Errata

Erratum: Quadrupole interactions at ⁵⁷Fe in Te metal [Phys. Rev. B <u>22</u>, 3152 (1980)]

H. C. Verma and G. N. Rao

Reference 20 should be read as follows:

²⁰R. M. Sternheimer, Phys. Rev. <u>130</u>, 1423 (1963); F. D. Feiock and W. R. Johnson, Phys. Rev. <u>187</u>, 39 (1969).

We thank Dr. R. M. Sternheimer for pointing out this omission.

Erratum: Universality for the critical lines of the eight-vertex, Ashkin-Teller, and Gaussian models [Phys. Rev. B 23, 1459 (1980)]

Adrianus M. M. Pruisken and Alan C. Brown

In Eq. (2.4a), replace the leftmost "+" with "=." On p. 1461, column 1, line 5, replace μ by k. Table I should read:

TABLE I:

Scaling operator	AT and 8V symbol	Gaussian symbol	Scaling index
$\tilde{E}(\vec{\mathbf{r}})$	$\frac{1}{2}\pi^2E(\vec{\mathbf{r}})$	F ₁₁ (7')	$x_{F_{11}} = d = 2$
§ ⁺ (r ')	$\frac{1}{2}\pi \mathcal{E}^+(\vec{r})$	$\frac{1}{\sqrt{2}}(O_{2,0}+O_{-2,0})$	$x_{2,0} = \frac{1}{\pi K}$
Ã -(r -)	$\frac{1}{2}\pi \mathcal{E}^{-}(\overline{r}')$	$\frac{1}{\sqrt{2}}(O_{0,1}+O_{0,-1})$	$x_{0,1} = \pi K$

In Eq. (3.13), replace \mathcal{E}^+ by $\tilde{\mathcal{E}}^+$. On p. 1465, column 1, line 13, and Eq. (3.25), replace $\tilde{\mathcal{E}}^+$ by $\tilde{\mathcal{E}}^+$. On p. 1466 between Eqs. (4.6) and (4.6a), replace j by γ . In Eq. (4.12), replace all occurrences of $\tilde{\mathcal{E}}$ by $\tilde{\mathcal{E}}$. In Eq. (4.14a), second line, and Eq. (4.14b), third line, replace the right-hand side by $-\sqrt{2}/\pi$. In Eq. (4.14b), second line, replace $(\sqrt{2}/\pi)^{-2}$ by $(\sqrt{2}/\pi)^2$. In Eq. (4.15), replace $j_1 + j_2$ by $\gamma_1 + \gamma_2$. In Eq. (4.18), first line, the right-hand side should read $-\sqrt{2}/\pi$.