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Exact-exchange Hartree-Fock calculations for periodic systems.
IV. Ground-state properties of cubic boron nitride.

R. Dovesi, C. Pisani, C. Roetti, and P. Dellarole
Institute of Theoretical Chemistry, University of Torino, Via Pietro Giuria, 5, I 101-25 Torino, Italy

(Received 23 October 1980)

The linear-combination-of-atomic-orbitals self-consistent-field ab initio Hartree-Fock
method previously presented [Int. J. Quantum Chem. 17, 501 (1980)] is here applied to
cubic boron nitride. We use a minimal basis set to calculate total and binding energies,
band structure, population analysis, x-ray factors, and directional Compton profiles. By
referring to the results of previous calculations, we have been able to discuss the quality of
the ground-state properties of the four isoelectronic compounds: graphite, diamond, and
hexagonal and cubic boron nitride, as obtained in the same approximation and using the
same computational technique.

I. INTRODUCTION

The four isoelectronic compounds, graphite, dia-
mond, and hexagonal and cubic boron nitride, are
ideally suited to test the adequacy of a computa-
tional scheme designed for the study of periodic
systems. In fact, they have been studied in detail
from an experimental point of view and, in spite of
their simplicity, they cover a range of structural
and electronic situations (two- and three-dimen-
sional systems, covalent and partially ionic com-
pounds). They have therefore been the object of
many theoretical calculations performed with both
ab initio and semiempirical or parametric methods.
Nonetheless, to our knowledge, a homogeneous set
of computations performed with the same tech-
nique for the four compounds does not exist.

In two preceding papers we reported about
Hartree-Fock (HF) studies of graphite, hexagonal
boron nitride (HBN) (Ref. 1), and diamond. In
this paper the same computational technique is ap-
plied to cubic boron nitride (CBN); in addition we

provide new data for graphite and HBN. In all
cases a standard minimal STO-36 basis set was
used. More severe tolerances have been adopted in
the choice of computational parameters so that en-

ergies are now deterniined to within O. l eV/cell.
Our exact-exchange linear-combination-of-

atomic-orbitals, self-consistent-field method was
described at length in previous publications. It fol-
lows a real-space approach ' in the sense that the
integrals and all the intermediate. quantities are cal-
culated in r space. The criteria adopted to truncate
Coulomb and exchange series play a fundamental

role in the method. Up till now, the influence of
those criteria have been discussed with reference to
the graphite monolayer' and to diamond. Owing
to the homonuclear character of those compounds,
however, long-range Coulomb interactions did not
enter into the evaluation of total energy, whose ex-
pression is as follows [Ref. 4, Eq. (34)]:

E = —, Tr[P(Hst+HM+B' )]

+ —, X Zx Zt, I si —~z —ml '+E "(~).
(m (M)

The first two terms define the total electronic
plus electrostatic nuclear energy per unit cell, ex-
cluding, however, the Coulomb interactions be-
tween cells which are separated by a distance
greater than a certain radius M. These long-range
interactions are taken classically i'nto account by
the last term. It has the form of a Madelung series,
where each nuclear position is assigned a net
charge evaluated after subdividing the electronic
distribution into atomic gross charges, according to
a Mulliken population analysis. It is known that
such subdivisions suA'er from a large degree of ar-
bitrariness, and the question can be raised how ef-
fective the correction term is and how important it
is in the study of an appreciably ionic compound
such as the one treated in the present work. In or-
der to answer these questions we performed a series
of computations with HBN (which is more ionic
and requires much less computational effort than
CBN) by letting the radius M separating the
"quantum" from the "classical" zone vary from 7.5

0
to 19 A. The results are reported in Table I. The
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Madelung correction term appears to be rather ef-
fective in that it accounts for about 70% of the to-
tal energy variation in the explored range, and it
has therefore been included in all the present com-
putations. Note that the residual uncertainty is well
below the level of precision (b,E & 0. 1 eV) which
has been chosen to fix the computational parame-
ters.

II. RESULTS AND DISCUSSION

Hartree-Fock Hartree-Fock Local-exchange
minimal extended ' and correlation

basis' basis" extended basis'.

Total energy

(a.u./cell)
Binding energy

(eV/cell)

—78.291

9.83

—79.250

8.34

—78.980

12.8

TABLE II. Calculated total and binding energies of
cubic boron nitride.

In Table II, total and binding energies for CBN
are reported and compared with the results from
previous HF (Ref. 7) and local exchange and corre-
lation calculations. The fact that Euwema's HF
result for total energy is much better than ours is
mostly due to the poor description of the core
functions that is achieved using the STO-36 basis
set. ' In fact, just employing a 66 standard 1s
orbital was sufficient to lower the total energy to
79.03 a.u./cell. The local density energy of Ref. 8,
including a correlation contribution obtained with
a large numerical basis set, is higher than the HF
one of Ref. 7. This probably reflects the inadequa-

cy of the local approach in evaluating the exchange
contribution to energy, especially for inner shells.

As far as the binding energy is concerned, that
is, the difference with respect to atomic calcula-
tions performed in the same approximation, the sit-
uation is quite different. The local density result is
in excellent agreement with experiment. Of the two
HF data the present one seems to be more reason-
able in spite of the poorer basis set. It has already
been observed' ' that Euwema's technique en-
counters some difficulties in the treatment of
charge imbalances orginating from their truncation
criteria, which can affect total-energy data. We es-

nM EM~d(M)

6
12
18
24

7.64
12.60
15.8
19.7

—2129.528
—2129.629
—2129.683
—2129.705

—0.114
0.035

+ 0.005
+ 0.016

—2129.642
—2129.664
—2129.678
—2129.689

TABLE I. Total energy of hexagonal boron nitride as
a function of M, the radius defining the "quantum" zone
as distinguished from the "classical" zone. nM is the
number of stars of direct lattice cells with radius less
than M; E' is the total energy calculated disregarding

the "classical" contribution E '"(M); E is the corrected
0

total energy. Energies are in eV, M is in A.

'This work.
Reference 7.

'Reference 8.

timated the correlation energy a posteriori using
the Hartree-Fock charge distribution in the local
density correlation functional of Gunnarsson and
Lundqvist. Subtracting the atomic correlation en-

ergy evaluated in the same way, a contribution to
the binding energy of 2.4 eV/cell was obtained,
giving a total of 12.2 eV/cq11.

Table III compares the calculated data of bind-

ing energy, equilibrium lattice parameter, and force
constant of the four isoelectronic compounds with
the corresponding experimental data, when avail-
able. The binding energy for HBN is slightly dif-
ferent from the one previously reported, ' due to the
more severe tolerances adopted here. The HF
treatment of the two hexagonal compounds has
been reduced, as usual, to a single layer. In the case
of boron nitride we calculated a posteriori the
Coulomb interaction energy between layers by as-
signing to each nuclear position the net atomic
charge as calculated according to a Mulliken popu-
lation analysis: This contribution turned out to be
negligibly small (0.0085 eV/cell).

The calculated binding energies represent a frac-
tion between 70% and 75% of the experimental
ones, the difference being mainly due to the corre-
lation error. While the binding energy of the two
boron nitride crystals is practically the same, as ex-
pected, diamond appears slightly more stable than
graphite against experimental evidence. The experi-
mental difference in stability between carbon and
boron nitride compounds is semiquantitatively
reproduced.

Experimental lattice parameters are satisfactorily
reproduced by the calculated data. The results are
better for the three-dimensional with respect to the
two-dimensional systems, and for the two carbon
compounds with respect to boron nitrides. A semi-
quantitative agreement is also observed between the
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TABLE III. Calculated and experimental binding energies, lattice parameters, and force
constants.

System
Binding energy

(ev)
Calc. Expt. Calc./Expt. Calc. Expt.

Lattice parameter
(A)

Force constant
(mdyn/A)

Calc. Expt.

Cubic BN
Diamond
Hexagonal BN
Graphite

9.83 13.0
11.38 15.2
9.80 13.0

10.68 15.2

0.75
0.75
0.75
0.70

3.59
3.59
2.60
2.51

3.62
3.57
2.51
2.46

7.31
6.40
7.99
7.90

4.79

8.40

calculated and the available experimental force
constants. Much of the residual discrepancy from
experiment of both lattice parameters and elastic
constants would undoubtedly be eliminated using
better basis sets within the HF approximation.
Since the wave function at the calculated confor-
mational minima is not appreciably different from
the one corresponding to the experimental lattice
spacing, all the following results are calculated for
the latter configuration.

Concerning the electron charge distribution, a
first indication is provided by a Mulliken popula-
tion analysis which shows that cubic boron nitride
is much less ionic than the corresponding hexago-
nal compound; the positive net charges on boron
are in fact 0.21 and 0.50 electrons, respectively.
These figures must be taken with care because the
factorization of the charge distribution into atomic
contributions is rather artificial. A better descrip-

04—

0.2—

FIG. 1. Charge density in cubic boron nitride along
the boron-nitrogen bond( —) as compared with superpo-
sition data (——-) obtained by summing the free-atom
contributions (——~ —~ ).

tion of the modification in the charge distribution
induced by the formation of the chemical bond is
provided. in Fig. 1, where the two atomic electron
densities and their superposition are compared with
the calculated density for cubic boron nitride. The
partially covalent character of the bond is apparent
from the buildup of charge between nearest neigh-
bors, which is appreciable though not as high as in
diamond or graphite (the Mulliken bond popula-
tions are 0.74 and 0.86 for the latter compounds,
while they are 0.64 and 0.77 for cubic and hexago-
nal boron nitride, respectively). The charge transfer
from boron to nitrogen is recognizable in Fig. 1 as
a slight decrease in the anisotropy of the electron
density of the solid with respect to the atomic su-

perposition; the corresponding curves for HBN are
qualitatively the same.

Figure 2 represents the differences between the
densities of the two boron nitride compounds with

respect to the corresponding carbon compounds.
The bond lengths have been scaled so as to make
the end atoms coincide. The two curves are nearly

identical although HBN exhibits a slightly higher

anisotropy, thereby confirming the indication pro-
vided by the net charges. Near the nuclei the
difFerences are obviously dictated by the different

size of the core orbitals.
Another way of looking at electron charge distri-

butions, which provides a relatively easy compar-
ison with experimental data, is through their
Fourier transform. %e report in Table IV the ex-
perimental' and calculated x-ray factors for CBN.
While for some reflexes (F]]],F33] F5]] F333) our
results are very similar to the experimental ones,
for many of them our method gives worse values

than not only the ones calculated with the other
ab initio methods, but also the ones obtained with

a simple superposition of atomic charge distribu-
tions. The last two rows supply the agreement fac-
tors, defined as
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FIG. 2. Differential charge densities along the bond

between boron nitride compounds and the isostructural
carbon compounds. All densities are in atomic units.

for cubic boron nitride (Rc&N) and, for compar-
ison, the ones reported in Ref. 2 for diamond (R~).

Going from diamond to CBN our R rises by a fac-
tor 1.5 and all others reduce. In particular the
atomic superposition model (that for diamond gave
an R more than twice ours) performs here as well
as our method does.

While it is known that for ionic or partially ion-
ic compounds the 3G set performs worse than for
covalent systems, the present disagreement is rath-
er surprising and larger than the one expected from
the results reported in the previous section. Any-

way, further experimental data would be welcome
in order to allow a detailed discussion on a firmer
basis. Even for such a well studied system as sil-
icon, the agreement factor between different experi-
mental sets can be as bad as 0.015 or worse. "

Table V lists the calculated Compton profiles for
CBN, HBN, and graphite in three directions; the
results for diamond have been previously reported.
The experimental x-ray results of Weiss and co-
workers' ' are shown in the same table. The re-
ported experimental error amounts to 4% at q =0
for HBN, but it can be even larger than that. In
fact, the impressive refinement of Compton scatter-
ing techniques that has taken place in the last
years has shown that in early measurements such
effects as multiple scattering have been largely un-
derestimated. For this reason, we think that
Weiss's data can just be used for the purpose of
qualitative comparison (at q=O, Jsfapgjte )JHBN )
JcaN =Jd;,~,„d). A more detailed discussion is
possible by comparing theoretical data

TABLE IV. Experimental and calculated x-ray factors for cubic boron nitride. R is the
agreement factor.

hkl Expt. ' Hartree-Fock" Hartree-Fock' Local exchange Atomic
and correlation superposition'

111
200
220
311
222
400
331
420
511
333

RCBN

Rg)

4.92+0.15
1.56+0.05
4.17+0.10
2.59+0.10
0.50+0.02
3.22+0.10
2.17+0.05
0.32+0.01
1.96+0.06
1.96+0.06

4.93
1.34
4.05
2.46
0.37
3.11
2.16
0.22
1.94
1.94
0.037
0.023

5.05
1.56
4.10
2.52
0.44
3.20

, 2.22
0.28
1.97
1.97
0.020
0.024

4.97
1.58
4.17
2.64
0.57
3.20
2.16
0.32
1.95
1.97
0.010
0.015

4.62
1.40
4.21
2.69
0.48
3.30
2.17
0.29
1.90
1.90
0.036
0.051

'Reference 10.
This work.

'Reference 7.
"Reference 8.
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TABLE V. Experimental and calculated Compton profiles J(q) for cubic boron nitride, hexagonal boron nitride, and
graphite. J and q in atomic units.

Expt. '
Cubic BN

Calculated
100 110

Hexagonal BN
Expt. ' Calculated

1011 0001 1120
Expt. '

Graphite
Calculated

1011 0001 1120

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7

4.08+0.08
4.05
4.00
3.98
3.91
3.70
3.50
3.24

'4.33
4.31
4.27
4.19
4.06
3.88
3.64
3.37

4.30 4.19
4.28 4.17
4.22 4.14
4.11 4.05
3.96 3.94
3.77 3.80
3.54 3.62
3.30 3.40

2.93 3.06
2.64 2.73
0.05 2.39

2.07
1.86 1.77

1.50
1.45 1.28

1.10
1.13 0.96

0.84
0.86 0.76

0.69
0.02 0.61

0.8 3.07 3.16
0.9 2.84 2.88
1.0 2.39+ 2.59 2.57
1.1 2.30 2.24
1.2 1.97 1.92
1.3 1.63 1.63
1.4 1.32 1.38
1.5 1.06 1.15
1.6 0.89 0.96
1.7 0.77 0.81
1.8 0.70 0.70
1.9 0.64 0.63
2.0 0.68+ 0.59 0.58

4.28+0.18
4.23
4.16
4.06
3.94
3.71
3.50
3.24

2.93
2.59

2.28+0.05

1.76

1.37

1.06

0.86

0.68+0.02

4.39
4.37
4.31
4.21
4.06
3.86
3.61
3.32

3.00
2.69
2.38
2.09
1.82
1.57
1.34
1.15
0.98
0.85
0.75
0.67
0.60

4.44
4.41
4.32
4.18
3.98
3.73
3.45
3.15

2.84
2.54
2.25
1.99
1.75
1.54
1.36
1.20
1.07
0.96
0.86
0.78
0.71

4.37 4.32+
4.36
4.32
4.23
4.07
3.84
3.55
3.25

2.97
2.72
2.47
2.21
1.92
1.61
1.32
1.08
0.91
0.78
0.70
0.65
0.60

0.04 4.41
4.38

4.24 4.33
4.26

3.98 4.16
4.01

3.52 3.76
3.43

2.88 3.05
2.67

2.20 2.34
1.90 2.04
1.64 1.77
1.42 1.53
1.22 1.30
1.08 1.11
0.94 0.94

0.81
0.71
0.63
0.58

4.52
4.49
4.41
4.26
4.07
3.82
3.53
3.22

2.89
2.57
2.26
1.97
1.71
1.49
1.30
1.14
1.01
0.90
0.81
0.73
0.66

4.47
4.45
4.40
4.31
4.16
3.92
3.61
3.27

2.95
2.67
2.43
2.18
1.90
1.61
1.32
1.07
0.87
0.74
0.66
0.60
0.56

'Reference 10.
"Reference 12.

along different directions for the four compounds
among themselves. Figures 3 and 4 show the cal-
culated anisotropies along the directions of max-
imum and minimum anisotropy for the cubic and
carbon compounds, respectively. The anisotropy is
increased when passing from hexagonal to cubic
and from ionic to covalent systems. It is interest-
ing to observe that in hexagonal compounds and
especially in graphite, for q =0 the Compton pro-
file is higher in the nonbonding [0001] direction
with respect to the free-electron-like directions
parallel to the basal-plane. This effect can be relat-
ed to the presence of atomiclike tails of the wave
function along the nonbonding direction.
Euwema's ' calculated anisotropies have also been
reported in Fig. 3. While qualitatively similar to
ours, they point to a much larger difference
between the distribution of momenta in diamond
along the two nonbonding [100] and [110]direc-
tions.

The band structure of CBN is shown in Fig. 5.
The minimum of the conduction band occurs at
k =X,while in other calculations ' it is along

the I —X line. The resulting gap is 11.3 eV, to be
compared with the ones of HBN (12.7 eV) and of
diamond (13.9 eV) calculated in the same approxi-
mation. The corresponding experimental data, as
obtained from optical spectra, are 6.4—8, 5.8, and
5.4, respectively. As expected, the differences be-
tween HF and experimental data are very large. In
fact, HF can give good results only for ground-
state properties, and their eigenvalues must be con-
sidered a byproduct or a starting point for more
comprehensive approaches. '

Local-density-functional results for band struc-
ture are far better than the HF ones (for example
the CBN gap of Ref. 8 is 8.8 eV). Nevertheless,
when parametric adjustments are excluded, the
discrepancies with the experimental data remain, in
general, far from negligible. ' '

In conclusion, the quality of our results for the
ground-state properties of the four compounds is
generally satisfactory and comparable with that of
computations using much larger basis sets. As far
as the method is concerned, it has proven versatile
in describing two- and three-dimensional, covalent
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FIG. 4. Calculated anisotropies of the Compton pro-
files for hexagonal boron nitride (—) and graphite
(—.——).

FIG. 3. Calculated anisotropies of the Compton pro-
file for cubic boron nitride and diamond; J and q in
atomic units. Cubic boron nitride: (—) present and (—-)
Euwema's (Ref. 7) results. Diamond: . —.—— present
and ( ~ ~ "~) Euwema's (Ref. 13) results.

or partially ionic compounds.
Work is in progress to improve the computation-

al technique and especially to allow greater varia-
tional freedom which seems to be, at present, the
principal reason for the shortcomings of the rneth-

od. Of course, even when a near HF solution will

be obtained, a large set of quantities of great in-

terest in solid state physics, connected with the
excited-state description, and more directly related
to correlation eAects will still be out of reach.
Nonetheless, starting from a sound and well de-
fined solution one can realistically plan to apply
some simplified but effective many-body correc-
tions to take into account the correlation ef-
fects i ' 7
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FIG. 5. Self-consistent HF band structure of cubic boron nitride.
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