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Exact-exchange Hartree-Fock calculations for periodic systems.
V. Ground-state properties of silicon
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An all-electron ab initio calculation of the ground-state properties of silicon is present-
ed. The method is the linear-combination-of-atomic-orbitals self-consistent-field Hartree-
Fock scheme previously applied to first-row systems. Computational problems associated
with the presence of large cores are discussed. The calculations have been performed us-
ing a minimal basis set (nine atomic orbitals per atom: 1s, 2s, 2p, 3s, 3p functions; d orbi-
tals are excluded). Results for total, binding, and correlation energy, band structure,
charge distribution, and x-ray factors are given.

INTRODUCTION

In recent years an increasingly great number of
papers have been devoted to the theoretical study
of the ground-state properties of silicon. ' ' In
general they are valence-only calculations in the lo-
cal exchange approximation. The pseudopotential
simulating the core electrons are empirical, fitted
to the spectra of the solid' or of the bare
ion. ' ' ' ' ' '" In one instance they are derived
from first principles. All electron "first-principle"
calculations in the local exchange approximation
have also been published. ' ' To our knowledge,
no applications to silicon have yet been reported of
all-electron ab initio Hartree-Pock (HF) schemes
which have been successfully used in the study of
diamond, cubic boron nitride, and other first-row
crystals. '

An all-electron treatment has the obvious advan-

tage in that it avoids the frozen-core approxima-
tion and permits more direct comparison with all
the experimental data. Furthermore, it can be used
as a reference for rougher approximations. These
advantages are counterbalanced by the need for
greater computational effort connected with the
presence of larger basis sets and with the require-
ment of higher numerical accuracy due to the dif-
ferent ratio between absolute and relative quantities
(total to binding energy, for example). While in
the study of low-symmetry or heavy-atom systems
such problems become of primary importance and
impose the use of pseudopotential techniques, we
want to show in the present paper, devoted to the
study of silicon, that for second-row crystals rela-
tively accurate HF all-electron calculations are
feasible with reasonable computational effort. Our

linear-combination-of-atomic-orbitals self-
consistent-field exact-exchange ab initio method
has been discussed in previous papers' '; results
have been published for graphite, ' diamond, ', and
hexagonal' and cubic boron nitride.

The results presented here have been obtained
with the same basis set as in previous papers, i.e., a
standard STO-36 minimal basis set, ' hereafter re-
ferred to as 3-3-3 set. %e also report the results of
some test calculations performed using a minimal
6-6-4 set (six Gaussians for core orbitals and 4
Gaussians for 3sp orbitals). Satisfactory results
have been generally reached at the 3-3-3 level;
some definite improvements (for instance; in the
calculated lattice parameter) have been observed
using the 6-6-4 set. The use of an extended basis
set, in particular the inclusion of d orbitals, is ex-
pected to improve some features of the band-
structure and electron-momentum distribution.

In the next section we will point out some com-
putational aspects of our silicon calculation. The
weight of the inclusion of core electrons and the
importance of the atomic orbitals size wi11 be
analyzed. In the third section results will be
presented for total and binding energy, correlation
corrections, charge density, band structure, and x-
ray factors.

COMPUTATIONAL ASPECTS

The general formulation of the direct-space ap-
proach to the study of solids and a first analysis of
its critical points have already been presented' '
with reference to a very simple system, i.e., the
graphite monolayer. In this section we want to ex-

24 4177 1981 The American Physical Society



4178 R. DOVESI, M. CAUSA, AND G. ANGONOA 24

amine more closely the importance of some charac-
teristic parameters of the system under study (ex-
tent of the basis set and size of the atomic orbital
with respect to lattice spacing) in determining the
overall weight of the computation.

The central point of our method is the evalua-

tion of sums of bielectronic integrals:
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where H is the monoelectronic part of E, the D
matrices are related to the d ones by point-group
symmetry operations, ' and P is the density matrix

represented in the basis of the AO's. The Pock
matrix is Fourier transformed to reciprocal space
just before the solution (at each k point of the ir-

reducible part of the first Brillouin zone) of the
matrix equation

F(k)A(k)=S(k)A(k)E(k) . (3)

The eigenvectors' and eigenvalues' matrices A and

E (with general elements a&, and e;) are then used

to redefine the P ' matrices, going back to direct
space:

Pi = g J dkait(k}ap, (k)

Xexp(ik 1)8(Gp —E;(k)) . (4)

In Eq. (3}S(k ) is the overlap matrix between

Bloch functions. In Eq. (4) p is the number of

where m, 1, and g are direct lattice traslational
vectors, and X~—:g„(r —g —s„) is the vth atomic
orbital (AO) of the cell characterized by the vector

g and centered on the atom identified by the frac-

tional vector s „. In Eq. (1) the usual notation has

been adopted to indicate two-electron integrals, the
two AO's on either side of the bar corresponding

to the same electron. The sum over m is in princi-

ple infinite; in fact, when
~

m
~

is suAiciently large,

groups of bielectronic integrals are approximated

by simpler expressions or disregarded, as discussed

at length in Ref. 17. Our program uses a "direct-
space" approach in the sense that all relevant

quantities are constructed in direct-space represen-

tation. The Fock matrix is reconstructed at each

iterative cycle as follows:

(2)

AO's in the cell, ez is the Fermi energy, and 8 is
the step function.

It can be interesting to analyze the percentage of
the total computer time required by the main steps
of our scheme synthesized in Eqs. (1)—(4) and see

how those times are dependent on p, the number of
AO's of the cell. In particular we will compare di-

amond and silicon to exhibit the role of a relatively

large core in such calculations. For step 1 (evalua-

tion of mono- and bi-electronic integrals), the com-

puter time t is roughly proportional to p n, where

n is the average number of direct-space vectors
considered in Eq. (1). For step 2 [reading from
external devices the D matrices and reconstructing
the Fock matrix according to Eq. (2)], t ~p n .
For step 3 [diagonalization of the Fock matrices,

Eq. (3)]. t ~p q, where q is the number of k
points (29 in our case). For step 4 [reconstruction
of the P matrix, Eq. (4)], t ~p'qn It m. ust be no-

ticed that the coeQicients of proportionality can be

very different for the four steps.
The strong dependence (third or fourth power) of

all the four steps on p, and of three of them on n is

evident; in step 1, in particular, the computer time
is critically dependent of both parameters. Surpris-

ingly enough, silicon calculations are appreciably

quicker than the diamond ones performed in the
same conditions (truncation criteria, number of
points in reciprocal space, number of iterative cy-
cles, 3G basis sets, etc.}, in spite of the fact that p
rises from 10 to 18. As appears in Table I, this ef-

fect is essentially related to a strong contraction in

step I, which is not compensated for by the in-

crease of the time required for the other three

steps. To understand the reasons for this apparent

paradox, we must make it clear why the number of
two-electron integrals is higher in diamond than in

silicon. This number, which is determined in a
complicated way by the truncation criteria dis-

cussed at length in Ref. 17, is in any case related to
the overlap S between AO's centered on different

atoms. In Fig. 1 we reported the decimal loga-

rithm of S as a function of the distance between

carbon (a) or silicon (b} atoms. Comparing the

valence 2s-2s and 3s-3s curves it is evident that the

larger lattice parameter of silicon (5.42 A against

3.56 A) overcompensates the larger size of the
functions. So fixing, for example, log&0 S=—5 as
value below which mono or bielectronic integrals

are disregarded, we must consider 5 stars of neigh-

bors (47 atoms) for silicon and 8 stars (99 atoms)
for diamond. Figure 1 shows that, when only core
functions are involved, n collapses to 1 so that the
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TABLE II. Number (in 10 units) of Coulomb and exchange bielectronic integrals to be
computed for a valence only and an all-electron calculation for diamond and silicon.

Diamond
All-electron Valence only

Silicon
All-electron Valence only

Coulomb

Exchange

13.0

1.8

12.5

1.5

4.1 2.1

0.6

eV/atom) is due to the neglected contribution of
the electronic correlation to the binding energy; the
remaining part can be traced back to the poorness
of the basis set. The error associated with the vari-
ous approximations connected with the method
(truncation criteria, sampling points in k space, nu-

merical errors in large summations, etc.) can be es-
timated to be less than 0.1 eV/atom. As for dia-
mond, ' we estimated a posteriori using the self-
consistent HF charge distribution, the correlation
energy of the system in the local-density-functiona1
approximation. - The functional we used is the one
of Gunnarsson and Lundqvist (GL) (Ref. 30) and
the one that more recently Stoll, Pavlidou, and
Preuss (SPP) (Ref. 31) employed to study finite sys-
tems. The binding energies including the correla-
tion contribution are reported in the third and
fourth row of Table III. The GL functional gives
the larger (and nearer to the expected one) contri-
bution: 1.30 eV/atom for diamond, 1.34 eV/atom
for silicon. With those contributions the error with
respect to the experimental data is reduced to 0.63
eV/atom and 0.70 eV/atom for the two systems.
At the moment there are no other all-electron ab
initio estimates of the total energy of silicon. Table
III also reports the calculated equilibrium lattice

parameter ao and the bulk modulus 8, as obtained
by a quadratic best fit with 5 energy points
evaluated in the interval 5.42 —5.72 A. The fit was
quite satisfactory in spite of the fact that the ener-

gy variations in the interval are quite limited
(about 0.11 eV). In fact, for the five determina-
tions obtained choosing four points out of five, ao
is stable whereas 8 varies from 1.17 to 1.30& 10'
dyn/cm . With respect to the experimental values,
the lattice parameter is less than 3% and bulk
modulus 25% too high.

To test the influence of the basis set, we repeated
the calculations with a 6-6-4 set. The exponents
and coefficients of the Gaussians were the standard
ones. ' We only adjusted variationally the coeAi-
cient of the most expanded Gaussian in the valence
orbitals so as to minimize the energy corre-
sponding to the experimental value of the lattice
parameter. A large gain in the total energy was
observed, of course (E = —15 673.25 eV/cell), espe-
cially due to the better description of the core func-
tions. The binding energy, as evaluated with
respect to a "6-6-4 modified" atomic calculation,
was practically unchanged (2.50 eV/atom). How-
ever, the determination of the bulk modulus
(1.20X 10 dyn/cm ) was slightly better and the

TABLE III. Experimental and calculated energy data for diamond and silicon.
HF + LDF(SSP) is the Hartree-Pock binding energy plus the correlation contribution
evaluated using the HF charge density by the local-density functional (LDF) proposed by
Stoll„Pavlidou, and Preuss (Ref. 31). GL refers to the functional proposed by Gunnarsson
and Lundqvist (Ref. 30). Energies in eV.

Diamond
Calc. Expt.

Silicon
Calc. Expt.

E„, (eV/cell)

Eb (eV/atom)

ao (Ll

8 (10 dyn/cm )

HF
HF + LDF(SPP)
HF+ LDF(GL)

2037.32

5.69
6.42
6.99

3.59

5.90

7.62

3.57

4.42

15 545.40

2.56
3.37
3.90

5.58

1.25

4.6

5.43

0.99
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FIG. 2. Hartree-Fock total charge density of silicon
along the [110](line AB) and [111](line BQ directions.

calculated equilibrium lattice parameter (5.42 A)
was practically coincident with the experimental
one.

The covalent character of the bond in silicon is
apparent from Fig. 2, where the total charge distri-
bution along the [111](first neighbors) and the
[110] (second neighbors) directions are reported.
Midway between nearest neighbors the charge is
0.08e/(a. u.), between second neighbors it is about a
quarter, and in the antibonding zone it falls practi-
cally to zero. The charge densities of diamond and
silicon in the [111]bond direction are compared in

Fig. 3. The stronger covalent character of the
C—C with respect to the Si—Si bond is not so ap-
parent from the higher value of the charge density
along the bond in the former case, as rather from
the fact that the increase in electronic density with
respect to atomic superposition data is twice as
large in diamond as in silicon midway between
nearest neighbors. This is also revealed by the
Mulliken bond populations which are 0.74 and 0.64
in the two cases, respectively. Full and open cir-
cles in Fig. 3 show the charge densities obtained by

8 L
%F

Si C C Si
FIG. 3. Hartree-Fock charge density in silicon (—)

and diamond {- - -) along the bonding direction. The to-
tal charge density in the atomic superposition approxi-
mation is also reported (—"—"—). Open and full cir-
cles refer to the charge density reconstructed from the
experimental x-ray structure factors (Ref. 32) p in
e/(a. u. ) .

Gottlicher and Wolfel, starting from the experi-
mental structure factors. The agreement is very
good.

Table IV shows the structure factors calculated
with the 3-3-3 basis set at the experimental value
of the lattice parameter, and the contribution from
core states. For comparison, the two most recent
experimental sets ' and the atomic superposition
data are also reported. The present results are
generally intermediate between the two experimen-
tal determinations. If more credit is given to the
accurately discussed data by Aldred and Hart, it
should be concluded that the largest errors occur
for low-index factors, that is, the ones associated
with the largest valence contributions. In fact, us-

ing the 6-6-4 basis set, F&&& reduces to 10.89 and

TABLE IV. Experimental and calculated structure factors for silicon.

h k I
Experimental

Ref. 33 Ref. 34
Calculated (this work)
Total Core

Atomic. superposition
Ref. 33

1 1 1

2 2 0
3 1 1

2 2 2
4 0 0
3 3 1

4 2 2
3 3 3
5 1 1

4 4 0
4 4 4

10.74
8.65
8.02
0.18
7.44
7.25
6.71
6.43
6.44
6.04
4.98

11.12
8.78
8.05
0.22
7.40

. 7 32
6.72
6.43
6.40
6.04
5.00

11.00
8.79
8.11
0.11
7.47
7.22
6.72
6.46
6.46
6.07
4.99

9.46
8.68
8.26
0.00
7.62
7.27
6.74
6.46
6.46
6.02
4.88

10.55
8.71
8.17
0.00
7.51
7.19
6.71
6.44
6.44
6.04
4.98
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TABLE V. Agreement factors 8;~ between structure factors.

Referen
6

Experimental

Calculated

32
35
34
33

This work
13
9
14
33

1

2
3
4
5

6
7

9

1.71
1.72
1.50
1.44
1.63
3.22
2.03
1.63

1.71

0.28
1.11
0.71
1.27
2.31
1.47
1.53

1.72
0.28

1.03
0.83
1.20
2.27
1.41
1.50

1.50
1.11
1.03

1.06
0.38
1.46
0.41
0.84

1.44
0.71
0.83
1.06

0.97
2.41
1.11
1.20

1.63
1.27
1.20
0.38
0;97

1.63
0.44
0.77

3.22
2.31
2.27
1.46
2.41
1.63

1.42
1.95

2.03
1.47
1.41
0.41
1 ~ 11
0.44
1.42

0.65

1.63
1.53
1.50
0.84
1.20
0.77
1.95
0.65

F2@0 to 8.74, while the other reflexes are practically
unchanged. The largest relative error occurs for
the "forbidden" F222 factor which is lower by a
factor of 1.7 with respect to the experiment. A
similar underestimation was observed for diamond.
In order to gain an overall picture of the sirnilari-
ties and discrepancies between available experimen-
tal and calculated sets of data, agreement factors
were calculated according to the formula

Rtj =lpp g ~+f +I
~

l

I
~/++a

I

I 2

Apart from the present HF results, the calculat-
ed data are taken from the papers by Heaton and
Lafon'~ (all-electron, ab initio, local exchange),
Zunger (pseudopotential, local density functional),
Stukel and Euwema' (their best results, obtained
with a combination of Kohn-Sham-Gaspar wave
functions for valence states, and Hartree-Pock wave
functions for core states), and Aldred and Hart 3

(atomic superposition from Clementi's data). The

gt in R;i was extended to all the 15 reflexes in-

cluded in Table II of Ref. 33 (plus the 222 factor)
or to the subset of those reflexes that are actually
reported by the above-cited authors, and that are
common to the sets i and j. The minimum
number (eight) of calculated reflexes is provided by
Heaton and Lafon. ' When all the agreement fac-
tors are calculated with respect to that minimal

set, the largest difference with respect to the data
of Table V is only 0.3 (i =9, j= 1). The most
striking feature of the table is the exce1lent agree-
ment of Aldred's data with the results of Heaton
and Lafon' and especially with those of Stukel and

Euwema. ' Such a good agreement is somewhat

surprising if one considers that differences between

experimental sets are appreciably higher than that.

cu

0)
I
S
C

UJ p

2

1

2'

X K

FIG. 4. Hartree-Fock self-consistent band structure
of silicon. The symmetry type of the eigenvectors at I.,
I, and X points is reported.

On average, the present results exhibit the best
overall agreement with available experimental data.

In Fig. 4 the calculated HF band structure of
silicon along some high-symmetry direction is
finally shown. The qualitative features of the
valence part of our calculated spectrum are very
similar to the ones obtained with previous calcula-
tions. ' ' ' ' ' As usual, Hartree-Fock band
structures are larger by a factor of 2 or more with
respect to the structures suggested by optical exci-
tation data. ' ' For example, we obtained for
1.3, —I.

&
transition 8.76 eV, against an experimen-

tal data of 3.40 eV. The calculated valence
I"25, —I

~ bandwidth is equal to 19.8 eV, about
one-half of the one we had for diamond (37 eV).
The conduction bands are instead quite difFerent

from the ones resulting from other calculations.
We have an inversion between the I i5 and the I 2,
levels (which disappears with the 6-6-4 basis set);
furthermore the lowest point is I 2, , whereas other
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calculations show a minimum in the X& point or
midway along the I —X line, ' ' as suggested by
the experiment. Our valence-conduction gap
(I 25, —I'2, ) is 9.40-eV wide, against an experimen-
tal value of 3.54 eV. The quality of the basis and
in particular the absence of d orbitals is probably
the origin of such qualitative differences, while the

I

quantitative differences are, as known, associated
with the Hartree-Fock model.
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