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The anomaly in the longitudinal elastic constant Cy; of terbium molybdate (TMO) associated
with the ferroelastic-ferroelectric phase transition at 160 °C was investigated by Brillouin scatter-
ing spectroscopy. An analysis is presented, based on the phenomenological theory of Levanyuk,
which describes both the thermodynamic anomaly due to induced bilinear coupling in the low-
symmetry phase and the effects of anharmonic coupling of strain to critical fluctuations of the
order parameter which occurs in both phases. Soft-mode dispersion curves from neutron
scattering experiments and the temperature-dependent magnitude of the order parameter de-
duced from x-ray and birefringence studies were used as input for the data-fitting procedures.
In our analysis of the data in the low-temperature ferroelectric phase, we consider four models
for the second 4 soft mode which is the partner of the 5.7-meV mode. With the assumption
that the coupling constant K, between an acoustic phonon and a pair of soft optic phonons is in-
dependent of the soft-mode wave vector, only the fourth model produced a self-consistent fit to
our data over the range 20 °C < 7 <400 °C which is also consistent with previous studies of the

soft mode.

I. INTRODUCTION

Soft optical modes whose condensation results in
structural phase transitions and spontaneous sym-
metry breaking have been widely investigated by in-
elastic neutron scattering and Raman scattering ex-
periments*? Such transitions have also been studied
extensively through the temperature-dependent elas-
tic properties resulting from interaction of the soft
optical mode with acoustic modes, employing ul-
trasonic, acoustic resonance, and Brillouin scattering
techniques.

The nature of the acoustic anomalies associated
with structural phase transitions can be separated into
two principal categories depending on the form of the
leading interaction term permitted by crystal sym-
metry in the Landau free energy.>*

If € and n represent the strain and the soft-mode
amplitude (or order parameter), respectively, then
category (1) includes all crystals for which bilinear in-
teraction terms of the form a en are symmetry al-
lowed. For these crystals (e.g., potassium dihydrogen
phosphate),*® the soft mode must be at the center of
the Brillouin zone in both phases, and it is also Ra-
man active in both phases. The Raman-activity cri-
terion, first noted by Miller and Axe,’ follows from
the Worlock-Birman theorem (‘‘the soft mode is al-
ways Raman active in the ordered phase’’®) together
with the observation that bilinear coupling in the
high-symmetry phase is forbidden unless the order
parameter n transforms under the crystal point group
as some component of a symmetric second-rank

tensor —the strain, or equivalently, the dielectric
tensor —which is also the standard requirement for
Raman activity. This category automatically includes
piezoelectric ferroelectrics since piezoelectricity in the
high-symmetry phase requires that the soft mode
have the same symmetry as a strain, as well as that it
be dipole active.

The acoustic anomalies observed in category (1)
crystals are very pronounced since the bilinear in-
teraction hybridizes the soft mode with the acoustic
mode to which it couples. Near the transition, the
mostly-acoustic hybrid mode frequency (w_) drops
sharply, actually reaching zero at the transition tem-
perature if the transition is second order. The
anomalous sound velocity or Brillouin shift observed
in these crystals can usually be explained by a simple
thermodynamic analysis based on the Landau free en-
ergy’

Category (2), with which we will be primarily con-
cerned, consists of crystals in which bilinear coupling
is forbidden by symmetry either because the soft
mode does not transform according to the same
representation as any strain (e.g., quartz!® or trigly-
cine sulfate!') or because the soft mode in the high-
symmetry prototype phase is at an edge or corner of
the Brillouin zone rather than at the zone center
(e.g., the perovskites!2~1* or the rare-earth molyb-
dates'’). The lowest-order coupling permitted by
symmetry is then a third-order nonlinear interaction,
involving terms in the free energy of the form K en.?
The elastic anomaly which results consists of two dis-
tinct effects.!’
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First, there is a morphically induced effective bilin-
ear coupling in the low-symmetry phase resulting
from the finite expectation value of the order param-
eter (n) =m,. Again, a simple thermodynamic
analysis shows that while the elastic constant above
the transition is unaffected by the coupling, there is a
discontinuous downward displacement of the elastic
constant below the transition.® In ferroelectrics, this
produces a temperature-dependent morphic
piezoelectric effect which disappears at (and above)
the transition.

Additionally, however, the third-order nonlinear
interaction can become important close to the transi-
tion when the critical fluctuations in n become large,
leading to a downward bending of the elastic constant
on both sides of the transition.

Miller and Axe’ and Axe and Shirane!® have dis-
cussed the downward bending of the elastic constants
of quartz in the high-temperature 8 phase in terms of
critical fluctuations. (Since the soft mode is Raman
inactive in the high-temperature 8 phase, no bilinear
interactions exist.) Barrett analyzed the tempera-
ture-dependent ultrasonic attenuation and velocity in
KTaOj; in terms of a similar coupling formulated,
however, in terms of an Akhieser interaction.'?

Nonlinear interactions between acoustic and soft
optic modes in SrTiO; and BaTiO3; have been investi-
gated extensively by many workers. Fleury and La-
zay,'¢ Bell and Ruprecht,!” and Golding!® measured
the temperature-dependent elastic constants;
Dvorak!® and Slonczewski and Thomas'? considered
the theory of effective bilinear mode interaction in
the low-symmetry phase, while Pytte?® and Pytte and
Feder?! explored the effects of critical fluctuations on
the acoustic modes.

In these investigations of crystals where bilinear
coupling is forbidden, including studies of the rare-
earth molybdates which we will discuss in Sec. II, the
two contributions to the elastic anomaly are normally
analyzed individually. The induced bilinear coupling
in the low-symmetry phase is analyzed either with
thermodynamics or, equivalently, with linearized
equations of motion, while the critical fluctuation ef-
fects are usually analyzed with arguments using ther-
modynamic Green’s functions. Each calculation
leads to predictions for the appropriate contribution
to the acoustic anomaly whose form can be compared
with the results of experiments. Both contain un-
known (and apparently unrelated) anharmonic cou-
pling constants whose values are presumably to be
found from data fitting.

An alternative approach to the analysis of third-
order acoustic-soft—optic-mode interactions was dis-
cussed by Levanyuk in 1966.22 Classical continuum
equations of motion are derived from the Landau
free energy, but both first- and second-order small
terms are retained. The fluctuation dissipation
theorem is then employed to evaluate the fluctuation

terms, and expressions are obtained for the elastic
constants which include both the thermodynamic (ef-
fective bilinear) and the critical fluctuation contribu-
tions to the elastic anomaly. The critical fluctuation
contribution is identical to the result of thermo-
dynamic Green’s-function analysis, representing vir-
tual intermediate states in which an acoustic phonon
has been annihilated, creating a pair of soft optic
phonons with equal and opposite momenta. (This is
the lowest-order contribution to the anharmonic
self-energy of acoustic phonons.) Levanyuk’s ap-
proach allows the data analysis to be performed self-
consistently since the same coupling constants appear
in both the thermodynamic and critical fluctuation
contributions to the elastic anomaly.

In this paper we report the results of a Brillouin
scattering investigation of terbium molybdate (TMO)
for which extensive information on the soft-mode
characteristics is available from the neutron scattering
investigations of Dorner, Axe, and Shirane?2* In
Sec. Il we summarize the properties of and previous
investigations of the rare-earth molybdates. In Sec.
IIT we review Levanyuk’s approach and derive the
fundamental expressions for the elastic anomalies. In
Sec. IV we describe the experiments, and in Sec. V
we analyze our experimental results using the equa-
tions derived in Sec. IIl. We investigate four models
of the soft mode in the low-symmetry phase and
show that a self-consistent interpretation of the ob-
served elastic anomalies can be obtained only if cer-
tain as yet untested aspects of the soft mode are as-
sumed to hold.

II. RARE-EARTH MOLYBDATES

The rare-earth molybdates Gd,(MoO,); (abbreviat-
ed as GMO) and its Sm, Eu, Tb, and Dy isomorphs
were first shown to be ferroelectric, with transition
temperatures 7 near 160 °C, by Borchardt and Bier-
stedt in 1966.2>26 " Cross, Fouskova, and Cummins
investigated the electrical, optical, and mechanical
behavior of GMO and discovered a number of
unusual characteristics.?’ 72 The low-temperature
phase is both ferroelectric and ferroelastic. The cou-
pled polarization and shear strain switch simulta-
neously under either applied stress or electric field.
There is a very small dielectric anomaly at 7y which
disappears entirely for the inertially clamped crystal.
These observations led Cross et al. to propose that
the essential instability driving the transition is elas-
tic, with spontaneous polarization arising as a secon-
dary consequence of piezoelectric coupling, but this
explanation of improper ferroelectricity in GMO con-
flicted with the marked asymmetry in the elastic
anomaly which they observed in acoustic resonance
measurements.

In 1970, Fleury observed a temperature-dependent
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optical mode (at ~47 cm~! at 300 K) in the Raman
spectrum of GMO in the low-temperature ferroelec-
tric phase (FE), but not in the high-temperature
paraelectric phase (PE), and proposed that this mode
constituted the essential instability, with the elastic
anomaly resulting from a nonlinear interaction
between the acoustic phonons and this ‘‘soft’’ optic
mode.’® Subsequent Raman scattering experiments
by Ullman and co-workers confirmed Fleury’s obser-
vation.! This soft mode was also observed in far-
infrared transmission measurements by Petzelt who
found that at temperatures below 0 °C it splits into
two distinct components.’?> Kim and Ullman?®' and
Shigenari, Takagi, and Wakabayashi®> later showed
that the soft mode observed in the Raman spectrum
also exhibits splitting at sufficiently low temperatures.
Shigenari et al. analyzed their Raman spectra in terms
of a two-damped-harmonic-oscillator model, and
were able to extract two frequencies for temperatures
up to ~100°C.

Later Raman scattering experiments on GMO and
TMO by Laiho ez al.’* and Sinii et a/.%° indicated that
the Fleury mode has a low-frequency A4, partner, that
the two modes are separated by ~5 cm™ at room
temperature, and that both frequencies decrease and
both linewidths increase as 7 is raised towards the
transition. Furthermore, they reported a central peak
whose intensity increased strongly as the transition
was approached.

Recently, Nisar, Garland, and Raccah have also
observed two temperature-dependent 4; modes plus
a central peak in the GMO Raman spectrum.*® Their
coupled-mode analysis suggests that the higher-
frequency mode persists in the high-temperature
(paraelectric) phase, and is therefore not directly in-
volved in the transition. Fleury and Lyons, however,
find no evidence of a dynamic central peak outside of
the 1-GHz region blocked by their iodine absorption
cell, except for the spectral intensity attributable to
the Brillouin components.’’

In 1970 Pytte, drawing on x-ray studies of GMO
indicating cell doubling at T, proposed that the
GMO phase transition is driven by a soft optical
mode at the corner of the Brillouin zone, with wave
vector in the high-symmetry (PE) phase of
Qu =(m/a, w/a,0).** The same mechanism for the
transition was proposed independently by Dvorak?’
and by Levanyuk and Sannikov.*

The M-point instability model was confirmed in de-
tail by x-ray and neutron-diffraction experiments.
Jeitschko’s x-ray structure analysis showed that the
FE lattice of GMO is orthohombic with space group
C3$, and 4 formula units per unit cell, and the PE lat-
tice is tetragonal with space group D3, and 2 formula
units.*! The orthorhombic axes are rotated 45° about
z with respect to the tetragonal axes. Dorner, Axe,
and Shirane, in an extensive neutron scattering in-
vestigation of TMO (the terbium isomorph of GMO)

found similar structural results and also observed the
temperature-dependent soft mode in PE at the M
point and over a large part of the Brillouin zone.?%*
We note that while the neutron studies of Dorner

et al. employed TMO, virtually all other experimental
studies of the rare-earth molybdates have employed
GMO. However, the properties of GMO and TMO
should be very similar.

Dorner et al. also extended their inelastic neutron
scattering studies of the soft mode into the low-
temperature FE phase, where the doubly degenerate
M-point soft mode is expected to become two nonde-
generate zone-center 4; modes. They found that
one mode (called 2,) closely resembled the mode
reported by Fleury,*® but with somewhat stronger
temperature dependence, and with a room-
temperature frequency of 5.7 meV. The eigenvector
of this mode was found to be similar to the con-
densed static displacement no. We will henceforth
use the term “‘Fleury mode’’ in conjunction with the
numerical values for Q,(7) found by Dorner et al.

The neutron experiments also revealed a central
peak at very low frequencies (2, << I'; ~2 meV).
Dorner et al. discussed various possibilities for the
identity of the two 4; modes produced from the dou-
bly degenerate FE soft mode. They concluded that
the most natural interpretation of their results is that
one of the two modes () is the Fleury mode, and
the other ( ;) is the central peak.

The neutron, Raman, and infrared results do not
conclusively establish the identity of the second soft
mode in FE which is the partner of the Fleury mode.
We will return to this question in Sec. V where we
will use our Brillouin scattering results to test four
possibilities.

Following the original investigation by Cross er.al.?’
and Cummins?® of the acoustic anomaly in GMO, ul-
trasonic studies of various GMO elastic constants and
absorption coefficients were reported by Epstein,
Herrick, and Turek,*? Chizhikov et al.,** Agishev
et al.,* Courdille et al.*® (for TMO), and Hochli.*®

Hochli determined the complete set of
temperature-dependent elastic constants in' GMO.

He also worked out the relations between the two
sets of elastic constants appropriate to the two sets of
crystallographic axes which are related by a 45° rota-
tion in the xy plane. In his notation, which we shall
follow, Cy refers to elastic constants in the paraelec-
tric (PE) axes, and Cj; refers to elastic constants in
the ferroelectric (FE) axes. The elastic constants
Ciy, Cy, Cyy, and Cgq showed marked anomalies
near Ty with the (; anomaly being most pronounc-
ed. These elastic constants decrease gradually as 7,
is approached from above, drop discontinuously at 7
and then increase again with decreasing 7. The other
elastic constants (such as C3; or Cg) are continuous
across the transition and exhibit no anomalies within
the limits of error of the experiment.
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Brillouin scattering studies of GMO have been re-
ported for Cy, and C, by Itoh and Nakamura,*’- 4
and for the full set of elastic constants by Busch,
Toledano, and Torres,*® and by Luspin and
Hauret.’%3! The close agreement between the ul-
trasonic and Brillouin scattering data shows that there
is little dispersion in the sound velocities of GMO, at
least up to 10'° Hz.

These ultrasonic and Brillouin scattering experi-
ments have been analyzed differently by each author.
Busch® considered only the effective bilinear cou-
pling in analyzing the FE data, utilizing the full ther-
modynamic analysis of Dvorak.*® A similar analysis
was given by Esayan et al.** However, these analyses
do not apply to the acoustic anomalies in the PE
phase. Luspin and Hauret, on the other hand, con-
centrated on the PE data.’! Thermodynamic Green’s
functions appropriate to the anharmonic K en? in-
teraction were calculated and were shown to be con-
sistent with the form of the observed anomalies if the
soft-mode dispersion curve is assumed to be isotro-
pic. The magnitude of the anomaly was left as an ar-
bitrary scale factor, however, and no attempt was
made to include the anomaly in FE in the analysis.
Courdille et al. analyzed their data for Cy; and Cy,
(velocity and attenuation) in terms of coupling to the
soft mode using parametrized soft-mode dispersion
curves.* Hochli* analyzed his ultrasonic data with
both the thermodynamic expressions of Dvorak®® for
the effective bilinear interaction, and with the expres-
sions found by Pytte?° for the effect of critical fluc-
tuations.

None of these authors attempted to correlate the
effects of induced bilinear coupling and critical fluc-
tuations, nor to incorporate the soft-mode dispersion
curves of Dorner et al. in computing the fluctuation
integral. In the next section we will show how these
contributions to the elastic anomaly can be combined
self-consistently within the framework of Levanyuk’s
theory,?? and in Sec. V we will show how this self-
consistent analysis can be used to test various models
for the soft mode.

III. PHENOMENOLOGICAL THEORY

In this section, we shall outline a phenomenologi-
cal Landau theory of the ferroelectric phase transition
of TMO with particular emphasis on the interaction
between the two-dimensional soft mode and the elas-
tic strains. For clarity, we begin by considering the
simplest model which would nonetheless retain all
the essential physical ideas: an interacting system
consisting of one elastic strain € and a one-dimen-
sional soft mode n. In the presence of the interac-
tion, the elastic behavior is modified by two effects
which are usually treated separately. The first effect
can be derived from the Landau free energy by a

straightforward thermodynamic calculation. This
results in a morphically induced bilinear coupling
which is present only below the phase transition.
This part of the procedure is familiar and has been
used extensively in ferroelectric phase transitions.
The second effect focuses on the influence of soft-
mode fluctuations on the elastic behavior. This ef-
fect has been treated previously using Green’s-
function methods by Cowley, Pytte, and others. The
complexity of this approach makes it difficult to
correlate the two effects in order to describe the full
elastic anomaly.

Levanyuk showed that it is possible to incorporate
the effect of thermal fluctuations using the Landau
theory as a starting point.?2 This approach has the
advantage of placing the fluctuation anomaly on the
same footing as the bilinear coupling and allows for
the unified treatment of the elastic anomaly. In addi-
tion, the effect of fluctuations on other thermo-
dynamic quantities can also be easily calculated in
this approach.

The model free energy which we shall use initially
is:

G=5An +5Bn' + D0 +3Coé —TKen . (3.1)

The first four terms are the usual expansion in the
Landau free energy for n and € in the absence of
coupling. The last term describes the third-order
nonlinear coupling between the zone-center acoustic
mode and pairs of soft optical modes. The constant
A which represents the harmonic restoring forces for
the optical mode is strongly temperature dependent
and extrapolates to zero at a critical temperature
T.:A =a(T —T,). The other coefficients are as-
sumed to be temperature independent except for the
background elastic constant Cy which is assumed to
vary linearly with temperature due to thermal expan-
sion.

The equilibrium values 7y, € for the soft-mode
amplitude and the strain are obtained by setting the
generalized forces equal to zero:

G
on

—0: o=|3C
1_0,0. laE

The resulting equilibrium values mo and ¢, are given
by

So=

n

2
oT—T,) + B—f—c m+Dmi=0 ,  (3.22)
_K* 5 _
€ 2C1’)0 0 » (32b)

where the second equation has been used in the first
to eliminate €. Note that for a first-order phase
transition (which is appropriate to TMO), it is neces-
sary that (B —K?%/2C) < 0 and the transition occurs
at a temperature Ty > T, where n and e suffer
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discontinuous jumps. The soft mode and strain below the transition are then described by small fluctuations
57, de about the equilibrium values 7, €. Replacing n by mo + 87 and € by €, + 8¢ and making use of Eq. (3.2) to

eliminate €, in G, we obtain

G (o, 87, 8€) =5 |4 + m3 +4Dn}

KZ
3B——+
20,

BnZ—KnOSG—%CO(Se)Z . (3.3)

The elastic constant under zero f,, is then easily shown to be

Co (T>Ty)
2 KZ 2
S —
€|/
" A+ 33—% b +5D

where we have used Eq. (3.2) to simplify the equa-
tion below the transition. Note that the coupling
term has no effect for 7 > T and there is a discon-
tinuous change in C at the phase transition. We now
turn to a discussion of thermal fluctuations.

In order to include fluctuation effects, the dynam-
ics of the coupled mode system must be considered.
Such an analysis was developed by Sannikov’? for
ferroelectrics of arbitrary crystal symmetry and has
been applied to a number of different crystals. We
shall show how the thermodynamic result [Eq. (3.4)]
is equivalent to the elastic response given by the
linearized equations of motion in this dynamical ap-
proach in the w —0 limit. The effect of thermal fluc-
tuations is then included by extending the equations
of motion beyond the linear approximation and by
the judicious use of the fluctuation-dissipation
theorem on the resulting equations. In this way, the
fluctuation integrals of Pytte will be reproduced.®’

The dynamical calculation begins with the construc-
tion of the Lagrangian density for the system. The
potential energy density is taken to be the Landau
free energy of Eq. (3.1). The kinetic energy density
is

1 -2 1 .2
T=7m*n +opu

where m* is the effective mass per unit volume for
the soft mode, p is the mass density, and u is the lo-
cal displacement appropriate to the acoustic mode and
is related to the elastic strain via e =9u/9dr. Damping
is introduced phenomenologically by a Rayleigh dissi-
pation function F:

1 2,01 .2
F=sm*Ty +5pri"
where I" and vy represent the damping for the soft
mode and the acoustic mode, respectively.

External driving forces are included in the free en-
ergy by adding the term

Gex!=—€‘7—77fq ,

where o and f,, are the stress and driving force asso-

2B +4Dm}

K (T<Ty . G.4)

[

ciated with the strain and the soft mode. The equa-
tions of motion follow from Lagrange’s equation for
continuous systems:

dloL|, d| oL | 8L oF _,
dt | 9x dt [ax X  9x ’
a_
or

where X=mn,uand L =T — G — G, The equations
of motion are

m*n+An+Bn’+Dn’—K(en) +m* Ty=1, ,

(3.5a)
pé+py—C 12_5_4__1.1(@:_& (3.5b)
P Yarr 20 g2 dart '

We have differentiated the second equation with
respect to r to express u in terms of e.

Note that the equation of motion for 1 does not
include soft-mode dispersion. Dispersion is usually
introduced in the Landau theory by the inclusion of a
term proportional to (V75)? in the free energy.’* We
have chosen not to do so since it would have fixed
the functional form of the soft-mode dispersion. The
equation of motion (3.5a) is therefore directly appli-
cable only to the soft mode at the M point. Disper-
sion will be included later by introducing the empiri-
cal results of the neutron scattering experiments of
Dorner et al.?*

The frequency response of the coupled mode sys-
tem is given by the Fourier transform of Egs. (3.5).
The following convention will be followed in Fourier
transforming all variables:

(21 X ff( F,t)e”(6'7_“’)d3rdr ,
w

s r“,r)=ff(6,Q)e"<3'?-°"d3QdQ .

7@, Q)=

and
Qm)*(r)e(n = fe’(a'_"‘"”dJQdQ

The Fourier transforms of Egs. (3.5) are
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—m*Q(Q, Q)+ An(Q, Q) +B{ne{mn g o + Dlneim e lmen I N 5.0

2
~pate(q, w) —piore(T, ) + Coale(T, @) =L g2 (num) 40 =20 (T, @)

2

where {fxg } denotes the convolution between the
functions fand g:

{f"‘g}a Q

- [#0d0'7@, 0)5@-T, -0 .

The dynamical variables (87 for the soft-mode vari-
able and 3e for the elastic strain) are small variations
of m and e about their equilibrium values m and €

20, ) =m(Q, Q) +80(q, ),

76(Q, ) =108(Qy —Q)8( Q) ,

3.7
(4, w) =€(T, 0) +8e(T, w),

(3, w)——%nOS(ﬁ)S(w) .

The equations of motion for the dynamical variables
are now derived by substituting Eqs. (3.7) into Egs.
(3.6). In the usual treatment, the equations of
motion are linearized. by retaining only terms to first
order in the dynamical variables.” Here we shall also
include coupling terms which are second order in the
dynamical variables. These added terms will allow us
to calculate the elastic anomaly due to thermal fluc-
tuation of the soft mode.

Under harmonic driving forces, the coupled equa-
tions of motion for the acoustic branch and the soft

T>T,
Q%(GM) =

-4+

K>
3B -
2C,

3 +5Dn3]
m

—Klen)g o—m"iQIn(Q, Q) =7£,(Q, Q) ,

(3.6)

[
optical branch are

;10—877(6, Q) —Knpde(Q—Qy, Q)
B

—K(3exdn)g o =f4(Q. Q) , (3.82)

7:386(?1‘, ®) = Kmodn(T —Qu, o)

—-Izgifm*&n}a,w =o(T,0) , (3.8b)
where X‘,’,(Q', Q) and X%(q, ») are the zeroth-order
susceptibilities for the soft mode and the strain in the
absence of coupling:

1 = K?
—(Q, Q) =4 +|3B———|n4+5Dn¢
X‘,’, Q 20, Mo Mo
-m*Q?—im*Qr (3.92)
1 COqZ 2 .
;5( )“ -0 —iwy (3.9v)
€

In Eqgs. (3.8), the various pieces of the argument
which was alluded to at the beginning of the section
are separated. The first term gives the susceptibilities
of the system in the absence of coupling. The second
term represents bilinear coupling between the strain
and the soft mode. Since it is proportional to 7y, it is
nonzero only below the transition. The third term
gives the leading nonlinear coupling which will give
us the contribution to the elastic anomaly due to fluc-
tuations.

From Egs. (3.9), the soft-mode frequency 93, at

. the M point is given in terms of the free energy

parameters as

T<T, . (3.10)

We shall incorporate soft-mode dispersion in the subsequent analysis by demandmg that the pole of X°(Q Q)
must correspond to (2 (Q) the observed soft-mode frequency at wave vector Q and replace the quantity
[4+(3B— K2/2C0)n0+SD n8] in Eq. (3.9a) by m*Q2(Q). As discussed above, this procedure should be more
accurate than representing dispersion by terms of the form (V)2

To obtain the elastic susceptibility from Egs. (3.8), we first multiply Eq. (3.8a) by xJ:

8(Q, Q) =X%(Q, Q) [/,(Q, Q) +Kmode(Q—Qpr, ©) +K {(37)(3€) }(Q, Q)] . 3.1
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Since the final term in Eq. (3.11) is second order in the dynamical variables, we replace 87 in that term by its
zeroth-order value [Eq. (3.11) with 8e=01:

87°(Q, ) =x2(Q, 2)/,(Q, 2)
The resultant expression for §7(Q, Q) is then substituted in Eq. (3.8b) yielding

1

NTE. 8e(T, ) — K2m3x2(G —Qur, ) 8e(T, ) — K21ox3(q — Qpr, ) (8exdn® ) o
(T, 0

Ty

— Ko (87%X5(Q', 0)86@ =0, 0 I, —K2om*xX5(@, 09 (sesdn’ ), N, - (312)
In Eq. (3.12), only terms linear in 3¢ have been retained to yield a linear elastic constant (d0/9¢€), and the gen-
eralized force f,(Q, ) has been replaced by 37°(Q, 2)/x5(Q, Q). In order to evaluate the last three terms in
Eq. (3.12) which represent_.nonlinear_gpupling, we note that according to the fluctuation-dissipation theorem,*
the time average of (87°(Q, )&7°(Q, Q')) is given by

kT

(Ttet 00 Q)Y =—"nR
(87°(Q, )37’ (Q, Q")) (2m)% 0

X2'(Q, 0)8(Q+Q)s(Q+0) (3.13)

where X} is the imaginary part of X3 and (87°(Q, ©)) =0. Equation (3.12), averaged over the fluctuations in
the order parameter, is then reduced to

(o(T, ) Vo= 8e(T, ©) — K2n3x3(T —Qu, ) 8e(T, )

XUT, w)

_K? - dQ on = o
"yt kDB w) S0 '@ 0)xi(@-g.0-0)

where we have used the & function in eliminating one of the convolution integrals. The elastic susceptibility in-
cluding both the effect of bilinear coupling and thermal fluctuation is

1 o(@e))en 1 e =
Ge) T e (g miXa(@—Qu)
K2 dQ e —_ =
~ G S0 [420@ 0)g@-T 0-0) .

f

The first term on the right-hand side is the inverse
susceptibility in the absence of soft-mode coupling.
The second term is the result of the linear coupling
terms in Eqgs. (3.8). Since the soft-mode frequency
and damping are much higher than the acoustic fre-
quency,

This term reduces to the thermodynamic result for
the elastic anomaly. The last term represents the ef-
fect of thermal fluctuations and is effective above
and below the phase transition. The functional form
of the fluctuation integral is identical to the result of
Pytte.?** By substituting explicitly for X} from Eq.

(3.9a), the integration in Q space of this term can be
_ _ . easily performed using contour integration. The
X(q—Qu, Q) =x5(Qu, 0) =1/m*Q3(Q,) result is

1 __ 1 KMmf K kT
X(T,0)  XAT, @) m*Q2(Qu) m*? (2“17')3

(1 +iw/2T")
(1-iw/T)Q3[402—2iel (1 —iw/T)]

a0

In the case of TMO, since w << I', the result may be considerably simplified by dropping terms of order w/T",
whence,
11 Kb K%T (s 1
X(T, 0 XAT, 0 mQiQy) m7Q2m) 02(Q)[402(Q) +2iwl'(Q)]
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From this formula, we finally identify the elastic constant and the damping as

C=cp—Kimb _ 2K kT L, (3.14a)
Comtal m™ Q2m)® Y 404Q) +oTA(Q)
2 [ K292 2 o) 43
7=70+—‘1p— Km T | K kT rQ)d’Q (3.14b)

The last terms in Egs. (3.14) represent the addi-
tional contribution to the elastic anomaly due to criti-
cal fluctuations. These equations were first derived
by Levanyuk in 1966.22 Because of the presence of
1/9‘,‘7 in the denominator, the magnitude of the fluc-
tuation integral increases rapidly close to the transi-
tion and causes downward bending of the elastic con-
stant both above and below the transition. These
equations also show that the magnitude of the fluc-
tuation anomaly and the morphically induced bilinear
anomaly are related to each other through the cou-

m* Qy m?Q2m)? Y 0@ 404Q) + (@] ]

f
pling constant K.

In order to analyze the experimental results for
TMO, we will have to abandon the simplified free en-
ergy employed so far and consider the complete free
energy for crystals of the GMO family, including the
two-dimensional order parameter and all strains to
which it couples, which was worked out by Dvorak®®
from symmetry considerations. With the two com-
ponents of the order parameter given by 7, =sin¢
and m; = cos¢, this becomes '

1 4 6
Gre=|547"+ —Z—(B, + B,cos4é + Bysindg) + —’(15—(1)1 +D,cos4¢ + D;sinde)

1 50 (.2 .2 1 =0 .2 ~0 .2, .2 ~0 .2 ~0 - ~0 . - ~ ~
+[7Cu(€1+€2)+?C33E3+‘;-C44(E4+65)+%C66€6+C12€162+C13(61€3+EZE3)]

+ 5 Kim*e + 3 Ko (& + &) + 27 (K;cos2é + K4 sin2¢) + (yPyn? sin2é + y,Pyn? cos2é)

+(a36P3E6+—;-X3‘3'P32)

The first three terms in Eq. (3.15) are the Landau
free energy of the soft mode. The two-dimensional
order parameter is expressed in polar coordinates and
is given by its magnitude n and the azimuthal angle
¢. The next six terms represent the harmonic strain
energies. The ~ indicates that the strain and elastic
constants CU are those appropriate to the tetragonal
coordinates in PE. The next three terms represent
the third-order coupling terms between the order
paramter and the various elastic constants which are
compatible with the symmetry change (from D3, in
PE to C4, in FE). Note that the coupling terms K
and K4 lack the fourfold symmetry of the tetragonal
phase and are the cause of the broken symmetry
below the transition. The next two terms are the
third-order allowed coupling between polarization and
the order parameter. The last terms in Eq. (3.15) ex-
press the effect of piezoelectric coupling between the
polarization P; and the xy shear strain &.

The free energy derived from symmetry considera-
tions in Eq. (3.15) may be considerably simplified by
the known experimental results on these crystals.

(1) The third-order direct coupling between P;

(3.15)

r

and 7 is known to be very small from the experiment
on clamped GMO crystals by Cross et al.?’” and may
be neglected.

(2) The polarization P;, which is the result of o
piezoelectric coupling to €, can be absorbed into Cgq
using the condition that the electric field in the Z
direction should be zero:

b6 -0

E3=
aP3 ii""¢

>

which implies
1.
Py=5a3&X3; .

The polarization P; will be dropped from the discus-
sion.

(3) The available data on the elastic constants of
GMO show that the elastic anomaly for 633 is small
in comparison with those of Cy; and Ceg.465055 We
assume in the following discussion that K, is zero.

(4) The elastic strains €3, €, and € are not cou-
pled to the soft mode and will be dropped as they are
not relevant to the discussion of the elastic
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anomalies.

(5) The soft modes are degenerate in PE and the two linearly independent branches are defined to within a
rotation about the 7 axis. We shall pick the axes so that the coupling term between m and € has the form

K3‘n2€5 cos2¢. )
With these approximations, Eq. (3.15) is reduced to

4 6 .
Ger =%A n + _131_(81 + B,cos4¢ + Bysinde) + %‘(Dl +D;cos4¢ + D3sind¢)

1 A0 (22, 22 =0 50 - . -
+[7C11(51+€2)+%C66€%+C12€I€Z]+%K2712(€1+€2)+%K3-C082¢>T)Z€6 . (3.16)

This form of the free energy is similar to that used
by Hochli*! in his thermodynamic discussion. The
nature of the spontaneous displacement has been
considered by several authors?** using thermo-
dynamics on Gpe. They concluded that all experi-
mental data are consistent with the assumption that
the direction of the spontaneous displacement is tem-
perature independent.

The dynamical analysis can now be performed fol-
lowing the outline used for the one-dimensional case.
We shall be primarily interested in the elastic
behavior of €. There are two added features in us-
ing the full free energy: (1) the presence of the oth-
er elastic constants, and (2) the two dimensionality of
the soft mode. For the first point, the analysis of the
Lagrangian density shows that the equations of
motion for € and &, are identical and are decoupled
from &. The equation of motion for €, is essentially
the same as for a one-dimensional system. As for
the second point, since the soft mode is in general
nondegenerate below the phase transition, it is neces-
sary to choose the dynamical variables 8%, and 87>
as those appropriate to the two nondegenerate

o Kinb 2K3kT

r

branches. An expansion of the coupling term
Kzﬁzgl with ’ﬁ=—" ;)‘0 +5';]’1 +8772 yie]ds

2. . ey
Ky & =Kmier +2K (70871 €

+2K,(70:872) & + K9nie + K 0nie

The presence of (7,:8%)) and (%,:8%,) follows
from the fact that in two dimensions it is generally
not necessary that the spontaneous displacement 7,
and either of the dynamical variables 87, and 87, be
in the same direction. Only that part of each dynami-
cal variable which is in the direction of the spontane-
ous displacement will lead to a morphically induced
bilinear coupling. This has the effect of reducing the
magnitude of the bilinear anomaly for each soft-
mode branch relative to the magnitude of the corre-
sponding fluctuation anomaly. Since the values of
(7o -87%; ) and (7jy-87), ) are not known from any oth-
er experiment, we shall initially make the usual as-
sumption?* that 7,1 8%, and 7, !18%,. In this case,
the elastic anomaly is

[ et

Cro=Ch - -
11 11 m*Q%, (27’,)3”7*2

where 0"1(6) is the frequency for vibration along
the spontaneous displacement and an(a) is the fre-
quency for vibration perpendicular to the spontane-
ous displacement (i.e., modes with eigenvectors

parallel to and perpendicular to 7).
The elastic constants C;; and C,, of the molyb-

405 (Q) +’THQ)

40
+ — ~E 3.7
f4Q;‘,2(Q) +?T3(Q) G

dates also show appreciable anomalies. It is of in-
terest to work out the elastic anomalies for these
cases also. In this case, it is necessary to reexpress
the free energy in terms of elastic constants and elas-
tic strains appropriate to FE. The transformation
between the elastic constants of PE and FE have
been carried out by Hochli.*! The result is

1 4 6
Grie=5An*+ 14L(B, + B,cos4¢ + Bysinde) + —%—(D, + D, cos4¢ + Dysind )

1

+5Ch(d+6) +Cheey+ (Ky+ Kicos2¢) e + (K, — Kycos2d) nle, . (3.18)
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Note that in carrying out the transformation from PE
coordinates to FE coordinates, € is uncoupled from
the soft mode and has been dropped from the free
energy as irrelevant.

In deriving the anomalies of Cy; and C,,, we con-
tinue to assume that 87,1l Mo and 87,1 7. The

dynamical analysis for Cy; and C,, closely parallels
J

GFE="'

the analysis for Cy; though the angular dependence
in K3cos2¢ makes the calculation somewhat more
elaborate. Here we briefly discuss the coupling terms
for Cy, to motivate the results for the elastic anomaly
for Cy; and Cj,. The coupling terms for €;, expand-
ed about the equilibrium position mg, ¢ are

+ [2(K2 + K3 COSZ(f)o)T)oST]]G; - 2K3 sin2¢0n08n261]

+[(K2 +K3C052¢0)87)%€1 +(K2—2K30082¢0)57)%€1 —31(; sin2¢08n18n261] + -

The terms in the first set of brackets above are the
morphically induced bilinear coupling and the terms
in the second brackets are the third-order coupling
terms associated with fluctuations. Note that there is
an induced bilinear coupling to 87, even though
8m,1 7o. This is because the effective coupling con-

J

f

stant K3cos2¢ is angle dependent. The last term in
the third order nonlinear coupling is a cross term
between 87, and 8m,. As the fluctuations in 87, and
8m, are not correlated, this term gives no contribu-
tion. With this observation, we may write the elastic
anomaly for Cy; and Cjy:

(K, + K 3c082dg)? &
kT ¢
( )f4njll(o)+w2r2

(3.19)

(Kz—‘K3COSZ¢0)2 d3$2
kT
( ) f Q%1(6)+wzrz

Coie (K,+K;3c082d9)?n%  (K;3sin2¢g) 203
l= 11 - ¥* ~ - * =~ - *
‘ 02, @ 02,@y) Qm)im*
(K2—K38i[12¢())
2 T)
Qm)im*? fm‘ (Q)+w
o (Ky—K;c082¢9) mh  (Kj3sin2¢g)?n}
Cp=Cyp — = I EJ)
Q3 (Qum) Q"z(QM) Q2m)’m
2(K2+K3§:082¢0 )f
Qm)’m 40! (Q) +w2F2

The formula for C,, differs from that for C;; only in
the replacement of K3 by —K; as is clear from Eq.
(3.18).

IV. EXPERIMENT

Single crystals of TMO were provided by Barkley
and Brixner of the Central Research Department of
E. I. DuPont de Nemours and Company, Inc. From
these, two separate samples of TMO were cut and
polished for the Brillouin measurements of C,, and
Cy1, Cj. The size of both samples was approximate-
ly.6 x4 x 6 mm?. The sample for C;; measurements
" has faces perpendicular to the FE axes and the sam-
ple for the C;;, C,, measurements has faces perpen-
dicular to the PE axes. Single-domain samples were
obtained by poling at the start of the experiment.
Data were taken during both the heating and the
cooling phases of the experiments and no hysteresis
effects were noticed. After the experiment, the sam-
ples were found to be multidomain when examined
under crossed polaroids.

Since no changes in the Brillouin shifts were seen
between the heating and cooling cycle, the effects of
residual strains due to domains on the elastic con-
stants are apparently small. Therefore, we did not at-
tempt to pole the crystals during the experiments.

The sample was located in a small copper oven for
temperature control. The oven consists of three con-
centric layers. The sample itself is surrounded by a
small copper block machined to fit the sample closely
to minimize heat loss due to thermal convection. A
hole was drilled in this block to receive a platinum
resistance thermometer which is used to measure the
temperature of the crystal.’® This copper block is
surrounded completely by a glass enclosure which
serves to isolate the sample and the inner block from
the temperature gradients around the external heater
elements. The glass enclosure is itself embedded in
another copper block into which holes have been
drilled for six %-in.-diam x 1-in. cartridge heaters’’
and a small thermistor.”® These are connected to a
Fisher Model 22 proportional temperature controlier
as heating and sensing elements. Holes were drilled
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in b6th the inner and outer copper block to provide
optical access to the sample. The complete oven as-
sembly is suspended in the center of a stainless-steel
cross with window flanges which is evacuated and
backfilled with oxygen for the experiment. This is
necessary as oxygen diffuses freely out of molybdate
crystals upon heating unless they are kept under an
oxygen atmosphere.’® The entire chamber may be
translated along all three axes to select the region in
the crystal where parasitic elastic scattering is a
minimum,

The Brillouin scattering apparatus used in this ex-
periment is shown in block diagram form in Fig. 1.
Light from a Coherent Radiation Model 52 argon ion
laser (30 mW nominal single-mode power at 5145 A)
was focused onto the sample and the scattered light
was collected at 90°. The incoming laser light was
polarized perpendicular to the scattering plane; the
polarization of the scattered light was not analyzed.
The scattered light was collimated and passed through
a spatial filter which serves to define the scattering
volume. The size of the pinhole in the spatial filter
was chosen to match the image of the scattering
column in the focal plane. The scattered light from
the region of the crystal defined by the spatial filter
was then analyzed with a Tropel Model 350 piezo-
electrically scanned triple pass Fabry-Perot inter-
ferometer. The Fabry-Perot plates were matched and
rotated to achieve maximum parallelism in those re-
gions of the plates which are utilized in triple-pass
operation. The Fabry-Perot has a typical finesse of
50 and a contrast of 4 x 10°. Several spacings corre-
sponding to free spectral ranges from 26.5 to 31.2
GHz were used to cover the entire range of sample
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temperatures. The output of the Fabry-Perot was
focused on another pinhole before being imaged onto
an ITT FW130 phototube. A narrow-band laser filter
was placed in front of the phototube to eliminate the
Raman scattering intensity.

Photon counting was used in the detection system
and the data were stored in a PDP 8/e minicomputer
used as a multichannel analyzer. A total of 512 24-
bit memory channels were used in this experiment.
The counting time per channel was set so that the
512 channels cover approximately two free spectral
ranges. Figure 2 shows a typical spectrum obtained.
Sequential scans were taken to build up the Brillouin
components until a satisfactory signal-to-noise ratio
was obtained. The peak-to-peak ramp voltage (set
typically at 400 V) was chosen to cover approximately
2.5 free spectral ranges during the five-second ramp
duration. It is necessary to set the ramp voltage to
scan over more orders than are actually used in the
data acquisition to allow for drifts in the laser fre-
quency or the interferometer during the accumulation
of data.

The high contrast of the triple-pass Fabry-Perot is
needed because of the poor optical quality of the
crystals. In our TMO samples, the Brillouin com-
ponents were typically 10° times weaker than the
Rayleigh lines. During the data runs, the phototube
must be protected from exposure to the intense Ray-
leigh line, so a fast electonic shutter assembly is in-
cluded in the optics.®® During a typical data sweep,
the number of incoming counts to each channel is
monitored by the computer. When the count rate
increases beyond a preset limit the shutter is closed
for a sufficient number of channels (which can also
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FIG. 1. Schematic diagram of the Brillouin scattering apparatus. The programmable power supplies are connected in series
with the output of the ramp generator and provide additional bias under computer control. Timing for the data scan is provided
by the ramp generator trigger signal at the start of each ramp cycle. Details of the operating program are discussed in the text.
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FIG. 2. Representative Brillouin spectrum of TMQO ap-
proximately 1 K above the phase transition. The two outer
Brillouin lines (|) are the Stokes and anti-Stokes com-
ponents associated with the central Rayleigh peak. The low
count rate region at the center of the Rayleigh line shows
the fast shutter in action during data scans. Full scale: 90
counts. Free spectral range: 1.56 cm™L.

be specified) to block out the Rayleigh peak.

The minicomputer is also used to maintain the
alignment of the Fabry-Perot in the course of a long
data run. It was found that the quality of the collect-
ed data degraded noticeably after S min of continuous
operation. The computer periodically interrupts the

data acquisition and realigns the Fabry-Perot. During
the alignment routine the computer first actuates a
relay which inserts a solenoid-operated neutral-
density filter in the optical path. This reduces the
peak intensity of the Rayleigh line to below the
threshold set for the shutter to close. The computer
then examines the count rate at the Rayleigh peak
and adjusts the bias voltages for maximum signal.
The adjustment of the bias is done through two Kep-
co OPS-500 programmable power supplies which are
connected in series with the bias controls of two of
the three piezoelectric stacks. These are located at
90° with respect to the third stack which serves as the
pivot of the motion, which ensures that the two ad-
justments are independent. The computer controls
the output of the programmable power supplies
through two Kepco SN-8 D to A converters. At the
start of the alignment routine, the computer first lo-
cates and stores the size and location of the Rayleigh
line near the center of the sweep. At each subse-
quent sweep, the computer changes the bias voltage
by a fixed increment. If the size of the Rayleigh
peak has increased from the previous cycle, the new
bias voltage is retained and the same process repeated
on the next cycle. If the size of the Rayleigh peak
was reduced, the new bias voltage is rejected and the
program continues to the next alignment phase.
During the alignment routine, the above process is
repeated for both stacks and for voltage increments
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FIG. 3. Elastic constants of TMO derived from Brillouin scattering data. C, is the elastic constant for longitudinal waves
traveling in the x direction of the paraelectric crystalline axes. Cy; and C,, are the elastic constants for longitudinal waves trav-

eling in the x and y directions of the ferroelectric crystalline axes.
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of both polarities. At the end of the cycle, the posi-
tion of the Rayleigh peak with respect to the center
of the sweep is recorded and used to update a vari-
able delay which ensures that the collected spectrum
is always centered in the 512 channels. Acquisition
time for a typical spectrum in this experiment was
about 30 min. This corresponds to a total time per
bin of approximately 1.5 sec. Data runs as long as 4
h were used during testing, and no degradation in the
instrumental finesse was observed.

XY plots were made of the digital data in the com-
puter and the results were analyzed by hand to obtain
the Brillouin shift. Close to the transition, significant
broadening of the Brillouin components was ob-
served. Whenever the broadening produced notice-
able asymmetry in the line shape, the data were reject-
ed. Otherwise, the Brillouin shift was taken to be
given by the peak position. The Brillouin shifts de-
duced in this way were found to be reproducible to
within 0.3%. Figure 3 shows the elastic constants
Ci1, C11, and Cy, of TMO derived from the Bril-
louin experiment.

V. DATA ANALYSIS AND DISCUSSION

In Sec. III, Egs. (3.17) and (3.19) which govern
the elastic anomalies of Cy;, Cy, and C,; in TMO
were derived. There are two consequences of the .
"anharmonic coupling to the soft mode: (1) a bilinear
coupling in the FE phase induced by the condensa-
tion of the soft mode, and (2) a quadratic coupling of
the soft mode to the thermal fluctuations which oc-
curs in both PE and FE phases. The absence of the
bilinear coupling simplifies the analysis of the acous-
tic anomaly above the transition. Using the known
soft-mode characteristic, we first analyze the data in
PE according to Eq. (3.17) and obtain numerical
value for the coupling constant K,. The value of K,
will allow us to calculate the expected magnitude for
the total anomaly below the transition and compare it
with our experimental result.

In carrying out this program, we shall rely heavily
on the soft-mode characteristics determined in the
neutron experiments of Dorner et a.?*?* Though the
neutron data are quite extensive, a number of param-
eters relevant to the analysis are not available and
have been left as free parameters. Above the phase
transition, the frequency dependence of the doubly
degenerate soft mode at the M point was found to be
described over a wide temperature range by

02=0.0165(meV?/°C)(T —149°C)

Below the transition, the doubly degenerate soft
mode may be split into two distinct branches.

The zone-center frequency of one of the two
branches will be assumed to be the 5.7-meV “‘Fleury
mode’’ with temperature dependence shown in Fig. 8

of Dorner er al.** As discussed in Sec. II, this mode
has been observed in neutron, Raman, and infrared
absorption experiments, although with somewhat
different frequencies. Several possibilities for the
second branch will be considered below.

The damping of the soft mode in PE and FE was
also determined in the neutron experiment. Using
these values, we find that damping would have negli-
gible effect.on the value of the fluctuation integral in
Eq. (3.17). In the present formalism soft-mode
damping leads to acoustic dispersion in the elastic
anomaly through the term »?I? in the denominator
of the fluctuation integral. Since no significant
differences were found between the Brillouin and ul-
trasonic experiments, we shall drop »?I'? from the
fluctuation integral in the following analysis.

In analyzing the data below the phase transition,
the amplitude mo of the condensed soft mode will
also be needed. As this information is not available
for TMO, we shall rely on experiments done on
GMO which is structually isomorphic to TMO. The
shear angle,?® the spontaneous polarization,?® and the
Bragg intensity of the superstructure peaks*' are all
measures of the amount of distortion from PE and
are proportional to n3. The value of 3 relative to its
value at the transition may be determined from the
relative temperature dependence of these quantities.
Dorner et al. have shown that good agreement is ob-
tained with the prediction of the Landau free energy
in all three cases, and the ratio of m3(T) to %3(Ty) is
w3 (T) L 1/2
m(To) 3

T-T!

| [FR . 6D

2+ |4-3

where T is the transition temperature. Good fits
were obtained to all experiments with To— T,

=(3 +1) K. The critical temperature determined in
this way differs from that obtained by extrapolating
the soft-mode frequency to zero which gives
To—T.=(11 £2) K. The absolute magnitude of nq
is determined from the measurement by Jeitschko*!
of the displacement of the atoms under switching at
room temperature. Using the individual atomic dis-
placerpents, we found that ng at room temperature is
1.65 A. The same x-ray study also shows that only
oxygen atoms are involved in the distortion from
tetragonal to orthorhombic symmetry. The effective
mass of the associated soft mode is particularly sim-
ple and is equivalent to treating the soft mode as in-
volving only the vibration of a single oxygen atom
per unit cell. Using the values of the lattice constants
for TMO given in the neutron work, we found
m*=0.0461 g/cm’.

To carry out the integration of the fluctuation in-
tegral, the dispersion curve of the soft-mode branch
is needed. The results of Dorner et al. indicate that
the dispersion curve is nearly isotropic in the xy plane
in Q space. The dispersion in this plane is fixed by
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measurement of the soft mode along the xy diagonal.
Along this direction, the temperature dependence of
Q, diminishes as one move away from the M point
and it becomes temperature independent beyond the
half-way point to the origin. Unfortunately, the
dispersion curves are not complete since no data are
available along the z direction.

Following Miller and Axe’ and Luspin and
Hauret’! we assume a dispersion relation of the form:

Q2(Qu + 0,7 +0,3) = 02(Qu) + L, 0} + L, 0F

where 7 is a unit vector in the xy plane in Q space.

¢, at all temperatures is fixed by adjusting it so that
Q,(Qy +0,7) =4 meV if O, = 3|0y (see Fig. 3 of
Ref. 24). We assume that the z dispersion {, is simi-
larly determined by

Q,(Qu +Q,7) =const =, for Q, =| Q]

at all temperatures. Since in this case no data are
available, C, will be treated as a free parameter. As
for the integration volume, it is convenient to choose
a Brillouin zone centered about Q.. Because of the
factor of Q4(Q) in the denominator, the integral is
weighted heavily towards points close to the M point,
and one expects that the shape of the zone boundary
would not be crucially important. For simplicity, the
integration volume is chosen as a circular cylinder
with a radius of ¢|Qy| and a height of 2¢| Q| where
t has been chosen to match the volume of the correct
Brillouin zone. A spherical integration volume was
also tried with only minor modification to the result.
Besides the soft-mode characteristics listed above,
we shall also need to infer from the experiment what
the background elastic constant should be in the ab-
sence of coupling to the soft mode. We assume that
the background elastic constant C'lol (T) is a linear
function of temperature and characterize it by its
value at the transition C?l (T,) and its temperature
slope (8C~10| /3T). We treat both the background and
its slope as free parameters. This is at variance with
the procedure used by Luspin and Hauret*® who ob-
tained the elastic constants of GMO up to 800 °C and
found that the elastic constant decreases linearly
above 600 °C. They argued that the background elas-
tic constant should be extrapolated from the high-
temperature experimental data. However, conversa-
tions with Dr. John Barkley of Du Pont have cast
doubt upon this procedure. The B phase of the
molybdate family which is responsible for the fer-
roelectricity is only metastable at room temperature.
As the crystal is heated beyond 700 °C, significant
nucleation of the crystal into the more stable « phase
is observed and it is not clear how the competition
between the two phases will affect the elastic
behavior at high temperature. The background elas-
tic constant determined in our fitting procedure
shows considerably less temperature dependence than

that used by Luspin and Hauret.

For clarity in presentation, we have grouped above
all the parameters relevant to the data analysis both
above and below T,. For T > T, only those charac-
teristics which pertain to the PE phase are required.
These include the soft-mode frequency, its disper-
sion, and the effective mass of the soft mode. The
elastic constant Cy; in terms of the soft-mode param-
eters is given by Eq. (3.17) (after dropping the damp-
ing terms) as

K2kT $Q

~ '-0
Cu=Ch — Qmym? J Qi)

(5.2)

T}})is leaves us gvith four independent parameters:
Ci(Ty), (8C),/08T), K3, and C,. We show in Fig.
4 the best fit to the experimental data when all four
parameters are allowed to vary freely.

An error analysis of the fit of Eq. (5.2) to the ex-
perimental data in PE shows that K, and C, are
strongly correlated. Because of this, we have carried
out an analysis with C, fixed at different values and
allowed the other three parameters to vary in obtain-
ing the minimum X2 deviation. The error limits on
the parameters given below signify the values at
which the x? deviation of the overall fit is doubled
from its minimum in this fitting procedure. The big-
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FIG. 4. Results of the fit of the elastic constant C;, of
TMO to model 3. In the temperature range above 7, the
upper curve shows the background elastic constant C-'lol
which would apply in the absence of coupling to the soft
mode; the lower curve is the result of fitting the elastic con-
stant data for T > T to Eq. (5.2). The data below T, were
fitted to Eq. (3.17) assuming that the eigenvector of the ‘‘miss-
ing’’ soft mode is parallel to the spontaneous displacement
and the eigenvector of the ‘‘Fleury’ mode is perpendicular
to it (model 3). The upper curve represents the effect of
the induced bilinear coupling alone while the lower curve in-
cludes the effects of both the bilinear coupling and the
anharmonic coupling to critical fluctuations. The results of

- this fit for T > T, coincide with the curve shown to within

experimental error.
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gest uncertainties in the parameters are in K7 and C,.
The value of the background elastic constant was not
strongly affected by the uncertainty in C;: _

¢ (T)=1(8.07 £0.07) — (0.000 23 +0.000 30)
x (T —Ty)1 x 10" dyn/cm?

C’Pl (T) derived from our fitting is essentially tem-
perature dependent within experimental error and the
upper limit on the slope is an order of magnitude
smaller than that used in the analysis by Luspin and
Hauret.

The limits on the value of C, were found to be
1 < C; <24 meV. These limits are consistent with
isotropic dispersion (C, =4 meV) for the soft mode.
The data are qualitatively different from and incon-
sistent with a two-dimensional dispersion (C,=0) as
discussed by Pytte?® and by Luspin and Hauret.’!
Although no relevant neutron data exist, it has been
suggested that the soft-mode dispersion should be
nearly isotropic on physical grounds.®'

The best fit to the experimental data is obtained
with K7 =0.24 x 10°2(dyn/cm*)?. The corresponding
limits on its value are

0.10 < K# < 0.40[ x 1052(dyn/cm*)?]

Note that over the same temperature range, the un-
correlated variable K4 /+/C, varies over much smaller
limits: ‘

0.08 < K2/+/C, <0.10[x 10°2(dyn/cm*)2/(meV)'72]

Having obtained the value of the coupling constant
K, above the phase transition, we are now in a posi-
tion to examine the data below the phase transition.
We shall assume that the Landau free energy which
was derived in the paraelectric phase continues to be
valid when expanded about the equilibrium position
in the low-temperature phase. We also assume that
the background elastic constant C"lol (T), which
represents the elastic behavior in the absence of cou-
pling, may be extended smoothly into the ferroelec-
tric phase. The elastic anomaly is then given by the
difference between the experimental C;;(T) and the
extrapolated background.

Below T, the twofold degeneracy of the soft mode
may be lifted by the symmetry breaking, and the
elastic anomalies due to the two soft-mode branches
must be treated separately. We are now forced to
make some assumptions about the nature of these
two branches in order to carry out the analysis. Four
distinct models will be considered which appear to
cover all proposed interpretations.

Model 1: The two zone-center modes are nearly
degenerate in the low-symmetry phase. Model 2:
The Fleury mode is the longitudinal mode (eigenvec-

tor parallel to 7). The transverse mode is a very-
low-frequency excitation which lies within the central
peak. Model 3: The Fleury mode is the transverse
mode while the longitudinal mode has arbitrary tem-
perature dependence. Model 4: The two modes are
degenerate at room temperature with the frequency
of one given by the Fleury mode. The two orthogo-
nal eigenvectors are oriented at an arbitrary angle
relative to 7.

Model 1, which corresponds to the interpretation of
Sinii et al., 3 is the most straightforward to analyze.
The elastic anomaly in the low-symmetry phase
(T < Ty) is first expressed as the sum of two terms:

Aéll=€?1 ~ Gy =ACH, +ACY,

where ACY, and ACY, denote the bilinear and fluc-
tuation anomalies, respectively,

= K3 m} - K2kT 3
ACH =—:l’%§ ACH = 23 s Q0
m*Q; 27)’m 23(Q)
(5.3)

As in the PE phase, the two dimensionality of the
soft-mode results in a doubling of the fluctuation
anomaly. However, the induced bilinear coupling is
not doubled since it is only effective for that part of
the soft mode which is in the direction of the spon-
taneous displacement. In Fig. 5 we show the experi-
mental values of (1, in PE and FE taken from the
neutron scattering results. Above the phase transi-
tion, the soft mode varies in frequency from 0.4 meV
at the transition to 1.3 meV at about 100 °C above
Ty. Below Ty, Q, is much higher and varies from
5.7 meV at room temperature to 2.7 meV at T,. The
effect of critical fluctuations (A(:ﬁ ) at these higher
frequencies is much reduced from its value in the
high-temperature phase and varies from 0.06 x10!!
dyn/cm? at room temperature to 0.15 x 10'! dyn/cm?
at Ty. In evaluating the fluctuation integral, the in-
tegration is now over a Brillouin zone which is half
the size of that in PE because of the doubling of the
unit cell. At the same time, each soft-mode branch
would become two branches in the smaller zone. An
equivalent treatment which we shall adopt is to con-
tinue to use the PE Brillouin zone but treat each
branch as one branch in the larger zone.

Soft-mode dispersion curves in FE are not avail-
able, but we have seen from the neutron data that
the soft mode in PE beyond Qy, +%IQM|f is not af-

fected by the phase transition. If we assume that the
same condition holds in FE also, then the same con-
ditions which were used to specify the dispersion
curves in PE can also be used in FE.

The bilinear coupling term (AC‘{] ) depends on the
ratio of the soft-mode frequency (1, to the static
value of the order parameter no. Since both 2, and
mo decrease when the temperature is increased from
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FIG. 5. Temperature dependence of the soft-mode fre-
quency close to the phase transition. The data points are
taken from the neutron experiments of Dorner et al.2324
Note that the data points in the range To<T7 < T;+50 K
were derived from the neutron scattering cross section and
not by direct measurement. The curve through the data
points above T indicates the results of the neutron scatter-
ing experiments. Below T, the lower curve shows the fre-
quency of the ‘‘missing’’ soft-mode branch found from the
model 3 fit to C;, where its eigenvector is constrained to be
parallel to the order parameter. The upper curve shows the

_frequency of the ‘‘missing’’ branch found with model 4
where the orientation of the two soft modes relative to the
direction of the order parameter was not constrained and
was found to be y =44 +5°.

room temperature towards the transition, their tem-
perature dependences are largely canceled. The
resulting magnitude of the bilinear anomaly varies
from 0.76 x 10! dyn/cm? at room temperature to
0.60 x 10" dyn/cm? at the transition. Aithough the
total predicted anomaly has about the right magni-
tude, it changes by only 0.1 x 10!! dyn/cm? between
room temperature and the transition. This is much
too small to account for the 1.3 x 10'! dyn/cm?
change seen over the temperature range in the exper-
imental data in Fig. 4.

There is another difficulty in assuming that the two
branches of the soft mode are nearly degenerate. In
deriving the elastic anomaly from the free energy in
Sec. 111, the soft-mode frequency below T was found
to depend on the free-energy parameters B and D
through

m* Q3 =1[2B +4Dn3(T)Im3(T) . (5.4)

The temperature dependence of 2, as derived from
this equation would be much greater than that of the
Fleury mode irrespective of the choice of the con-
stants B and D, assuming that n3(T) follows Eq.
(5.1).

We are thus led to conclude that the acoustic ano-
maly in FE cannot be explained if the two branches

of the soft mode are nearly degenerate, since the bi-
linear term ACILI is nearly temperature independent
while the fluctuation term AC {; is insignificant. Al-
lowing mg to vary cannot.improve the fit since it only
displaces AC 1L1 without increasing its temperature
dependence. Some improvement can be obtained by
simultaneously decreasing 7o and increasing K,, but
the theory would then no longer fit the data in PE,
nor would the observed temperature dependence of
the order parameter n3( T) agree with Eq. (5.4).

Model 2 is suggested by the interpretation of
Dorner et al. and corresponds to the last case in Fig.
9 of Ref. 24. It can be understood by examining the
first three terms in the free energy [Eq. (3.16)] which
give the complete dependence of G on m at constant
strain. If the coefficients of the ¢-dependent terms
(B,, Bs, D,, and D;) all vanish, then G (7) is
a figure of revolution. For 4 <0 it becomes a
‘““Mexican hat’’ so that the transverse mode is at zero
frequency —the usual Goldstone mode which results
when a continuous symmetry is broken. If some of
these coefficients are nonzero but small, then the
continuous symmetry is replaced by a discrete sym-
metry and G (n) is a “‘bumpy Mexican hat>’ with
four minima around the brim. The transverse fre-
quency can still be very small, however, and consti-
tutes a ‘‘pseudo-Goldstone mode.”” Note that Q
and , can be very different even though the origi-
nal tetragonal symmetry is only slightly broken. The
effect of the low-frequency transverse mode in this
model would be to increase the fluctuation integral
relative to model 1, without changing the bilinear
term. The temperature dependence of €, in both
phases would then be primarily due to fluctuations.

Unfortunately, we cannot quantitatively compare
our elastic constant data with the predictions of this
model since no data for the transverse mode frequen-
cy and its dispersion are available. By arbitrarily ad-
justing the temperature dependence of its frequency
we could probably find a good fit to C,;(7). Howev-
er, we would still be left with the second problem en-
countered in model 1: the order parameter is related
to the longitudinal soft-mode frequency by Eq. (5.4),
and the temperature dependence of the order param-
eter predicts a much stronger temperature-dependent
Q,(7) than that of the Fleury mode.

Model 3: In model 3, we assume that the Fleury
mode is the transverse mode, and attempt to deduce
the temperature dependence of the ‘‘missing”’ (longi-
tudinal) mode. Although at variance with the eigen-
vector determination of Dorner et al. this model al-
lows us to fit the elastic constant data and also to
satisfy Eq. (5.4). We shall use 87, and Q, to denote
the dynamical variable and frequency of the ‘‘miss-
ing”’ soft-mode branch, and 87, and (1, for the
“Fleury” branch. €, will be treated as a free vari-
able to be evaluated through fitting of the observed
elastic anomaly. We continue to assume that the
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eigenvectors of the two branches of the soft mode
satisfy the condition 8% Il 7y; 89,1 7o as we did in
Sec. III.

The Fleury branch would produce no bilinear ano-
maly because now its eigenvector is perpendicular to
the spontaneous displacement. Its contribution to the
fluctuation anomaly is very small since its frequency
is high, and can therefore be neglected. Thus we can
analyze the elastic anomaly in FE as being due to the
missing branch alone.

Equation (5.4) gives the soft-mode frequency in
terms of the free energy parameters B and D. The
number of parameters can be reduced by noting that
at the transition, the spontaneous displacement
m(Ty) is

3(B—K2/2C))

2 Ty) =—
"70( 0) 4D

Using this equation, we may express (1, in terms of
B alone:

m*Q2(T) =128 -3(B—K3}/2C )R (T)1m3(T)

R (T) is given by Eq. (5.1) and is the ratio of the
soft-mode amplitude at temperature T to its ampli-
tude at the transition temperature 7. The bilinear
coupling AC~{'1 which would be associated with this
mode is then:

K3}
[2B-3(B—K2/2C)R(D)]

~L
Ch =

Note that AC~1L1 depends on the soft-mode ampli-
tude relative to its value at the transition but not on
its absolute magnitude. The functional dependence
of AC” can be made explicit by muluplymg both
numerator and denominator by 2C” /K3. AC” then
becomes

~0 =0
2Ch 2BCh
, a= . (5.5
[2a=3(a—1)R(T)] K3

ACT =

In this form, one sees clearly that Affl depends only
on the relative size of B and K2/2C}) and its magni-
tude would be insensitive to the uncertainties in K,
found from the data above the transition.

Due to the similarity in the curvature of €y, in PE
and FE, one might expect that AC” should be rela-
tively temperature independent with the curvature
coming from the fluctuation term A(,:lrl. Therefore,
it is of interest to examine the temperature depen-
dence of Af‘lLl as « is varied. The value of o must
be such that (a—1) <0 or (B —K}/2C) <0 be-
cause this combination of constants is the fourth-
order coefficient of mg in the free-energy expansion
which includes the effects of coupling and is negative
in the case of a first-order phase transition. From
Eq. (5.5), AC“ would be temperature independent if
a=1. This corresponds to the limit when the transi-

tion is second order. In this case, ACt; = () and
the predicted magnitude of the drop.in Cy; is too
large. As the value of « is reduced from 1, the mag-
nitude of AC.ILI is also reduced. However, because
R (T) in TMO ranges from 1 at the transition to 4.5
at room temperature, the second term in the denomi-
nator of Eq. (5.5) quickly becomes dominant and
AC“ depends on temperature as 1/R (7). In that
case, ACH would have more temperature dependence
than is present in the experimental data. Clearly,
there would have to be a tradeoff between the magni-
tude of ACL, and its curvature.

Thus far, we have carried out this discussion using
a simplified free energy with one soft mode and one
elastic strain. We have seen how the coupling to the
strain can alter the temperature dependence of the
uncoupled soft-mode amplitude. In reality, the true
soft mode must include the influence of not one but
all of the elastic constants. If this is done, the essen-
tial point of the preceding argument remains unal-
tered; however, in Eqs. (5.3) and (5.4) one should
replace

(B—-K3/2C)))
by
B K} _ K3 cos2¢y
(CL+CY) 209

The new equations for AC‘ILI and Q1 are
ACL = 2(691 +C'1()2)
" [2a-3(a=2-B)R(D]

(5.6a)

K2 n3(T,
mnn=——é¢ié%—ma+ua—z—ﬁnR(n,
2(C11 +C12)

(5.6b)

where 8 is the ratio of K? cos2¢e/2C o to K2/
2(CY, +Cy). The constraint on « now becomes

(a—2-8) <0 .

The fluctuation anomalies are given by Eq. (3.17).
That of the Fleury mode is insignificant and is not in-
cluded in the fitting.

The value of 8 is related to n3(7T) and the shear
angle &(7) by
~0 1/2
Cos (D)

,BKZ““:—.-
P(Ch D)

K3 cos2domi =

=2C%&(T) . (5.7)

The magnitude of ny and & at room temperature
(RT) were determined to be no(RT) =1.65 A (Ref.
41) and &(RT) =5 min.”® Using the value of 8
determined from Eq. (5.7) and adjusting « via Eq.
(5.6a) to match the elastic anomaly at room tempera-
ture, we find ACy, to be too strongly temperature
dependent and a satisfactory fit to the data is not pos-
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sible. This is true even if K, is left as a free variable
in view of its large uncertainty from the PE fit, and
the data in PE and FE are analyzed simultaneously.

A better fit to the data is possible if «, 8, and K,
are all left as free variables when the data in PE and
FE are analyzed. The resulting fit in FE is shown in
Fig. 4. (The PE fit is not significantly altered from
our earlier result.) The values for a, 7o are (—2.84
+0.3) and (—0.53 £0.07) A, respectively. K7 and
the other parameters are found to be quite insensitive
to the data in FE and retain the values previously ob-
tained. This result is evident from Eq. (5.6a) for the
bilinear anomaly which forms the dominant part of
the anomaly in FE and is dependent only on « and
mno. From Eg. (5.7), the corresponding value of g is
0.53 £0.07 A which is considerably below Jeitschko’s
measurement. The frequency 2, of the missing
branch is plotted in Fig. 5. Its frequency at room
temperature is 2.3 meV. According to the Birman-
Worlock theorem, the missing branch should be Ra-
man active.® Neither the Raman scattering nor the
neutron scattering experiments have revealed a
feature in this frequency range, although it is at suffi-
ciently low frequencies to possibly be obscured by
strong elastic scattering, and might have a very small
Raman strength.

Model 4: In analyzing the data in FE thus far, we
have assumed that the eigenvector of one of the two
soft modes is parallel to the spontaneous displace-
ment. This assumption implies that the elastic ano-
maly is due to either the Fleury branch or the miss-
ing branch. We have found that neither alternative
produces a satisfactory fit to the data without intro-
ducing properties of the soft mode which are incon-
sistent with the results of other experiments. In
model 4 we therefore relax the condition that one of
the soft-mode eigenvectors is parallel to the spon-
taneous displacement. From the discussion following
Eq. (3.16), we see that if we set (87 7o) =cosy and
(87, o) =siny, the bilinear elastic anomaly is

2.2

~L Kimp .

ACY =cos*y—— +sin®
1 wm*ﬂ,{z ¥

2.2
Kim 5w
m 02

where we now designate ()] as the frequency of the
missing branch. Q3(7 =273 K) will be set equal to
the Fleury branch frequency to be consistent with the
results of Fleury, Petzelt, Kim and Ullman, and Shi-
genari et al., while ¢ and the temperature dependence
of Q; will be treated as free variables. Equation
(5.6), which was derived from the free energy, is
valid for a dynamical mode oscillating parallel to the
spontaneous displacement. The expression for the

- soft-mode frequency is more complex in other direc-
tions. However, the form of the expression should be
similar although the meaning of the parameters may
be altered. We shall assume that Eq. (5.6b) contin-
ues to be valid for the temperature dependence of Q]

in the present case. We shall set no=1.65 A in
agreement with Jeitschko’s results.

The bilinear anomaly due to the Fleury mode was
seen to be only weakly temperature dependent. We
shall therefore assume that it is a constant equal to
its value at room temperature. The fluctuation ano-
maly of the Fleury mode is again neglected as insigni-
ficant.

We have carried out the data fitting under these as-
sumptions and the results are shown in Fig. 6. The
resulting values of the free parameters are

CP (T) =1(8.07 £0.1)
—(0.00028 +0.0003) (T — To)1x 1011£z9{,
cm

K% =1(0.236 £0.02) x 10°2(dyn/cm*)? ,
C,=(16.8 +1.0)meV ,
cos?y=0.51 +0.07(yp =44 +5°)

Note that the error limits on K# and C, are consider-
ably reduced relative to the first fit. This is because
the value of K# has now been adjusted to fit the ex-
perimental data at room temperature. However, the
corresponding value of C, shows that the dispersion
in the Z direction is much greater than in the xy
plane.

The value of Q; was derived via Eq. (5.6b) and is
plotted in Fig. 5. Both Q] and Q; lie within the sin-
gle broad feature observed in the Raman spectrum
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FIG. 6. Results of the fit of the C;; data of TMO with
model 4. The data were analyzed using a model in which
the eigenvectors of the two soft modes were unconstrained
and were found to be oriented at ~45° to the direction of
spontaneous displacement. As in Fig. 4, the upper curve
above T represents the background elastic constant in the
absence of coupling while the lower curve includes the ef-
fects of critical fluctuations. The upper curve below T
represents the effects of induced bilinear coupling alone
while the lower curve includes both bilinear coupling and
the additional contribution from critical fluctuations.
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between room temperature and 7. Although
Fleury’s®® analysis of this feature as a single mode
suggested strongly temperature-dependent damping,
the analysis of the Raman data by Shigenari e al.?® in
terms of two damped harmonic oscillators gave fre-
quencies 1, and (2, closely resembling our present
results up to approximately 100 °C. (They were un-
able to extend their two mode analysis closer to T.)
The soft-mode frequency found here is also con-
sistent with one alternative form of soft-mode split-
ting considered by Dorner et al. in the Appendix of
their paper.

The rotation of the soft-mode eigenvectors relative
to the orientation of the order parameter 7, indicated
by model 4 seems unreasonable at first glance but
can be justified, at least conceptually, by considera-
tion of the distinction between the high frequency
and static free energies. If there were no coupling
between m and the strain, the free energy associated
with the order parameter would be given by the
power-series expansion in 1 whose leading terms (in
7%, 7m*, and n°) are included in the first set of brack-
ets in Eq. (3.15). In the low-symmetry phase where
A is negative, 1o would lie in one of the four minima
of the ““bumpy Mexican hat.”” The eigenvectors of
the two soft modes would be oriented in the direc-
tions of the maximum and minimum curvature of G
at this point which, by symmetry, are parallel to and
perpendicular to 7.

However, the equilibrium 7 is determined by the
full free energy, including coupling to strains, which
renormalizes some of the coefficients. In the simpli-
fied one-dimensional model discussed at the begin-
ning of Sec. III, we saw that B, the coefficient of the
quartic term in 7 in Eq. (3.1), appears as the renor-
malized coefficient (B — K2/2C) in Eq. (3.2a) which
determines mo. Similarly, in the equation preceding
Eq. (5.6a) the renormalized version of B based on ~
the full free energy is seen to contain a term which is
dependent on ¢. Thus the high-frequency
(““clamped’’) and low-frequency or static free energy
surfaces may be rotated with respect to each other.

The soft-mode dynamics are governed by the
high-frequency free energy. Thus the equilibrium 7,
which occurs at a minimum of the static free energy
may not be at a minimum of the high-frequency free
energy so that the orientation of the eigenvectors re-
lative to 7o need not be parallel and perpendicular.
This argument, though qualitative, may explain the
surprising results of model 4.

We have also carried out a preliminary investiga-
tion of the elastic anomalies of Cy; and C,, using the
free-energy parameters determined from the fitting of
C11. So far, the resulting fit has been unsatisfactory.
The main difficulty lies in the relatively small value
of the ratio K3cos2¢/K,. From Eq. (3.19) (which is
applicable at room temperature because of soft-mode
degeneracy), one sees that the difference in the elas-

tic behavior of C';; and Cy, is the result of the cou-
pling constant K;cos2¢y. The magnitude of

K 3c0s2¢, obtained from fitting of C, suggests that
the difference between C;; and C,, should be much
smaller than observed.

VI. CONCLUSIONS

We have investigated the anomalous elastic
behavior of TMO and analyzed our results using a
phenomenological model which includes both the ef-
fects of morphically induced bilinear coupling and of
critical fluctuations. A self-consistent picture of the
elastic anomaly both above and below the phase tran-
sition was obtained subject to the constraints of those
soft-mode characteristics which are known from pre-
vious x-ray, Raman, infrared transmission, inelastic
neutron scattering, birefringence, and thermal expan-
sivity experiments.

Our results suggest that the nature of the two-
dimensional soft mode in the ferroelectric phase is
not yet well understood.  We infer that the doubly
degenerate soft mode in the paraelectric phase is split
below the phase transition with the ‘‘missing’’ mode
being strongly temperature dependent. Furthermore,
because of the doubling of the-unit cell, there are
four branches of the soft mode below 7,. All four of
these branches are of 4, symmetry at the I point.
The Fleury mode and the ‘“‘missing’’ mode found in
our analysis represent the two lowest branches of this
soft-mode quartet. The high-frequency pair may cor-
respond to the 75-cm™! doublet reported by Kim and
Ullman.?! Our analysis has also produced specific
predictions for the dispersion of the soft mode along
the Z axis which has not been determined by the neu-
tron scattering experiments. In addition, the eigen-
vectors of the two soft modes below 7, in model 4
which gave the best fit to all the data were found to
lie at approximately 45° to the direction of the spon-
taneous displacement (order parameter). We em-
phasize that this angle should be distinguished from
the angle between the spontaneous displacement and
the orthorhombic crystalline axes which has been the
subject of considerable controversy.?*3°

Our results imply a clear distinction between the
physical origin of the elastic anomalies in the two
phases. While the anomaly in the paraelectric phase
is entirely due to coupling between the elastic strain
€, and critical fluctuations of the soft mode, the ef-
fects of these fluctuations in the ferroelectric phase
were found to be small compared to that of the
morphically induced bilinear coupling. That these
two effects can be calculated from the same wave-
vector-independent coupling constant supports the
validity of our phenomenological approach. We note
that while critical fluctuations can, in general, lead to
breakdown of the Landau free energy predictions, the
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transition in TMO is first order by at least 4 K which
effectively precludes such a possibility in this case.

In fitting the data for the elastic anomaly, we have
not taken the ‘‘adiabatic correction’ into account
since Toledano has shown that it is small for the
rare-earth molybdates.*> We point out that our
analysis has only dealt with the elastic anomaly of €,
for which the theory is relatively simple. Preliminary
attempts at fitting the data for Cy, and C,, using
parameters derived from the fit to C;; have not been
successful. Fleury has suggested that the near degen-
eracy of the two soft-mode branches might lead to
large additional contributions to the elastic anomaly
from cross terms between the two soft-mode
branches and the elastic strqin. (These terms occur
in Cy; and Cy,, but not in C;;.)

We recognize that some of the approximations
built into our analysis, such as the assumed constan-
cy of K, throughout the Brillouin zone and the trun-
cation of the fluctuation corrections at the lowest or-
der may well have influenced our numerical results.
Finally, we note that the phenomenological theory
makes specific prediction for the damping of the vari-
ous elastic constants. Investigation of the acoustic

damping as well as its pressure dependence could
provide additional tests of the validity of the
phenomenological theory.
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