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The static structural properties of Al are calculated using the self-consistent pseudopo-
tential approach with local-density-functional expressions for the exchange and correlation
energies. The only input parameter is the atomic number. Calculated values for the lattice
constant, bulk modulus, and cohesive energy agree with experimental values within

&1%, —1%, and -7%, respectively.

I. INTRODUCTION

Successful ab initio calculations of the structural
properties of the group-IV covalent elements have
recently been reported. ' The methods employed
were the local-density-functional (DF) formalism
for the total energy, angular-momentum-dependent
(nonlocal) pseudopotentials to represent the core
—valence-electron interactions, and a self-
consistent approach to the electron-electron in-
teractions among the valence electrons. We have
applied the same approach to calculate the lattice
constant, bulk modulus, and cohesive energy of Al
in the fcc structure. Excellent agreement with ex-
perimental values is also obtained.

Al is chosen as a prototype metal to test the
free-electron model (FEM) which is usually as-

sumed to represent an adequate description of this
material. Many calculations of the structural prop-
erties of metals have been formulated using a free-
electron gas subject to a weak potential, and these
calculations are carried to second order in pertur-
bation theory. To test the validity of the FEM ap-
proach and other methods, we have made detailed
comparisons between the results of this paper and

those of other authors using different techniques.
The rest of the paper is organized as follows:

The calculational procedure is described in Sec. II.
Results are presented in Sec. III. The cohesion of
metals is discussed in Sec. IV.

II. CALCULATIONAL PROCEDURE

First, the pseudopotentials for Al are determined
using the method of Hamann, Schluter, and Chi-
ang. These ab initio psuedopotentials require no
experimental input. The only requirement is that
they reproduce the all-electron results in the atom-
ic limit. The atomic calculations are performed us-

ing the DF formalism with the Wigner interpola-
tion formula for the exchange and correlation. The
same functional is used for the crystal calculation.
The potentials are nonlocal (i.e., angular-
momentum dependent) and are generated with a
given atomic electronic configuration, in our case
(3s'3p'3d'). To ensure that these potentials can
accurately simulate core-valence interactions, they
are used to calculate the valence eigenvalues and
excitation energies for different atomic configura-
tions. The results agree very well with the all-
electron values (see Table I), and the valence

TABLE I. Eigenvalues and excitation energies of the pseudoatom for different atomic configurations. The values in
parentheses are deviations from the all-electron results.

Configuration
3$

Eigenvalues (in Ry)
3p

Excitation energy (AEf t)

3$ 3p

3s 3p 3d

Al +

—0.5802
(—0.0019)
—0.8479

(0.0)

—0.2133
(+ 0.0002)
—0.4346

(0.0)

—0.0605
(0.0)

. 0.7010
(+ 0.0014)

3.9109
(—0.035)
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pseudo-wave-functions are within 1% of the true
valence wave functions outside the core region.

The crystal wave functions are obtained by solv-

ing the Schrodinger equation using a plane-wave
(PW) basis. Plane waves with energy (k+G) up
to E,„,=12 Ry are included in the basis, which
corresponds to a -80' 80 Hamiltonian matrix.

The charge density is represented by wave func-
tions at 45 k points in the ( —„)irreducible Bril-
louin zone. The convergence of calculated quanti-
ties with respect to E,„, and number of k points
will be discussed later. The total energy per atom
is calculated in the momentum representation and
is given by

g ~g(k;+6) ~'(k;+6) + g S(G)V;,„(6)p(6)
i, G G+0

i, l, G, G

S(G' —6)g*(k;+6)g(k;+6')V„)(k;+G;k(+G')

g V~(6)p(6)+ g E„,(6)p(6)+a)Z+ya„, )s
6+0 G

a~ ——lim V;,„(6)+ 8mZ

G~ Q, G2

r

boa�«)+
1 I, 2Z

1 2Z
YEwald

/R„i f d r , (3)0, r

where the R„'s are the lattice vectors to the ionic
sites. Equation (l) can be written symbolically as

E...=Es+ V,'.„(6+0)+V„+—,VH(G+0)

+Exc +a )Z +Xpwa)d & (4)

where Ez is the kinetic energy. To avoid the dou-
ble sum in Eq. (l), an alternative form for the to-
tal energy is used,

where 0, is the atomic volume, Z is the valency,
the 6's are reciprocal-lattice vectors, and S(6) is
the structure factor. The quantities g( k;+G),
VH(G), p(6), E/, (6), V~~„(6), and

V„~(k;+6;k;+6) are the Fourier transforms of
the wave function, the Hartree potential, the charge
density, the exchange-correlation energy, the local
part of the pseudopotential, and the nonlocal part
of the pseudopotential, respectively. The index i
represents both the wave vector kl and the band
index n and runs over all occupied states. a~ and

6
VEwald are

Z 1«ot=yg&g —&, —, g VH(G)p(G)
l G~

+ g p.,(G)p(G)
G~

+ g E„,(6)p(6)+~tz+ya„,M,

where N is the number of occupied states; there-
fore, the first term is Ze where e is the average
eigenvalue. The exchange-correlation potential is
defined by

a
E-lp1 .

Bp

The calculation is iterated until E„, is self-
consistent to 10 Ry. The self-consistent pseudo-
potential method is described elsewhere.

Since Al has partially filled bands, the special
point schemes are not very useful for the evalua-
tion of g;e;; many eigenvalues are needed, and
the following method is used. Eleven radial direc-
tions in the irreducible Brillouin zone are chosen,
and eigenvalues and wave functions are calculated
at four k points along each direction and at I
yielding 45 k points in total. Using these calculated
eigenvalues, we numerically interpolate along each
direction. For Al, where the bands are generally
spherical, such an interpolation along radial direc-



4226 PUI K. LAM AND MARVIN L. COHEN 24

tions is expected to be good. For each direction,
200 points are interpolated, and the g,.e; is

evaluated by a discrete sum with appropriate
weighting factors. The method is tested for a free-
electron band, and it yields good result~.

To obtain the equilibrium lattice cons&ant, bulk
modulus, and cohesive energy, we calculated Et f
for six different lattice constants and fitted the E„,
versus V curve with

1 1E„,—a
0

The fit is better than S&10 Ry. The bulk
modulus 8 is given by

0 dE 2a

BV V

The cohesive energy is obtained by taking the
difference between Eo and the total energy of the
atom calculated with a spin-polarized correction.
Our calculated spin-polarized correction is 0.186
eV. Janak et al. ' and Chelikowsky" obtained
similar corrections of 0.19 and 0.18 eV. The zero
point vibrational energy of the crystal is only
—10 Ry; hence, it is not included in our calcula-
tions.

Convergence of Etot with respect to E,„, and
number of k points is examined. Changing E,„,
from 12 to 16 Ry only changes E„,by 10 Ry.
The charge density is insensitive to the number of
k points. E«, changes by only 10 Ry going from
25 k points to 45 k points. We use the same E,„,
and number of k points for calculations with dif-
ferent lattice constant to ensure the same conver-
gence. The equilibrium lattice constant and the
bulk modulus are not very sensitive to the absolute
convergence as long as we maintain the same con-
vergence for each lattice constant; hence, they are
evaluated more accurately than the cohesive ener-

gy.

III. RESULTS

The calculated lattice constant, bulk modulus,
and cohesive energy are shown in Table II along
with experimental values' and results from previ-
ous calculations. ' ""The E„,versus V curve is
shown in Fig. 1. To test the reliability of the fitting
approach, a quadratic function of volume

E,o, ——a( v —vo)~+ED

is also used, and similar agreement is obtained.
When using Eq. (9), one is confined to points close

TABLE II. Lattice constant, bulk modulus, and cohesive energy of Al, calculated and experimental values. Difference
between calculated and experimental values are shown in parentheses. APW denotes augmented plane-wave calcula-
tion.

Ashcroft et al. '
(pseudopotential)

Lattice constant
(A)

Bulk modulus
(Mba r)

0.65 (—0.072)

Cohesive energy
(Ry/atom)

0.28 (+ 0.03)

Ross et al."
(APW without correlation)

4.12 (+ 0.1) 0.93 ( + 0.208) 0.30 ( + 0.05)

Janak et al. '
(APW with correlation)

4.01 {—0.01) 0.801 (+ 0.079) 0.282 (+ 0.032)

Chelikowskyd

{renormalized atom)
4.41 (+ 0.39) 0.65 {—0.072) 0.219 (—0.031)

Present calculation 4.01 (—0.01) 0.715 (—0.007) 0.268 (+ 0.018)

Experimental values' 4.02 0.722 0.25

'Reference 3.
Reference 13.

'Reference 10.
"Reference 11.
'Reference 12.
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divergences of the electron-electron Coulomb, the
electron-ion, and the ion-ion interactions. It is the
combined term

E —4.189 —.

O
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O- -4.190—

E '"'= V;0„(6+0}+V„)+—,VH(G@0)

++1Z+ VEwald (10)
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FIG. 1. Total energy versus volume. Calculated values
are denoted by open circles, and the fit corresponds to
the form given by Eq. (7) in the text.

to the equihbrium value. Our calculated cohesive
energy diA'ers from the experimental value by
0.018 Ry (Table II}.This does not result from in-
sufficient convergence accuracy since our conver-
gence error is =—10 Ry and increasing E,„, tends
to lower the crystal energy.

The variation of various components of E„,with
respect to the lattice constant is shown in Table
III. The Ez and V~~,„(G+0) are evaluated explicit-

1y while V„~ is deduced by subtracting all other
contributions from the sum of eigenvalues. The
kinetic energy increases with decreasing volume as
expected. V;,„(0+0)and VH(G+0) are very small
because the charge density is quite smooth. yE„,~d

seems to constitute a large part of the crystal ener-

gy. However, we should not focus on yE„,~d alone
because it was introduced to remedy the separate

ZE„(0)=— ' Z

and

(12)

ZE, (0}= — ' Z,
rs+7-8

and r, is the electron gas parameter defined by

4m 3 ~a
3 Zrs = (13)

which has real physical meaning, and it represents
the total Coulomb interaction of the ion plus elec-
tron system. Actually, a pseudoion and pseudoelec-
tron system is being modeled. The E '"' term is at-
tractive, and it favors small volume (Table III),
which counterbalances the kinetic energy. The
E '"' term becomes extremely repulsive when the
volume is smaller than the core size because of the
aiZ term.

To compare our results with the free-electron
model (FEM} results, we let p(G}=(Z/Q, )5O o,
that is, a uniform charge density, and Eq. (5) be-
comes

Et%( ZF+ ZE——„,(0)+a )Z +Xn~,)d,

where ZE„,(0)=ZE„(0)+ZE,(0) is given (in Ry)
by

TABLE III. Trends of various energy components versus lattice constant a.

al a3 a4

a (A.)

E
V;,„(G+0)
V„l

—, VH(GAo)

E
CK lZ
QEwald

Etot
ECoul

E FEM
tot

3.85
1.878 727

—0.372 340
—0.114289

0.009 979
—1.405 876
—0.269 113

1.758 895
—5.673 395
—4.187412
—4.391 150
—3.871 985

3.94
1.795 125

—0.351 516
—0.099 141

0.009089
—1.373 985
—0.267 864

1.642 566
—5.545 456
—4.191 182
—4.344458
—3.903 834

3.98
1.756 653

—0.342465
—0.094044

0.008 615
—1.358 281
—0.267 233

1.587 412
—5.482 679
—4.192022
—4.323 161
—3.916879

4.01
1.730 539

—0.337 015
—0.090456

0.008 345
—1.347 510
—0.266792

1.550 166
—5.439460
—4.192 183
—4.308 420
—3.924 875

4.05
1.701 096

—0.331291
—0.086 713

0.008 143
—1.335 195
—0.266 281

1.508055
—5.389 751
—4.191937
—4.291 557
—3.933 114

4.12
1.650 885

—0.323 390
—0.080441

0.007 976
—1.313777
—0.265 372

1.436239
—5.302 800
—4.190678
—4.266 385
—3.944992
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If we also assume a free-electron band, that is,
e(k)=k, then

2.21Z6=
2 Z .

rs
(14)

with the FEM is quite good, the value of the bulk

modulus depends on a detailed balance between dif-

ferent energy components and a high degree of ac-
curacy is required.

The presence of both the aiZ and yE„,id terms dis-

tinguishes this model from the jellium ion model;

aiZ represents the effect of the core, and yEw, id

represents the efFect of localized ions. In terms of
rs~ z, zz
a,z= I V;,„(r)+ d r—: ,", (15)

Q~
3 s
—mr

and

{fcc) 1'79175 5/3
3 Ewald

rs
(16)

VH(G)p(G)+ g [&.,(G)—p„,(G)]p(G),
G+0 0+0

and the correction to the free-electron band arising

from the presence of the ionic potential. Usually,

these terms, called the band-structure term, are3

approximately accounted for by perturbation

theory to second order and linear screening.

We have investigated how well the individual en-

ergy components are given by the FEM (Table IV).
Both E„and E, agree quite well with the FEM
while Ze seems to deviate. However, if the eigen-

values are measured with respect to the bottom of
the band, e =e;—e(k =0), then Ze' is in better

agreement with the FEM. Although the agreement

For the Ashcroft potential, V»(0)=4mr, , where r,
is the core radius. With the Al potential used here,

Vz, (0)=56.39468 Ry. We have calculated

E," Ot ( Talbe III). The equilibrium lattice constant

deduced from E,"„ is 4.40 A (error = 10%) while

the bulk modulus is 1.1 Mbar (error = 50%).
The terms neglected in the FEM are

IV. DISCUSSION

It is instructive to examine how the various en-

ergy components contribute to the cohesion of Al.
The energy components of the atom and the solid
are shown in Table V. As discusse'd before, the

I. 1

terms ~ion~ ~n]~ 2 VH, aiZ, and &Ewaid

bined together under E '"', for the atom u&Z and

yE„,id are zero. The kinetic energy increases from
the atom to solid because the density is increased.
There is a gain in Coulomb energy going from
atom to solid; E '"' is more negative in the solid
because the electrons feel the presence of other
ions. However, this gain is not enough to overcome
the increase in kinetic energy. Therefore, the ex-

change term is essential for the cohesion of the
metal.

A point which should be mentioned is that the
kinetic energies in Table V are really those of the
pseudo-valence-electrons in the atom and in the
solid. Individually, they do not represent the kinet-
ic energy of the true valence electrons. However,
since only the part of the wave function outside the
core is modified in going from the atom to the
solid, the difference between the pseudokinetic en-

ergies should reproduce the true difference.
In summary, we have calculated the structural

properties of Al from first principles. The results

agree very well with the experimental values. The
trends-of the various energy components were ex-

amined and found to be qualitatively described by
the free-electron model. The bulk modulus, which

depends on the detailed balance between different

energy components, requires accurate calculation.
The contribution to the cohesion from various en-

TABLE IV. Comparison with FEM.

a& a2 a3 a4 a5 a6 FEM

rs

r,E„
(r, +7.8)E,
rs e
r, e

1.9707
—0.9235
—0.8765

1.7960
2.0995

2.0162
—0.9234
—0.8765

1.8145
2.1087

2.0393
—0.9233
—0.8765

1.8221
2.1125

2.0555
—0.9233
—0.8765

1.8269
2.1149

2.0745
—0.9233
—0.8765

1.8320
2.1175

2.1085
—0.9234
—0.8765

1.8391
2.1212

( —0.916)
( —0.88)

(2.21)
(2.21)



Ab initio CALCULATION OF THE STATIC STRUCTURAL. . . 4229

TABLE V. Contributions to cohesive.

Atom
(Ry)

Solid
(Ry) (Ry)

&sc
ECoul

g
g
E (spin polarization}

1.249 304
—3.973 150
—0.949 340
—0.237 756

(—0.0137)

1.730 539
—4.308 420
—1.347 510
—0.266 792

+ 0.481 235
—0.335 270
—0.398 170
—0.029 036

( + 0.0137)

Etot —3.924640 —4.192 183 —0.267 543

ergy components was also examined. The exchange
contribution is essential to the cohesion of metals.
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