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Wigner transition temperature of a two-dimensional
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Within the Hartree-Fock approximation the transition temperature T, of a two-dimensional
electron gas of density n in a strong magnetic fie)d B is studied in the nondegenerate limit

n/8 0. By means of an asymptotically correct calculation it is shown that the ansatz of a

strongly anharmonic, unidirectional charge-density wave (CDW) for the condensed state leads,
apart from weak logarithmic corrections, to the limiting form T, -n . The ansatz of an essen-
tially harmonic, though triangular symmetric CDW leads to much smaller limiting values

T, —nB ', This demonstrates the importance of the anharmonicity of the CDW or,
equivalently, of the sharp localization of electronic wave functions in the nondegenerate limit.

I. INTRODUCTION

T/T —v '" (1.2)

A weak enhancement of the critical temperature is al-

ready obtained, if, instead of a single harmonic
CDW, a superposition of three CDW's with a density
pattern of triangular symmetry is considered. It was
shown in I, that for small v values the T, enhance-
ment increases rapidly, if one allows for the evolution
of higher harmonics of the triangular CDW. It was
argued, that in the limit of small v values all harmon-
ics become important to produce a first-order phase
transition at a temperature T„which satisfies Eq.
(1.2). But the actual calculation of 1 could not be ex-
tended properly to this limit, since it was based on a

Wigner crystallization of a two-dimensional elec-
tron gas in a strong magnetic field has been discussed
by several authors. ' ' A Hartree-Fock (HF) calcula-
tion' in the magnetic quantum limit yields for the
temperature T2, at which the free energy of the
homogeneous state becomes unstable against the for-
mation of charge-density waves (CDW)

ks T2 = 0.557v(1 —v) e2/el

Here / = (lrc/eB)' 2 is the Larmor radius of an elec-
tron in a magnetic field of strength 8, e is a static
dielectric constant, and v =2+I no is the fraction of
occupied states in the lowest Landau level, with no

the mean electron density. In a recent paper4

(hereafter referred to as 1) it was pointed out, that
the limiting behavior T2 —n08 ' for small no and
large 8 is unreasonable.

The correct transition temperature T, is expected
to become small in the limit of small no values as
T, —no, but to saturate for 8 ~. Therefore, one
expects in the limit of small v values

Taylor expansion of the free energy with respect to
the order parameters (OP) characterizing the har-
monics. This restricted the validity of the calcula-
tions to relatively sma11 values of the OP and, furth-
ermore, only a relatively small number of OP could
be taken into account.

In the present paper we want to avoid these re-
strictions. We want to calculate, in the limit v 0,
the free energy and the transition temperature, taking
all harmonics into account properly. This becomes
possible, if we restrict our consideration to a uni-
directional CDW with a particle density n ( r ) of the
form

where r = (x,y). With the ansatz

f„=/exp( —a~n~), for n =+1, +2, . . . , (1.4)

where Q and n are non-negative real numbers, we
will obtain in the limit of small v the minimum of the
free energy for P = 1 and u —v, and a diverging ratio
of T,/T, .

II. FREE ENERGY OF THE UNIDIRECTIONAL CD%

We consider a two-dimensional system of electrons
in the magnetic quantum limit. The electrons in-
teract via the Coulomb potential v( r ) = e /r e A.
homogeneous background of positive charge makes
the system electrically neutral. We calculate the free
energy within the HF approximation. For the matrix
elements of the effective single-particle Hamiltonian

2~1'rt( r )=v+v X2y cos(mQx) exp( —,'m'I'g')
m 1

(1.3)
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in the Landau representation we make the ansatz4 With Eq. (3.1), we obtain from Eq. (2.6) in this limit
T T

hjk = Sit, E' + ks T X x„exp( il—'Qnj), (2.1)
nWO

@t = —Inl(+
2

v(I2/I) —1)1 (3.3)

~here E is the HF energy of the homogeneous
state at the same temperature T, x„ is a dimension-
less OP, and Q is a wave number, which must be
determined variationally. This ansatz leads to the
electron density of Eq. (1.3) with the self-consistency
equations4

——x ' forO&x«1
u (x) —'

+ x i, rorx»1 . (3.4)

It is important for the following to note that with the
ansatz of Eq. (1.4) the integrals I become singular
in the limit n =0. To demonstrate this, we note that
Eq. (2.4) implies the asymptotic behavior

x„= y„—q „/r, (2.2)

with r =(I —v) T/T2, ksT2=v(1 —v)uoe'/el, and
with

Then

y„y/=I n I +r„, (3.5)

y =u( —'n'l'Q')/u

where uo is the maximum value of the function

u(x) =(—,
' m)' 'e "Io(x) ——,'x ' 'e '

(2.3)

(2.4)

where y =1/uolQ and u01'„—
2 (lQIn I) for

In IIQ » 1. This yields with Eqs. (1.4), (2.2), and
(2.8)

exp[(E'+ —po)/ksT) = (I —v)/v, (2.5)

Since the chemical potential p,o in the homogeneous
HF state (x„—=0) is related to the density by

x(t) =(yP/r) ln(1+e 2 —2e cost) +X(t), (3.6)

where

the difference of the free energies of the CD% and
of the homogeneous state is, apart from an unimpor-
tant common prefactor, given by the sum $ of

X(t) = -2—X I'„e "cosnt
n 1

(3.7)

f~=rt —(2n'v) '
J dtln[1 —v+vexp[q x(t)]]—

(2.6)

is finite and well behaved, even for small values of t
and of n. The first term on the right-hand side of
Eq. (3.6) becomes singular in this limit:

and x —X —(yy/r) In(a'+ t') (3.8)

n 1

(2.7) If we put yp/r =y, we obtain for 2my ~ I and for
small values of o.

where g = (tt, p,o) /ks Tand—
x(t) = X x„exp( —int)

nWO

(2.8)

I =a' ' "Z ( my) exp[-mX(0) ]

~here

(3.9)

The chemical potential p, in the CDW state is deter-
mined by

dt Iv+(I —v) exp[x(t) —g)] '=2m . (2.9)

Converting sums over Landau quantum numbers
into t integrals, we assumed LQ » I, where L is the
linear dimension of our system.

Z(y) = dt(1+t2) ~= —Jar(y ——')/I'(y)
~to 2 2

(3.10)

and

Inl~ =X(0) —(2y —1) Inn +lnZ(y) (3.11)

In this limit the leading contributions to $~ of Eq.
(3.3) come from

III. ASYMPTOTIC CALCULATION FOR SMALL v

In the limit of small v values Eq. (2.9) reduces to
where

(3.12)

n = —Inlt + v(12/Ij~ —1) (3.1) q(y) =Z(2y)/Z'(y) . (3.13)

~here
Asymptotic evaluation of $2, Eq. (2.7), for small a
yields

I =(2w) '
J dtexp[ mx(t)]— (3.2) $2=-Pyln(1 —e ' ) +$0, (3.14)
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where the last term

OO

$ r e 2a-N

n 1

(3.15)

values of y to become very large for very small
values of v, we calculate $0 asymptotically correct in
this limit.

oo

n 1

(3.16)

independent of o, . We do not neglect this term, since
it becomes large for small values of iQ, which be-
come important for small values of v. If, in the limit
of small v, we neglect the second term on the right-
hand side of Eq. (3.3), we obtain for the free energy

y ——c In(1/n) (3.17)

remains finite in the limit u 0, whereas the first be-
comes large as Py In(1/2a). For small n we have

IV. OPTIMUM Q VALUE

(4.1)uoiQ X r„=„dxG(x)
n N

approaches in the limit of smail iQ values a constant
value independent of iQ. For 0 ( A. (( I we obtain
from Eq. (3.4)

In order to evaluate $0 from Eq. (3.16) (Q = I),
we note that I „depends on n in the form
uoI'„= G(nlQ), as follows from Eqs. (2.3) and (3.5).
Then, choosing N = X/IQ, we see that the sum

with

c = [I —(1 —P)']y/r —I (3.18)

N

uoiQ X y„—~ = —2lnN
n 1,

(4.2)

For y & v the coefficient c becomes maximum for
/=1, and the lowering of the free energy due to the
formation of the CDW becomes infinite for o, =0.
Since r/y =0.557iQT/T2, this leads us to expect in

the limit of vanishing v a phase transition at an arbi-
trarily large value of T/T2 to a CD% with a very
small value of i{?. For smail but finite values of v,
the second term on the right-hand side of Eq. (3.3)
becomes dominant for small a. The a-dependent
part of $,

Equations (3.16), (4.1), and (4.2) yield the asymptot-
ic expression

$0 = —y ink y2 (4.3)

with y = (uoiQ) ' and some constant h. ', which in

principle can be calculated numerically. Retaining for
smail values of v and I/y only the most relevant
terms, we obtain from Eq. (3.22) the condition

$;„=—(y —I) In[2(y —I )/vq (y) ] +y Inky~ =0

=c 1nn+
2

vq/u
1

assumes for

a = —,vq/c
1.

its minimum value

;„=—c [ In(2c/vq ) —I ]

(3.19)

(3.20)

(3.21)

(4.4)

where X is some constant. This determines y =y(y)
and, thereby, r =y/y(y). The condition that r(y)
should become maximum can, by virtue of Eq. (4.4),
be written in the form

y [I + (y —I ) q '(y) /q (y) ]= ln [2 (y —I ) /q (y) ] —In v

(4.5)

@;„=—(y —I) [In[2(y —I)/vq (y) ] —I }

—y ln2 —lnZ (y) —$0, (3.22)

where $0 is given by Eq. (3.16) with P =- I and

y = y/r. For given values of v and of y the critical
temperature is determined by $;„=0. This deter-
mines a critical value r, (v, y). In a final step we
have to maximize v, for given v as a function of y.
This yields, for the given value of v, the transition
temperature v, and the optimum value of y, i.e., the
period of the CDW. Since we expect the optimum

Minimizing this with respect to P, we obtain for
v 0 the optimum value P =1, for which c assumes
its maximum value c = y/r —I =y —1. Inserting the
optimum values of a and P, we obtain with the an-
satz of Eq. (1.4) the minimum value of the free ener-

gy for given values of v, r an y = (uoiQ) ' as

—,y = —, In(2y/n ) —Inv
3 1 (4.6)

which has the asymptotic solution y = —, In(1/v). In-

serting this into Eq. (4.4) we obtain asymptotically in

The function q(y), defined by Eqs. (3.10) and (3.13),
increases with increasing values of y ~ 1 monotoni-
cally from the value q (I) = I/n and has the asymp-
totic form q (y) —(2y/m') ' ' for y )) 1. As a conse-
quence, Eq. (4.5) has two solutions, if v is sufficient-
ly small. There is one solution for y, which ap-
proaches unity in the limit v 0 (y —I —v). This
solution must be ruled out, since it is not consistent
with our asymptotic calculation of @;„,Eq. (4.4).
The y values of the second solution become large for
small values of j. For y » 1 we may approximate
Eq. (4.5) by
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the limit of small v

y= (») ' 't(4a/3) in(1/p)]' ' —v ' 'ln' '(1/p)

. (4.7)

r, = y/y —u ' ' ln ' '(1/ v) (4.8)

CONCLUSIONS

In the limit v 0 the two-dimensional electron sys-
tem becomes nondegenerate and we expect a phase
transition to a classical Wigner crystal with a lattice
spacing b —no

' at a transition temperature
T, —no, where b and T, both are independent of
the magnetic field. For the magnetic field-
dependent, dimensionless units of the previous sec-
tions, this means y —b/I —v '+ and
T T,/T2 —v ' 2. This type of asymptotic behavior
was obtained in I by means of an extrapolation of a
calculation, which considered several types of har-
monics of a triangular CDW. But the actual calcula-
tion, which took into account only a relatively small
number of harmonics, yielded finite limiting values
for both y and v, . The present calculation, where we
made the ansatz of a unidirectional but strongly
anharmonic CDW, yields on the other hand with Eqs.
(4.7) and (4.8) essentially the expected asymptotic
result, with only weak logarithmic corrections. Since
for v 0 the OP P„of Eq. (1.4) approach unity, the
CDW assumes a Gaussian form in this limit [cf. Eq.
(1.3)]. The width of a single Gaussian approaches

the Larmor radius I and the spacing between neigh-
boring Gaussians becomes b —no ' ', apart from log-
arithmic corrections. This result leads us to attribute
the essentia1 lowering of the free energy in the CDW
state to the spatial separation of sharply localized (in
one direction) electronic wave functions and not sim-
ply to a more or less harmonic modulation of the
electronic density. It is then very likely, that a tri-
angular symmetric arrangement of totally localized
(in both directions) wave functions would be even
more favorable than our unidirectional CDW, so that
eventually Eqs. (4.7) and (4.8) would be obtained
without the logarithmic factors. .Certainly, our
asymptotic calculation can yield only a lower bound
to the correct HF transition temperature T,. But a
similar calculation with the more reasonable ansatz of
a strongly anharmonic triangular CDW would be
much more complicated since it requires the diago-
nalization of a very large Hamiltonian matrix.

Kuramoto' has shown that in the classical regime
of small v values a unidirectional CDW yields a
cohesive energy (for zero temperature) which is only
slightly weaker than that obtained for a triangular
CDW. He obtained as the optimum unidirectional
CDW Eq. (1.3) with p„=(wnv) 'sin(mnv). 1f we
replace the ansatz (1.4) in view of this result by
Q„= (Q/na) sin(na), we obtain again the same
asymptotic results of Eqs. (4.7) and (4.8). Only the
analytical evaluation of the sums, e.g. , Eq. (3.16), be-
comes somewhat more complicated. Kuramoto's
results are consistent with our expectation that the
asymptotic results of Eqs. (4.7) and (4.8) agree apart
from the weak logarithmic factors with the correct
HF results for a triangular CDW.
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