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We present results of a Monte Carlo study of the time development of a two-dimensional
order-disorder model binary alloy following a quench to low temperature from a disordered,
high-temperature state. The behavior is qualitatively quite similar to that seen in a recent study
of a three-dimensional system. The structure function exhibits a scaling of the form
K2(S(k,T) =G (k/K (1)) where the moment K () decreases with time approximately like
12 If one interprets this moment as being inversely proportional to the domain size, the

characteristic domain growth rate is proportional to ¢

—1/2 Additional insight into this time evo-

lution is obtained from studying the development of the short-range order, as well as from
monitoring the growth of a compact ordered domain embedded in a region of opposite order.
All these results are consistent with the picture of domain growth as proposed by Lifshitz and

by Cahn and Allen.

I. INTRODUCTION

In a recent paper! the results of a computer simula-
tion of the development of order in a quenched
three-dimensional-model binary alloy were given. In
this model of an order-disorder transition the order
parameter is not conserved, with the result that the
dynamical evolution of order from an initially disor-
dered, high-temperature state is qualitatively different
from the corresponding spinodal decomposition for a
binary alloy whose order parameter is conserved.

The basic theory for the time evolution of this non-
conserved, order-disorder transition is due to Lif-
shitz? and to Cahn and Allen® (LCA); it describes the
motion of curved domain walls separating regions of
opposite order. These theories assume that at a given
time ¢ following the quench to a low-temperature
state, domains form in which the instantaneous value
of the long-range order (LRO) parameter n,(?) is
close to the equilibrium values of +nf% The overall
long-range order is, however, close to zero, with the
plus and minus domains having essentially equal sta-
tistical weights. The driving force for the dynamical
evolution of this system is then such as to reduce the
curvature of the domain walls. The theories predict
tha/t the surface area per unit volume decreases as
12,

Several points concerning these /2 predictions for
a nonconserved order parameter should be made.
First, the original Lifshitz theory involves the surface
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tension which enters as a proportionality factor in the
domain growth. A major result of the Cahn-Allen
analysis, however, was that their constant of propor-
tionality did not involve the surface tension—there
was therefore no critical slowing down as 7 — T..
They also noted that the experimental results for
coarsening kinetics in Fe-Al alloys were consistent
with their theory; they did not seem to depend
strongly on the surface tension. Thus the Lifshitz
and Cahn-Allen theories differ by a temperature-
dependent term. Second, other theories also predict
a t'/2 behavior. These include a “‘solitary-wave”’
analysis by Chan* for a more general problem than
considered by Cahn and Allen, but which yields simi-
lar results. A weak-coupling, long-time, study of a
continuum version of a nonconserved dynamical
model (the time-dependent Ginzburg-Landau model)
by Kawasaki, Yalabik, and Gunton’® also yields the
Cahn-Allen result. In addition, such a time depen-
dence has been observed by Binder and Billotet® in a
Langer—Bar-on—Miller’—type theory of a two- and
three-dimensional antiferromagnet. Finally, we note
that a variational approach?® to the late-stage domain
growth for two models in which the order parameter
is conserved (as for a binary alloy) or nonconserved
(as for an antiferromagnet) explicitly shows why the
surface tension appears in the conserved case
(Lifshitz-Slyozov theory)? but not in the noncon-
served case (Cahn-Allen theory).

In the Monte Carlo study by Phani er al.,! the au-
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thors realized that the existence of a characteristic
length [the domain size, /(#)] also suggests a scaling
behavior for the order parameter (staggered) struc-
ture function, S (k,¢) =1()?9F(kI(1)) where d is the
dimensionality, k the wave number, and J a scaling
function. These ideas were confirmed in the Monte
Carlo studies at early times when finite-size effects
can be ignored. For later times, when the domain
size becomes comparable to the size of the system,
these finite-size effects must be taken into account.
However, the late stages also seemed to be consistent
with a theoretical interpretation based on the LCA
picture.

In this paper we report an extension of these
computer-simulation studies to the two-dimensional
model of order disorder. We find that in general the
behavior is the same as in three dimensions. In par-
ticular, there is a scaling behavior for the structure
function which we have analyzed in two different
ways. In the first case we have scaled our data with a
length, K~!(¢) obtained from the second moment
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K2(t) of the structure function. This gives a rather
direct determination of a characteristic length and we
find that the structure function scales reasonably well
in the early time region with this choice. We also
find that if we approximate K (¢) by a simple power-
law behavior we obtain the LCA exponent of %

Thus we have also scaled our data using kr'/? as a na-
tural variable, where k is the wave number, and have
obtained possibly an even better scaling of the data.
We have also attempted to extract a length scale
more indirectly, as in Ref. 1, from an analysis of the
time development of the short-range order.

Although we obtain results consistent with the ¢!/2
behavior, this is a somewhat less convincing argu-
ment, as we discuss in the text. Finally we present a
novel, controlled-growth experiment to test more
directly the LCA theory. Namely, we monitor the
time evolution of a compact ordered domain inside a
background of opposite order. According to the
theory, a given isolated domain should decrease in
area linearly with time. Although we find large fluc-
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FIG. 1. SRO parameter 7, vs time for eight runs in the time interval 0—180 Monte Carlo steps.
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tuations in our data, as in our study of the structure
function, the results are consistent with the theory.

In Sec. II we define our model and give the results
for the early time behavior of the short-range order
parameter, long-range order parameter, and staggered
structure function. We also present some typical
configurations encountered in our Monte Carlo simu-
lation, including one in which a rather stable ‘‘slab”’
forms which leads to a long-lived ‘‘metastable’ state.
In Sec. III we summarize the results for the late re-
gime growth of an isolated domain, for two different
initial shapes. :

II. EARLY TIME BEHAVIOR

Our model alloy is a two-dimensional version of
the one studied in Ref. 1. It consists of a square lat-
tice of N sites with periodic boundary conditions.
Each site T is occupied by either an 4 or a B atom,
with an overall composition of 50% A4 atoms. This
model is isomorphic to an Ising antiferromagnet with
fixed zero total magnetization (zero magnetic field)
in which the spin at each site is o(r) = +1. The
Hamiltonian for the model contains only nearest-
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neighbor interactions, with the energy of a particular
configuration given by

u=J 3o(Fa(F), J=0 . ¢))
NN

The critical point of this system is known from the
Onsager solution to be given by J/kT.=0.4407,
At very low temperatures the system will be in one
of two perfectly ordered states, with one sublattice
being occupied by 4 atoms and the other by B atoms.
Above the critical point, this ordered state disappears
and each sublattice would then typically contain an
equal number of 4 and B atoms.

The standard definition for the long-range order
parameter 7, for this system is

m=N"T(N+NB) —(NJ+NE) , @

where N5(NJ) is the number of 4 atoms on the
even (odd) sublattice, etc. This can also be defined
in terms of o variables as the staggered magnetiza-
tion

m=NT'3(-DTa(F) . A3)
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FIG. 2. LRO parameter m; vs time for eight runs.
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Another important quantity is the short-range order
parameter, 7;,

ns=[NAB_(NAA+NBB)]/2N=M/2N'I y (4)

which directly measures the energy of the system.
Here N g, N 44, and Ngg denote the number of
nearest-neighbor A —B, A —A, and B—B bonds,
respectively, with the total number of bonds being
2N.

The dynamical properties of this model are taken
to be that of Kawasaki spin exchange, in which the

(©

transition rate W for a pair of nearest neighbors to
exchange is given by

W= 1leR0u/(1 +¢mRM) (5)

where Au denotes the change in the energy of the
configuration resulting from exchanging the random-
ly chosen pair of opposite spins. The time scale is
given by 7. We simulate the dynamical evolution of
this model by a standard Monte Carlo procedure, for
a system of N =60 X 60 sites. The system was
quenched from an initially disordered state at an
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FIG. 3. The evolution of a high-temperature configuration (a) into a metastable state when quenched to a temperature
T =0.6T, is shown in (b), (c), and (d) at the Monte Carlo times indicated. (e) and (f) correspond to a run where the LRO

parameter goes to its equilibrium value.
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essentially infinite temperature of J/kT =0.00025 to
a low temperature of 7=0.67,. We monitored
m/(1), ns(t) and the circularly averaged Fourier
transform S (k,) for the staggered structure function

S =N (DT To()|?, (6)

where |k|=2mj/~/N, with j=0,1,2, . ..,10. Due
to the large fluctuations encountered in the Monte
Carlo studies of both the two- and three-dimensional
models, we have analyzed our data using 10 runs.
Plots of m,(¢) and 7,(¢) for these runs are shown in
Fig. 1 and Fig. 2, where the unit of time is the
number of attempted exchanges per site. In these

units the diffusion constant is % Some typical stages

of time evolution of the system are shown in Figs.
3(a)—-3(f). As can be seen from Fig. 2, we en-
counter several runs in which ‘‘metastable’’ states
persist and the system does not achieve an equilibri-
um, This is apparently due to the formation of very
stable domains of a slablike nature which encircle our
lattice. In Figs. 3(c) and 3(d) we show the evolution
of a particular slab associated with one metastable
run. Figures 3(e) and 3(f) show the evolution of an
approximately circular domain. It should be noted
that this domain is of the type described by Lifshitz
and Cahn-Allen in that there is a curvature which
provides the driving force for the shrinkage of this
domain. On the other hand the slabs have effectively
very small curvature and hence persist for much
longer times than the circular domains. Since a given
slab typically encircles the entire lattice, it divides the
ordered region into two disjoint pieces and thereby
prevents the equilibrium state from being achieved

seen in the three-dimensional study, although they
occur less often possibly due to larger size effects for
our two-dimensional lattice.

In order to test the scaling behavior of the order-
parameter structure function, S(k,t), we have calcu-
lated the second moment, K2(¢), from

K0 = 3 K28 (k0)/ZS (k1) )

A plot of this quantity is shown in Fig. 4. If we at-
tempt to fit this function to a power-law behavior we
find a reasonable fit to K ~2(t) ~ 1, as can be seen
from Fig. 4. Thus we would find an exponent of ap-
proximately % for the characteristic length, K~'(7).
In Figs. 5 and 6 we show the scaling behavior of

S (k,1) for the different choices

K0S (kt) =G(x) (8)
and
IS (k) =F(y) , 9)

where x =k/K (1) and y = kt'”2, respectively. The fit
of our data to the form F(y) seems somewhat better
than for the case of G (x), although we would not as-
sign any particular significance to this fact. The
overall conclusion, however, would be that the struc-
ture function scales in the early time region and that
it is in basic agreement with the ¢'/2 prediction of
LCA.

Another quantity of dynamical interest is the
short-range order, m,(7), which form Eq. (4) is a
measure of the number . of like or unlike bonds, since
we have

during the given run. Similar metastable effects were Nuya+Npg=2N—Nyp . (10)
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FIG. 4. A plot of K2 as a function of time.
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FIG. 5. The scaled structure factor G (x) vs x on a (a) semilog scale and (b) regular scale.

One can attempt to fit the time dependence of this
short-range order by a simple power-law behavior. If
for example one considers the behavior of

A(D) =me—m(0) an

where 7., is m;(o0), which is essentially the Onsager
value in our case (and given by 1, =0.9877) one
finds an exponent of 0.3, as shown in Fig. 7. On the
other hand, another quantity which seems more
relevant for obtaining an indirect estimate of the
characteristic domain size is

A () =n,—n(1) , 12)

where m,, is essentially the metastable value of the
short-range order immediately after the antiphase in-
terface has disappeared. This is not the same as 7,
since one is still left with local “‘interstitial disorder,”’
as can be seen from Figs. 3(e) and 3(f). Since it is
nm — s (1) which is related to the ‘“macroscopic’’ an-

tiphase boundaries, one might expect that this quan-
tity would have a time dependence which is related to
the LCA theory. Indeed, if one uses the argument of
Ref. 1, we would expect that a circle of radius /(?)
would on average intersect an antiphase boundary
once (in the early time domain in which these boun-
daries are present), with the intersection having a
length proportional to 2@/ Thus the perimeter of the
boundary per unit area is proportional to
(2@ /7 2=2I"". Therefore since the perimeter in
numbers of 4 —A4 and B—B bonds per unit area is
given by A,,(1), one would have /(1) ~aA,! where
a is some constant. Thus if the LCA prediction that
1(1) ~ "2 is correct, one should find that A;? varies
linearly with time. As can be seen from Fig. 7 this is
in fact the case and hence gives another (indirect)
confirmation of the theory. The difficulty with this
argument is that the exponent one obtains for A,;2(¢)
is somewhat sensitive to the value of ,,, for which
we have no unique definition. However, we have

415
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FIG. 6. The scaled structure factor F(y) vs y on a (a) semilog scale and (b) regular scale.

found in practice that the values of 7, which we ob-
tain by time averaging m,(¢) over different time in-
tervals following the disappearance of the antiphase
boundary do not differ too much from the valued
used in Fig. 7 and that the exponent remains close to
the LCA value for all reasonable choices which we
have considered.

III. CONTROLLED-GROWTH EXPERIMENT

As another test of the Cahn and Allen theory in
two dimensions we have also monitored the time
evolution of a compact ordered domain inside a sea
of opposite order. According to the theory'® a given
isolated domain will decrease in area linearly with
time. Assuming its shape to remain more or less
fixed its perimeter would then decrease like the
square root of the area, i.e., if a domain has area 4,
and perimeter Sy at time ¢ =0 then at a time ¢, its
area 4 (#) and perimeter S (¢) will be given by

A(f)=Ao(1f—[) , (13)

where dA /dt =—A, is a constant independent of the

shape (in a continuum model which neglects fluctua-
tions) and

S([)=S0(tf—t)l/2 . (14)

We started with a lattice of size 50 x 50 and gen-
erated a domain of one kind (which we will refer to
as a ‘“‘blob’’) of about 500 spins surrounded by the
domain of the opposite kind which has a size of
about 2000 spins. Figures 8(a) and 8(b) show 4 (1)
and S (¢) plotted versus ¢ for eight independent runs
starting from the “‘blob.”” The value of ¢ differed
from run to run by a considerable amount, with 4,
having a mean of 6.48 and root-mean-square devia-
tion of 1.26. In Fig. 8(a) the solid line is the relation
(14) with Sot,=126. One can see that the theory
does indeed conform to the Monte Carlo data to a
fair extent. In Figs. 9(a) and 9(b) similar plots for
another seven independent runs starting with a “‘rec-
tangular’’ domain of size Aot; =575 are shown. The
mean A¢=6.54 £1.00. Finally it should be noted
that this initial rectangular domain does not encircle
the lattice, in contrast to the slabs discussed in Sec.
II. Thus it has ‘““‘corners’’ where the curvature is
quite high which provide a correspondingly large
driving force for shrinkage of the cluster.
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