the unaveraged version

f2 of f2, defined in (5.2); it also contains terms
proportional to

N N

f2 ' ——
2 g g(j i)~—(N+i j)e5—; 5~

for all q up to p —1. However, when one takes the
ensemble average of (A3) and assumes short-range
correlations, only the terms with j i s—mall [or
N+i —j small, but this yields only a small correc-
tion, which is nevertheless recaptured in the second
line of (A5)] survive, and for those the contribution
with q =1 is by far the largest. Hence

N N

(Cia"' ') g g(j t)—
i =ij=i

+i —j+p —2)
2p —3

le-'(s s )1 i j

N2p —4 N2p —2

(2p —3)! (2p —3))fi 'N'fif2, = f'i 'f2 (A5)

This completes our derivation of (5.1). .
( ) D dp{x,t)

dt x=0

APPENDIX B:DIFFUSION WITH
A SINGLE BOTTLENECK.

dp (x, t)
dx x=L

(B3)

dp (x, t) d2p (x, t)
dx

(Bl)

Consider a particle diffusing on the segment
(O,L). The time evolution of its probability density

p(x, t) is governed by

To find the eigenvalues of this system

kq ———Dkj,
we substitute the solution of (Bl)

—~A, ~t ik x —ik.x
p(x, t)=e (aje ' +bje ' )

(B4)

(B5)

The ends are connected via a "leaky valve"
through which a current proportional to the con-
centration jump flows:

j(t)= yD[p (O, t) —p (L,t)] . —

Furthermore, one must have continuity of current:

in the equations (B3) and (B4). The determinant of
the resulting system of equations equals

6=2@(1 coskJL ) —kj—sinkJL .

Putting this equal to zero and setting y '=XX
yields the equation (4.13).
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