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A method is presented by which the coefficients of a potential expansion into spherical
harmonics are related to invariant components of multipole moments, centered at a
representative point of crystallographically equivalent positions. The quantities which es-
tablish this relation (named K factors), are completely determined by the space group of
the crystal and the unit-cell dimensions. They can be tabulated for any crystal structure,
and tables are given for three important cubic space groups. On the basis of such tables,
the determination of the expansion coefficients for the Coulomb potential in crystals is re-
duced to the evaluation of multipole moments of the charge density in spatial regions,
partitioning the asymmetric unit. This method can be used in quantum-mechanical cal-
culations as well as in classical treatments of the Coulomb potential. It permits large
flexibility in potential calculations with differing electronic charge distribution and is
therefore very convenient for self-consistent procedures. It also allows a systematic com-
parison of Coulomb interactions in different types of crystals and can therefore be an aid
for the understanding of ionic structures.
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I. INTRODUCTION

The study of electronic properties in crystals
often requires a sufficiently accurate evaluation of
the potential produced by the charge distribution
within the crystal. It is mainly the long-range
Coulombic part of the potential that makes this a
rather difficult task, especially in ionic materials
where the binding of valence electrons to the indi-
vidual ions is too strong to allow for an effective
screening of the ionic charges. In the literature
two different methods have been used to treat crys-
talline potentials. The first is to replace the real
charge distribution by a much simpler one, for ex-
ample by point charges or Gaussian functions,
which of course is only reasonable in ideally ionic
materials. The resulting three-dimensional lattice
sums are quite interesting from a mathematical
point of view, and different methods have been
used to evaluate them with high accuracy.'—*
These methods have been established not only for
the case where the lattice points are occupied by
point charges, but also for the more general case of
multipole moments of arbitrary order.>® The re-
sults of such calculations have been used in a semi-
empirical way to get a better understanding of vari-
ous physical properties, such as the crystal binding
in ionic materials,’ the lattice contribution to the
electric field gradient at the nuclei,° and many
others.
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The second way is to replace the real crystalline
Coulomb potential by a potential of a simpler
form. In most band-structure calculations or in
crystal-field theory, for example, only the interac-
tion with a limited number of neighbors is taken
into account. In most cluster calculations the ef-
fect of the crystalline potential is replaced by sur-
rounding the cluster with a charged Watson
sphere.

Recently, several approaches have been made us-
ing “embedded clusters.”®~ 12 Here the crystal po-
tential is calculated in each cycle of a self-
consistent procedure from the periodically arranged
charge distribution obtained for the cluster. These
calculations have shown that the potential from
sources external to the cluster may have a rather
significant effect on the cluster wave functions.
The external potential effects not only the boun-
dary conditions but also the periodicity of the po-
tential within the cluster, neither of which can be
obtained by the Watson sphere technique.'”

The exact evaluation of the potential from a
given charge distribution, however, requires the
summation over a great number of lattice points
with all the convergence problems well known
from the evaluation of Madelung constants. These
problems have led some authors to use only the
point-charge contribution to the crystal potential
for the stabilization of the clusters.!® This approxi-
mation is reasonable for ionic materials where all
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ions are at high-symmetry positions, such as those
of the NaCl or CsCl type. It will be rather poor
for partly covalent compounds or for those ionic
materials where the point symmetry of the ions al-
lows the occurrence of low-order multipoles.

In the following, a method will be outlined
which considerably simplifies the evaluation of the
Coulomb potential for a given charge distribution.
The basic point is the expansion of the potential
into spherical harmonics and the relation of the ex-
pansion coefficients to certain invariant multipole
components of the charge density centered around
just one representative point of all crystallographi-
cally equivalent positions. It is a generalization of
a method for the calculation of electric field gra-
dients in multipole lattices, introduced by Hafner
and Raymond,® who made use of the fact that mul-
tipole moments and potential derivatives are relat-
ed by certain quantities (called K factors by these
authors) which depend only on the structural
geometry of the crystal and not on the magnitude
of the multipole moments. Rudge has indepen-
dently introduced similar factors for the evaluation
of potentials in augmented-plane-wave (APW)
band-structure calculations.!>!* He has derived an
expression for these factors from the Ewald series
for the potential and called them “Ewald coeffi-
cients.” From the present work it will become
clear that the mathematical basis for the introduc-
tion of crystallographical factors which relate mul-
tipole moments of the charge density to expansion
coefficients of the Coulomb potential (the term K
factors will be kept for these) is independent of the
Ewald method.

It will be outlined in the next sections how K
factors can be calculated for any crystal structure.
In the following section, basic relations among in-
dividual K factors are given, which considerably
reduce these to a minimum set of independent fac-
tors. These are tabulated for some of the most im-
portant cubic space groups and provide the basis
for potential calculations in a great number of dif-
ferent crystals. Finally, the relations of the present
work to other approaches in this field and the ap-
plicability of the method to various problems deal-
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ing with Coulomb interactions in crystals, will be
discussed.

II. POTENTIAL EXPANSION

The ‘Coulomb potential, produced by the crystal-
line charge density p(T’), is obtained from the solu-
tion of Poisson’s equation as

vie)= [ LT g3, ()
& r-r|
The crystalline space Q) is now partitioned into re-

gions (); and reference points R; are chosen for
each (; according to the following rules:

@ Uo=0

1(b) Q n Q;=0 for all pairs i,j with i=4j, and
10) |T—K; ] <|R; R | for all Y€Q; and all
JFL

The expansion of 1/|F—T"'| into spherical har-
monics Y}, leads to the following expression for
the potential in one of these regions, say i:

VIE)=VHE)+ 3 Vit ¥ (53

ILm (2)
ITi| <min{ [T} |}, T/ €Q;, joi
with T, =F—R,,
p(ti)
vice= [, ————d’r', 3)
fﬂ lrl—rl I

i -=>! I-—I —> ’
Vim= 2,+1 b Jo T =Y (5

4)

Vi are the desired expansion coefficients for the
potential in region ;. They depend on the charge
distribution in all reglons Q;, disjunct from ;.

The term V5 (T;), i.e., the contribution from the
charge density in the region where the potential is
evaluated, is of no further interest here (cf. Ref.
15). For the evaluation of the integral over (}; the
origin is shifted from R to R

fnjm?; VY, (7] )dr = f,,jpfﬁ}) | T+ Ry | VY, (75 +Ryj)dr; (5)

where p/(T;) has been used instead of p(T; +R,J) and R,J

R R Now the poly-polar expansion of the

“irregular solid spherical harmonic” in the integrand is performed
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T e 1’ ! 1' = (1 I 1 —
)= 3 (=0t Yy (T O S, ),

I'=0 m'=—_r
6)
172
P 20 +1 I+I'4+m —mWI+!I'—m +m')
milm = Tl 2l + DI+ 1) (Fm W —m W+ —m)! ’
7)

and |7 | < [T .
As |T;| <| R,] | is always valid because of rule
1(c) above, this leads to

V;m = 2 2 (— 1)1’+m'Qlj’m’al’m';lm ‘R’J , —(I+r+D

jFil',m
X Y14 rm—m(Rij) . (8)

Ql,, is the multipole moment of the charge distri-
bution in region (}; relative to the reference point
R and defined as

of,= 21+1 fﬂ pI(Tj)r; Y;,,,(rj)d3rj ) 9

Thus, the determination of the expansion coeffi-
cients V,,,, is reduced to the calculation of multipole
moments for the different spatial regions'’ and the
evaluation of a lattice sum (8).

III. SPACE-GROUP SYMMETRY
AND K FACTORS

The evaluation of the lattice sum (8) can be con-
siderably simplified if the full space-group sym-
metry of the crystal is taken into account. In order
to apply symmetry considerations, it is essential to
impose another constraint on the choice of regions
Q;:

1(d) The shape of the surfaces of regions (;
must be invariant under the space-group opera-
tions.

For the identification of a point ﬁi, the following
notations are used:

2(a) Subscripts u,v refer to the point position.

2(b) M, is the multiplicity of u.

2(c) Subscripts 7,j number all equivalent points
belonging to a given position (i, =1, ..., M,).

2(d) T, gives the position of some reference
point in the unit cell A.

2(e) 7 is a vector relative to this reference point.
point.

Following these Tules, any vector of a fixed posi-
tion is given by T)+ 7, i and (8) is now written as

W—EZE E Ql;,n(—11+ a1’ Im

v j,=11 m==-I
><SI+I’,m ——m’('riu,jv)

(10)

(r, Jy= 'r] - T, ). Here, a notation is used which

is s1m11ar to that of Nijboer and De Wette!” for lat-
tice sums of the type

Sim(7)= 3" | Ta+7 | ~4VY,, (T4 7)
A

11

where Y ' indicates that in the case 7=0 the
term with TA=0 is excluded. If the lattice is not
primitive, (11) includes also a sum over the face-
centered or body-centered points.

As the potential is invariant under the opera-
tions of the space group G of the crystal, it is suit-
able to use invariant combinations of spherical har-
monics in the potential expansion instead of ordi-
nary spherical harmonics. Their determination is
described in Appendix B. For position u, these in-
variant combinations are given by

YL(T)=

tﬂ‘ l‘A‘:E

!
S dnmliu)Yin(T)
m=—1 (12)

(n=1,...,N,, N,<2I+1).

n distinguishes between the N L different invariant
combinations for the same value of I. The func-
tions

i

2 d () Y (T3) (13)
m=-—I|
with the same coefficients d; , (i ) as in (12) are
now invariant under the operations of the point
group G, of position u.
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When expanded in invariant combinations of
spherical harmonics, the potential J'#(F; ) has the
M
form

VT, )= Vﬁ;‘(?,- )

+3 2 Pk () (14)

n=1

where the coefficients #°}*, are now independent of
a particular choice of an equlvalent point i,.
Companson with (2) gives

Vit = EV Al i) (15)
n=1
Using the orthogonality condition (B12), one ob-
tains

I R (16)

m=—1

Ln=

which is valid for all i " Therefore, it is sufficient

|

to calculate V;,‘,‘, just for one of the equivalent
points, say 1, (see also Appendix C).
Now, symmetnzed multlpole moments 2, can

be introduced instead of Q,,,,

H

= vl g luz g3
2in= 21+1 fﬂ #(rly)r]”@,,,,(r,“)dr

(17
As the charge density p(T) and the shape of re-

gions Qiﬂ are invariant under the space-group

operations [rule 1(d)], these are the only indepen-
dent quantitites which completely determine all in-

dividual multipole moments Q;,’,‘,:

Nl

Ok = E Q,,,d,’,m(t ). (18)

n=1

Equations (16), (10), and (18) lead to a very con-
venient expression for the expansion coefficients:

V’fn = 2 2 ZK ,I,n;v,I’,n’QlY,n' ’ (19)
v I' n
Kypnsw = 2 ldrim(1 ) 2 2 dy. '(jv)(—1)Il+m,al’m';ImSI+l’,m —m'(?lyrjv) : 20)
m=— jy=1m'=—1I
I
The K factors K, ; .y,1,» relate the n'th in- Sim(T)=3" | Ta+7 | U0y, (Th+7) .

dependent component of the multipole of order 2" A
at all equivalent points of position v, to the nth in-
dependent expansion coefficient of order / for the (11

potential in any of the equivalent regions Qi” of

position p. The great advantage of expression (19)
is that the K factors are fully determined by the
crystal structure and do not depend on the charge
distribution. They can be tabulated for any partic-
ular structure and allow for an analytic expression
for the potential in different spatial regions if only
the multipole moments are known up to sufficient-
ly high order.

IV. CALCULATION OF K FACTORS

The main problem in the calculation of the K
factors is the evaluation of the lattice sums (11):

For a detailed mathematical discussion of this
problem the reader is referred to Tosi.”
It is well known that the sum (11) is absolutely

convergent only for / > 2, whereas it is conditional-
ly convergent in the case / =2 and divergent for

I <2. Therefore, the insertion of the sum (11) into
the expression for the K factors (20) is meaningless
in the cases I +1' <2. In these cases, however, an
absolutely convergent expression for S; », can be ob-
tained if one starts from the Ewald series’ for the
potential of a set of point charges ¢*=0Q¢o/V4m
at the equivalent positions j, of point position v
which fulfill the neutrality requirement

2 M,q7=0:
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e 3o 3 3T TR =1 —2gts
Py )= q" ' A+ T, —Ti, | T —24%/ao
W jv2=1 A I(5,0) o
1 - o - =
+—— 3 'G(K;) | Ky | “2exp(—mal | K; |24 2miK, T; ) ‘ 1)
77'00 A [

Here, the superscript p indicates that only the
point charge contribution to the potential is con-
sidered. () is the volume of the unit cell, IZA are
vectors in the reciprocal lattice, T is the incom-
plete gamma function

Pnx)= [ e~ ~dr, @

and G (K ) is the structure factor of the unit cell
M, -
GK)=3q¢" 3 exp[—ZWiK'(?jv—?,vu)] .
v Jj,=1
(23)

—
ay is the length unit chosen for the sums (21). To
achieve approximately the same rate of conver-
gence for the sums both over the real and recipro-
cal lattice, a¢ has to be chosen such that ay=0}".
In the sum over the reciprocal lattice, the term
with K; =0 is absent because of the charge neutral-
ity of the unit cell.

Now, ? V:{,‘o.: VA7 Py'*(0) and the P Vt,‘fm are re-
lated to V7 V“‘(f}”) |, =o. Forming the gradient
of (21) and rearranging the order of summations as

in (19) and (20), one finally arrives at the following
expression for S, with / <2:

Sim(F)=[CU+5,017" | S TU+5,7 | To+7[2/ad) | Ta4 7| ~ DY (Ta+7)— 81,687 .02/a0

A

+iltd 120457 > K, | 2exp(—2miK, - F—mad Ky | DY (Ky) | .

A

The justification to use this expression for S, in
(20) not only for the case I'’=0,/ <2 but also for
the case [ =0,/" <2, results from a reciprocality re-
lation for the K factors which will be discussed in
the next section.

Nijboer and De Wette!”!® have shown that (24)
holds also for the case [ >2 for the sums (11) if the
term with I_('A:O is included in the second sum in
(24). This term vanishes for / >2. For /=2 it
gives a contribution which depends on how K is
approaching zero in the reciprocal lattice, or, in
the real lattice it depends on the shape of the crys-
tal.'> For a spherical shape this term vanishes also
for I =2 and (24) can be used for all values of 1.

For [ +1'> 2 it is also possible to obtain the lat-
tice sums by direct summation in the real lattice,
since the sums are then absolutely convergent and
do not depend on the order of summation. This
procedure is often much faster than the use of (24),
especially for large values of / 4+’ or if the unit cell
contains many atoms. A detailed discussion of the
direct summation has been given by Mathies.>®

(24)

f

Here, a different derivation of the relevant expres-

"sions is given and applied to the evaluation of K

factors. Comparison of (20) with (10) shows that
for fixed v,/’,n’ the sums over equivalent points j,,
in (20) correspond to those in (10), but with mul-
tipoles of strength d,i':m:( Jj,) at the points j,. The
idea is now to treat the unit cell as a whole, evalu-
ate its multipole moments Qy, (v,l',n";i,) as pro-
duced by the individual multipole moments

d,i:mf( Jjy), with respect to the point ?iu, and then
sum over all unit cells.

If the sum over the unit cells would start just
from the first neighboring shell of unit cells, Qi
would have to be calculated to rather high order to
achieve convergence. Instead, the expression for
the K factors is split into two parts:

(Ay) [A]
0 0
Ku,l,n;v,l',n’=Ku,l,n;v,l’,n’+Ku,l,n;v,l’,n' ’ (25

where the first part is obtained by explicit summa-
tion over the first A shells of neighboring unit cells
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() , (Ag)
Ku,l,n;v,l’,n’— z d m(1 2 2 d m (G )(—=1) +malm im 2 |TA+71 Wy I YIm(TA+Tl Jy )
m=— —l m'=-I
(26)
A . . .
2; o means that only the first Ay neighboring shells of unit cells are included in the sum.
In the second part, the contributions from the multipole moments of the whole unit cell are summed
[Ao) ! o , [A,)
Kuinwiw= 2 dom(l) 3 T Qe ln 31,0 (= 0 ™ g Syt (0)
m=—I =r'm’'==1"
27

S,f,t"](O) is equivalent to (11) but with the contributions from the first A, shells of neighboring unit cells ex-
cluded from the sum

ol . LAl

Sim (0=, (28)
A

[Ty | VY, (T .

These sums run over all points of the periodic lattice and need to be calculated only once for a given lattice
type. Furthermore, the symmetry of the lattice reduces the number of independent sums (28) considerably.

The multipole moments of the unit cell are given by

Olmv,',n'; siy)= 2 zdn m(]v)clmlm ITI iy |

Jy=1m’

with

2I'+1

Yt 7 )
(29)

(I +m)I —m) 2

Cim;lm = YT o T )2 —20'+1) P +m W' —

a relation which can be easily derived from the
general expression (9) for the multipole moments
and'the poly-polar expansion of

| Tt Tis, | Ym (T 4715

as given by Steinhorn.!®
V. RELATIONS BETWEEN K FACTORS
The number of K factors that have to be deter-

mined for a complete description of the potential is
J

]

1 u
i, =

I»tt# Im

K/,L,I,n;v,l’,n’-

i nm(’)z 2 d

— jy=1m'==-10

which is equivalent to (20) as the summand does
not depend on i, and the properties of the lattice
sums S, :

m' Wl —I'"+m —m'" W] —-1I"—

’

m+m’)

-
considerably reduced because of interrelations
among different K factors which will be derived in
the following. Three different kinds of such rela-
tions can be distinguished:

(a) relations between K factors for the same
structure,

(b) relations between K factors for different struc-
tures, and

(c) relations between K factors that refer to dif-
ferent sets of invariant spherical harmonics.

Relations (a) and (b) can be derived from the fol-
lowing expression for the K factors:

'(]v)( —1 )l'+m’al'm’;ImSI+l',m _m'(’?,'wjv) (30)

=2y_(__ 1)\ -
Sim(—T)=(=1)8,,,(7), 31)

S)_m(7)=(—1)y"S5 (7).
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(a) For all K factors related to the same struc-
ture, a general relation of reciprocity is valid,

(D) Mﬂ(21+ 1 )Kp,,l,n;v,l’,n'
ZMV(21’+1)K:,I',II';[L,I," . (32)

If the point groups of both u and v are the point
groups isogonal with the space group, then
M,=M,=1 and

(n Kll,l’"W:l'y"':(_1)I+I’Kv,l,n;,u,1’,n’ (p=£v)
(33)
(1II) K,u,l,n;u,l’,n'ZO, I 41" odd . (34)

Besides (I) — (III) there are additional relations for
special cases which are not quoted here.

(b) K factors that refer to different structures, say
A and B, can be related to each other if A and B
have the same Bravais lattice with identical dimen-
sions. In this case, the lattice sums S; ,,(7) have
the same value in both structures: ‘

S{a (V=S5 (7).

Now let positions p4,v,4 of structure 4 have the
same coordinates as positions pp,vp of structure B.
Then, for all values /,/’ which have the same in-
variant combinations of spherical harmonics in
both structures (@1,,, —-@,,, ,@/, n,_@,, »), the K
factors are the same in both structures:

A B
(IV) K,u.A,l,n;vA,I',n’:KyB,I,n;vH,I’,n’ : 35)

(c) The third set of relations concerns transfor-
mations in the set of invariant combinations of
spherical harmonics. Let such a transformation be

za ,u)@ . (36)

The new functions % {» are orthonormal in the
sense of (B4) if the transformation matrices 4 with
elements 4, _—a (1) are unitary, 4 "'=A47.

Transformatlon (36) transforms also the invari-
ant multipole components

Za (,uQ . (37

Then K,  n;y,1,n>» Which refer to the sets ), and

2., are t transformed to K wln;v,ln’» Which refer to

the sets 2,,, and Q,,,, by

=3 Sar, (K (V) .
Ao

K/.t,l,n;v,l',n' wlawvl, i

(38)

TABLE 1. Representative points for different posi-
tions for which coefficients of invariant functions are

given in Table II.

Pm3m Fm3m F43m

m3m 1a(0,0,0) 44(0,0,0)
1 11
lb(g,'z— 7) 4b(—77)
Bm 8c(,13)  4a(0,0,0)
4c (4’4’4)

4/mmm 36(%,%,0)

An example for such a transformation is that from

complex to real spherical harmonics and vice versa,
the transformation matrices of which can be easily

derived from relations (A1) —(A4).

TABLE II. Coefficients d,, m(iy,) of real spherxcal har-
monics Y, (T; ) in invariant combinations 91,, Coeffi-

cients are only given for the representative points of
Table 1.

m3m

(=)
—

4 V712 V5712
6 Vv1/8 V7/8
43m

m -2 0 4
i
0 1
3 1
4 VT2 V5712
6 —v1/8 V7/8

4/mmm

m 0 4
1 n
0 1
2 1
4 1 v'9/44 V35/44
4 2 —V35/44 V'9/44
6 1 —v25/88 —1v'63/88
6 2 —v63/88 v25/88
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TABLE III.
power of ten.

4247

Independent K factors, K}, ; n.y,r,n X a6+, for space group Pm3m. The numbers in brackets give the

p:la;v:la /u:1b;v:1b

I 0 4 6
1
0 —1.837297(0) 1.220887(1) —5.846 834(0)
4 2.607434(2) —3.773 148(2)
6 . 1.091 675(3)
pila;v:1b
I 0 4 6
1
0 1.980640(—1) —2.441081(1) —4.969 736(1)
4 3.511278(2) 3.890408(3)
6 1.567999(4)
v:3c
! 0 2 4 4 6 6
n' 1 2 1 2
In
u:la
0 1.252'435(0) —2.907245(1) —1.018 142(2) —1.336294(2) —1.127820(2) 2.625726(2)
4 —4.641022(0) —1.730983(2) 7.215516(3) 1.059 147(3) 1.392969(4) 1.171726(4)
6 2.134391(1) —1.768 711(3) —1.528077(4) —3.784 559(4) —1.693074(5) 3.877591(5)
p:lb
0 2.712203(0) 1.008 982(2) 2.708 592(2) —5.013696(2) —1.496224(3)  —2.347401(3)
4 4.940612(1) " 6.605 869(3) 7.604 583(4) —1.454243(5) —1.317021(6) —1.969 847(6)
6 —7.464007(1) —1.888 895(4) —2.857 158(5) 7.061 800(5) 5.991 456(6) 1.520299(7)
. n:3c
0 —1.002 341(0) 9.690 818(0) 6.709 101(0) 5.604 949(1) —1.262013(2) 1.291 566(2)
2 1.799 656(2) 2.648 139(1) —2.041521(2) 9.764 758(2) 2.659716(3)
4 1 3.487573(3) —9.376738(2) —1.128 750(4) 1.348 516(3)
4 2 5.182975(3) —1.389953(4) 1.205 728(4)
6 1 2.893 882(5) —2.232725(4)
6 2 2.336076(5)

VI. K FACTORS FOR
CUBIC SPACE GROUPS

based on real spherical harmonics. For complex
spherical harmonics they can be simply

transformed using Egs. (36)—(38) with (A3) and

In cubic structures there is only one lattice con- (A4).

stant, ag. Thus, if the K factors are given in units
of ay, they can be used for any crystal structures of
the same space group. As an example, tables of K
factors (Tables I—V) are presented for space
groups Pm3m, Fm3m, and F43m, including the
point positions la,1b,3c of Pm3m, 4a,4b,8¢ of
Fm3m, and 4a,4c of F43m. These cases comprise

Only independent K factors are listed. All oth-
ers can be obtained from the relations (32)—(34)
and an additional relation

— _ I+I'E
K4a,l,n;8c,l',n’—(_l) K4b,l,n;8c,l’,n’

valid for the K factors that refer to space group

all crystal structures of, e.g., CsCl-type, perovskite
(CaTiO;)-type, NaCl-type, fluorite (CaF,)-type, and
zinc-blende (ZnS)-type compounds. All tables are

Fm3m. For the zinc-blende structure (space group
F43m) the K factors may be compared with simi-
lar factors, recently calculated by Szmulowicz® for
use in APW calculations on the basis of Rudge’s
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TABLE IV. Independent K factors, K, ;n;s,r,»Xao*' ™, for space group Fm3m.
1:4a;vida /u:4b svidb
Iy 0 4 6
1
0 —5.848621(—1) —2.956033(1) 2.716237(2)
4 : 6.494916(3) 5.699014(2)
6 4.125 126(5)
wida;v:4b
I 0 4 6
1
0 2.910267(0) 4.202 442(2) —1.020018(3)
4 1.270057(5) —7.733107(5)
6 8.530487(6)
v:8¢
r 0 3 4 6
1
wida
0 6.396 128(0) —4.197781(2) —7.811458(2) —6.361262(3)
4 —8.679398(1) 8.561073(4) 1.797 774(5) 7.967 556(6)
6 —4.893278(2) 9.115007(5) 5.516 000(6) 1.284 504(8)
u:8c
0 2.325405(0) 0.0 3.906 839(2) —7.483948(2)
3 6.079 485(3) 0.0 0.0
4 1.335006(5) —7.727408(5)
6 8.943 000(6)

method.!* The factors 4

Inv

Fn'y" of Ref. 20 for 1,1'540

can be related to the K factors K, ; .,/1rp' by
Ky pm,r =242+ DA

Considering this relation and the slightly different
definition of invariant spherical harmonics used by
Szmulowicz, complete agreement is found between

the two different approaches for the factors with

TABLE V. Independent K factors, K}, j n.v,r,nXa0"' +!, for space group F43m.

pda;viaa /pdc;vide

I 0 3 4 6
)
0 —5.848621(—1) 0.0 —2.956033(1) 2.716237(2)
3 1.278 475(3) 0.0 0.0
4 6.494916(3) 5.699 014(2)
6 ‘ 4.125126(5)

p4a;vide

4 0 3 4 6
1
0 3.198064(0) —2.098 890(2) —3.905729(2) —3.180631(3)
3 —1.497055(4) —5.503547(4) —8.463935(5)
4 8.988 872(4) 3.983778(6)
6 6.422522(7)




Xabt! where aq is the lattice con-

®
Ln

TABLE VI. Potential expansion coefficients 7," » for different crystal classes with cubic Bravais lattice. The entries give 7
stant and p the position given in the second column. ‘The respective invariant spherical harmonics are given in Table II. The numbers in brackets give the power

of ten.

q/e
+1

Position
1a(Cs)
1b(Cl)
1a(Ca)
1b(Ti)
3¢(0)
4a(Na)

4b(C1)

Type
Pm3m CsCl

1.195739(1)
—1.195739(1)
—2.087 198(2)

1.442371(1)
- 1.4423710)

—7.215 169(0)

7.215 169(0)
—1.909716(1)
—4.387698(1)

-1
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4.062 040(0)
—3.502 748(2)

+2

CaTiO;

4.957036(2)
—4.956736(2)

+4

—8.761736(2)

—3.425476(2)

1.102274(2)
—1.771 684(2)

6.789 753(1)

2.288 560(1)
—1.238991(1)

-2
+1

3.522117(2)
—3.522117(2)

Fm3m NaCl

1.771 684(2)
2.843903(2)

—4.615587(2)

1.238991(1)
—2.682025(1) -

—1

1.882758(3)
—1.530546(3)

4a(Ca) +2

8¢c(F)

CaF, 2

—2.125821(2)

1.443 034(1)
—2.682025(1)

3)

3)

1.882 758(
—1.882758(

2.843903(2)
—2.843903(2)

—2.125821(2)
—2.125821(2)

+2

4a(Zn)

F43m ZnS

2.682025(1)

-2

L,I's£0. For the cases =0 or /'=0 Rudge’s
method!® uses different expressions resulting from
the decomposition of the charge density used in
APW calculations and a special normalization of
the potential.'*?! It should be noted that the con-
vergence problems of Rudge’s method for [ =1’
(Ref. 20) do not occur in the method presented
here as the lattice sums are obtained by direct sum-
mation over the real lattice.

VII. POSSIBLE APPLICATIONS
AND DISCUSSION

Expression (14) for the potential together with
(19) and tables of K factors considerably simplify
the treatment of the Coulomb part of the lattice
potential, and can be applied to different problems
in solid-state physics. The method is most satis-
factory in cases where the multipole decomposition
of the charge density is rapidly converging, which
is generally the case in ionic crystals. It can, how-
ever, also be applied in other cases as the influence
of distant charge distributions is mainly determined
by its low-order multipoles. In these cases the
nearest neighbors should be treated separately.

The most important contribution to the potential
in ionic crystals arises from the ionic charges. In
Table VI the expansion coefficients for the point-
charge contribution to the potential are given for
different cubic arrangements, using in each case the
formal ionic charges g*. It should be noted that
the definition of the multipole moments Qj), is
such that QJ,=V'4mq”. For the NaCl structure
the expansion coefficients were previously calculat-
ed by De Wette and Nijboer!® and with higher ac-
curacy by Matthies.® The values given in Table VI
for NaCl are in full agreement with those obtained
by Matthies.

The expression for the lattice potential can be
used, for example, in the study of local effects as is
done in crystal-field theory where the influence of
the lattice potential on the d levels of implanted
transition metal ions is investigated. Here, only
the terms with [ =0,2,4 in the series (14) are im-
portant, which are the only ones giving nonvanish-
ing matrix elements with d functions. These coeffi-
cients describe the influence of the total lattice po-
tential and not only that of next-nearest neighbors
to which the considerations of crystal-field theory
are usually restricted. Comparison with the corre-
sponding coefficients that include only the poten-
tial of next-nearest neighbors, gives an idea of the
error inherent in this approximation. For the posi-
tion 4a in the NaCl arrangement, for example, the
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correct values for the coefﬁc1ents 7 {,‘“ and 7)* are
—12.39/ay and —177.17/a, respectively,
whereas the restriction to next-nearest neighbors
would lead to —42.54/a, and —173.28/a,
respectively.

Let us consider now the calculation of the
Coulomb part of the lattice energy. The energy per
unit cell is

= V(T )dr . 39
W= [op(TIW(E)dr (39)
With the use of (14), (19), and (17) one obtains
2] +1
W= 2 2 _ZtTtganv,l,n;V,l',n’gl"’:n' .

vhnv,l',n'
(40)

Each summand gives the contribution to the ener-
gy from the mteractlon of multlpoles 2], at posi-
tion v with 2}/ I n at position v'. As this interac-
tion must be the same when the indices are ex-
changed, the validity of the reciprocality relation
(32) can be seen immediately.

For the case when only pomt charges are con-
sidered (I =!'=0), the terms M +K4,0,1,v,0,1 are

just the Jenkins-Hartman coefﬁcxents 22,23 Inclusion
|

of multipoles of order / > 0 requires explicit
knowledge about the multipoles centered at the dif-
ferent positions. These can be obtained either from
electronic wave functions of the crystal or a cluster,
or in a semi-empirical way starting from atomic or
ionic polarizabilities.®° If the polarizabilities ;" of
the ion at position v and order 2’ are defined
through the relation

Ql,nz_al Vl,n ’ (41)
one obtains from (19)

2 Iz 2 (SM,VSIJ'SH,II'+al"'Kp.,I,n;v,l’,n’ )Vﬁ'”'
v I' n
= 2 QB,IK’L,I,H;‘V,OJ >y (42)
v

which is a system of inhomogeneous linear equa-
tions for 7, with [ > 0. As the polarizabilities of
ions are in many cases strongly dependent on their
environment,?* the @} can be used as parameters
for the reproduction of experimentally known
quantities such as electric field gradients (EFG).
The relation between EFG tensors and the ex-

pansion coefficients is given by

| 12 | Va2 —Va0/V3 Vi -2 Vi
Vos0)= | 1= Vy_2 —Vya—Vao/V3 Vo_i |, rns=xpz
Va1 Va2, -1 2Vy0/V3

These examples show that the concept of K factors
may be helpful in quite different kinds of problems
dealing with Coulomb interactions in crystals.?
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APPENDIX A: DEFINITIONS OF
SPHERICAL HARMONICS

Complex spherical harmonics are defined with
Condon-Shortley phase convention?® as

1/2
}’zm<r)-(—1)1/2(m+|m|> U+l U—|m|N ]

4 (I+|m |}

X P;™ (cosB)e™? , (A1)

I
where P["(z) is the associated Legendre function.
Real spherical harmonics are defined as

I 241 U+ |m])
Y, =
m(E)= e = m | )
P'™(cosB) cos(mp+8,,), (A2)
where
2, m=*0
m=11, m=0
0, m>0
= w/2, m <0 .

Real and complex spherical harmonics are related
to each other by

Ylm(?)=%\/-€_m-(—l)l/2(m+'ml)

X[ Y, (F)+e PmYE(F)], (A3)



IR

Ylm(f’)___%1 /em(__l)l/Z(m—Hml)
X[e ™" T () Ty _p(T)] .

(A4)

APPENDIX B: CONSTRUCTION OF
INVARIANT COMBINATIONS OF
SPHERICAL HARMONICS

For the construction of invariant combinations
#{',(T) of spherical harmonics Y, (F— 77,-“) cen-
tered at the equivalent points i, of point position
u, the projection operator pPl for the identity
representation I'; of space group G is applied to
the functions Y, (¥ — ?1#) centered at one of the

equivalent points i,, say 1,:

prly,,,,(?—?l“)= S RY;,(F—71), (B1)
R

where the sum is over all operations R of space
group G. Thus, one obtains 2/ +1 “vectors”
arE)=3 zi,i,,,,(i,‘mm(f;ﬂ)

i, m

»

(B2)
(n=1,...,214+1).

Now all linearly dependent vectors are eliminated
and one is left with N L linearly independent vec-
tors, which are invariant under all space group
operations.

The functions

Th(F )= 3 A i) Vi () (B3)

are now invariant under the operations of the point
group of position . In addition, ‘as any linear
combination of the N L functions (B2) and (B3) is
invariant under the space-group or point-group
operations, respectively, such combinations #f,
can be chosen that are orthonormal in the sense

i, i*
N Y1 (T,)Z 1 (T dcos, dpy, =8y, .

(B4)
If the intended orthonormal functions % ,’,’,‘, are
written as
Nl
i 4 1 ~ i“
@/1":"—— 2 bn,n’(.u')@l,n' ’ (B5)

n'=1
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(B4) leads to
BSB'=I . (B6)

B is the matrix of the coefficients b, (1) which
have to be determined, and Q* is the Hermitian
conjugate of B. I is the unit matrix and S is the

~ 1
overlap matrix of functions %/’,:

S =3 B m i, )re i) - (B7)
m

(B6) can be transformed to

B-'(BhH-1=5. (B8)
As S is Hermitian, a Cholesky decomposition can
be performed

s=§§', (B9)

where S is a lower triangular matrix (5~',,,,,r=~0 for
n >n'). Thus, the matrix B is identical to S .
Then, if one writes

Yin(T)= 3 D dm i) Yim(T;) (n=1,...,N.),
i” m

(B10)
the coefficients d,{, m(i,) are given by
n ~ o~
dimli)= 3 (S Vppdymli,) .  (BID
n'=1

They obey the relation

S A i)l i) =8, . (B12)

m

APPENDIX C: CALCULATION OF
INDEPENDENT MULTIPOLE COMPONENTS

Equations (16) and (17) were concerned with the
problem of calculating independent multipole com-
ponents 2f, and independent expansion coeffi-
cients 7°f;, from the multipole moments Q;,‘,‘, and
expansion coefficients V;,‘,‘,. The orthonormality of
the invariant functions #f', led to

Nl
i u
Oim = 2 Q[,‘ndt{fm(ly) ’ (C1)
n=1
I i
2= 3 domli Qs , (e)
m=—1

and similarly for V},,, where the value of the sum
does not depend on the point i, chosen. Equation
(C2) is, however, not efficient for calculations as
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the point symmetry of position 4 may force vari-
ous relations between different Q;,’,j. These show
up in linear dependences between different columns
of the N L X (21 4+1) matrix D of coefficients
dfm(ip). Only N L of its columns can be linearly
independent.

If one now chooses N L independent columns
d,f;,,s(i”) (s=1,... ,N,’,) and forms from these

the N L XN L matrix ﬁ, the independent com-
ponents are obtained from
N, ' .
S 1
=3 D)y m Qtlm, (C3)

s=1
and similarly for 7°f;,. This expression, in general,
requires the evaluation of fewer values of Q;,’,‘, or
V;,’,‘, than would be the case in Eq. (C2).

IP. P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).

2H. M. Evjen, Phys. Rev. 39, 675 (1932).

3F. Bertaut, J. Phys. Radium 13, 499 (1952).

41. J. Zucker, J. Phys. A 8, 1734 (1975).

5S. Matthies, Phys. Status Solidi B 74, 69 (1976).

6S. Matthies, Phys. Status Solidi B 74, 531 (1976).

M. P. Tosi, Solid State Phys. .16, 1 (1964).

8S. Hafner and M. Raymond, J. Chem. Phys. 49, 3570
(1968).

9H. M. Maurer, P. C. Schmidt, and A. Weiss, J. Mol.
Struct. 41, 111 (1977).

101, M. Brescansin and L. G. Ferreira, Phys. Rev. B 20,
3415 (1979).

11D, E. Ellis, G. A. Benesh, and E. Byrom, Phys. Rev.
B 20, 1198 (1979). |

12D. Guenzburger and D. E. Ellis, Phys. Rev. B 22,
4203 (1980). )

13W. E. Rudge, Phys. Rev. 181, 1020 (1969).

14W. E. Rudge, Phys. Rev. 181, 1024 (1969).

15G. S. Painter, Phys. Rev. B 23, 1624 (1981).

160, Steinborn, Chem. Phys. Lett. 3, 671 (1969).

17B. R. A. Nijboer and F. W. de Wette, Physica 23, 309

(1957).

18F. W. de Wette and B. R. A. Nijboer, Physica 24,
1105 (1958).

19B. R. A. Nijboer and F. W. de Wette, Physica 24, 422
(1958).

20F, Szmulowicz, Phys. Rev. B 23, 1646 (1981).

2IF, Szmulowicz, Phys. Rev. B 23, 1652 (1981).

22H. D. B. Jenkins and T. C. Waddington, J. Chem.
Phys. 56, 5323 (1972).

23H. D. B. Jenkins and P. Hartman, Philos. Trans. R.
Soc. London Ser. A 293, 169 (1979).

24P, C. Schmidt, A. Weiss, and T. P. Das, Phys. Rev. B
19, 5525 (1979).

25For readers who want to do their own calculations on
this subject, a program is available from the author,
which manages all necessary symmetry calculations
for any space-group symmetry and evaluates the lat-
tice sums by the method outlined in Sec. IV.

26E. U. Condon and G. H. Shortley, The Theory of
Atomic Spectra (Cambridge University Press, London,
1970).



