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We study a layered Ising model with competing interactions between nearest and next-nearest

layers in the presence of a magnetic field. The analysis is restricted to the mean-field approxi-

mation with one effective field for each layer. The high-temperature region is studied analytical-

ly. The X surface, separating the paramagnetic and the modulated phases, is bounded by two

lines of tricritical points which join smoothly at the Lifshitz point and terminate at multicritical

points, beyond which lines of critical and double critical end points are expected to appear. The

magnetization structure near the A, surface can be described as having an almost sinusoidal oscil-

lation, with the higher harmonic components contributing as perturbations. Both odd and even

higher-harmonic components are present in nonzero fields, and the n th harmonic component

depends asymptotically on the nth power of the main harmonic component. The low-

temperature region is studied numerically. We construct T-H phase diagrams, which exhibit a

variety of modulated phases, for various values of the ratio of the strength of the competing in-

teractions.

I. INTRODUCTION

Considerable attention has in recent years been de-
voted to the investigation of systems displaying
modulated ordered phases. Two aspects of these sys-
tems have particularly attracted the attention of
several workers. First, the proposal of a new mul-
ticritical point, the so-called Lifshitz point, which
divides the phase diagram into modulated, disor-
dered, and uniformly ordered phases. Second, the
renewed interest in commensurate and incommensu-
rate structures, ' which occur in modulated phases, to-
gether w ith the problem of the phase transitions asso-
ciated with these structures.

An Ising model on a simple cubic lattice with
nearest-neighbor ferromagnetic couplings, and next-
nearest neighbor competing antiferromagnetic cou-
plings in a direction parallel to a single lattice axis, is
probably the simplest magnetic spin model displaying
a Lifshitz point and a complex modulated phase. For
this reason, although having been proposed many
years ago, this model has been the object of quite a
substantial amount of theoretical work in the last few
years. The vicinity of the Lifshitz point and the
high-temperature region of the phase diagram in the
T-p plane, where T is the absolute temperature and p
is the ratio of competing exchange interactions, have

been studied by renormalization group, '4 high-

temperature series expansions, ' and Monte Carlo
techniques. On the other hand, Monte Carlo calcu-
lations, ' low-temperature series expansions, ' mean-
field calculations, and soliton theory were used to
study the low-temperature modulated region. From
the experimental side, it is appropriate to stress the
physical relevance of this simple model. For in-

stance, since the early sixties similar models have
been widely used to explain the sin'usoidal ordering
of some rare-earth metals such as erbium. ' More re-

cently, the complex succession of commensurate
phases of CeSb as a function of temperature' has
been qualitatively explained on the basis of a closely
related model. " Also, it has very recently been indi-

cated, ' by measurements of the transverse differen-
tial susceptibility in Mnp, that this material displays a

uniaxial Lifshitz point belonging to the same univer-

sality class as the model considered here.
In this paper we study, within the mean-field ap-

proximation, the behavior of the above-mentioned
Ising model in the presence of an applied magnetic
field. Our motivation for this study was the well-

known fact that the magnetic field may change the
nature of phase transitions in a fundamental way, in-

ducing the appearance of multicritical points, such as
tricritical points in metamagnetic systems. " Also, the
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response of various modulated phases to the applied
field, and the field dependence of the phase dia-

grams, is a matter of intrinsic interest. Apart from
these motivations, we believe that from the experi-
mental point of view magnetic fields play a very im-

portant role. For instance, finer details of the modu-
lated phases, e.g. , the devil's staircase behavior, "
could be sought as a function of the applied magnetic
field, and we hope that a theoretical guidance, even
though in a mean-field approximation, will be useful.

The layout of this paper is as follows: In Sec. II a
precise definition of the model is given and relevant
expressions in the layer-by-layer mean-field approxi-
mation are derived. Some calculations in zero field
are briefly presented in Sec. III. In particular, expres-
sions for the A. lines and the Lifshitz point, and an
asymptotic expression for the first-order transition
line are obtained. The effects of the higher harmonic
components of the magnetization near the modulat-
ed-paramagnetic transition are discussed. In Sec. IV,
devoted to the mean-field calculations in the presence
of an applied field, the expressions for the A, surface
and the lines of tricritical points are determined.
Higher harmonic components of the magnetization
are calculated and their effect on the location of tri-
critical points is taken into account. The stability of
the tricritical points is investigated in Sec. V within
the framework of the Landau theory of phase transi-
tions. In Sec. VI, results of the numerical calcula-
tions in the modulated phase are presented, and the
main features of the effect of an applied field on the
various commensurate structures are examined. In
Appendix A the mean-field solutions of the model in
zero field are compared to the phenomenological
Landau expansion, and. the influence of umklapp
terms on the commensurate phases is discussed. The
ground state of the model is discussed in Appendix
B. In Appendix C the spherical version of the model
is studied, and it is shown that in this case no tricriti-
cal behavior occurs. Finally, some conclusions are
presented in Sec. VII.

where we take the lattice spacing equal to unit, and
the sums are over all lattice sites. For definiteness
we assume periodic boundary conditions, with period
N, along the three directions.

The mean-field expression for the Gibbs free ener-
gy G(T,H, N) of this system may be derived via the
Bogoliubov inequality'4

G «4 = G p + (3.'—~p) p

where

(2.2)

Gp = —kT in Xexp( —p3.'p)
I~)

(2.3)

Xp = —X ~zo'x.y,z
X,Pz2

(2.4)

where q, is a variational parameter associated with
the layer z. With this choice of 3'.p we have

4 = —kTN2 Xln(2 coshPq, )

—
2

N' X [4Jpm, 2 +J~m, (m, ~ + m, ~~)

+J2m, (m, 2+m, ~2)]

+N2 X(qz —H)mz (2.5)

where the function m„that is, the average magneti-
zation per spin in layer z, is given by

p= i/kT, K p is any trial Hamiltonian, the sum is
over spin configurations, and the average (H Hp)p-
is taken with respect to 3.'p. In order to obtain the
mean-field approximation, we consider the free trial
Hamiltonian

m, = tanhPg, (2.6)

II. MEAN-FIELD EQUATIONS

0o.„y,
Xz+,$

(2.l)

We consider a spin-
2

Ising model on a simple cu-

bic lattice with exchange interactions Jp between
nearest neighbors in the xy plane, and competing in-
teractions J~ and J2 between first and second neigh-
bors, respectively, along the z direction. In the pres-
ence of an applied -field H the Hamiltonian may be
written as

1 ~ ( Jpzrx. y,zo x + l,y + l,z
x,y,s

+ J)0xyz0xyz+] + J2oxyzzrxyz+2)

The mean-field approximation is obtained by minim-
izing the right-hand side of Eq. (2.2) with respect to
the variational parameters g, . Therefore, the mean-
field Gibbs free energy is

GMF(T, H, N) =4 (2.7)

with the parameters q, given by

=H +4Jpm +J~(m &
+m +~)+J2(m 2+m +2)

(2.g)

Substituting Eqs. (2.6) and (2.8) into Eq. (2.5) we
may write the mean-field Gibbs free energy in the
form



24 ISING MODEL %ITH COMPETING AXIAL INTERACTIONS IN. . . 4049

N GMF(THN;(m, )) = —kTln2+ $[(1+m,)ln(1+m, ) +(1—m, )ln(1 —m, )]

I
X [4Jpm +J]m (m &

+ mz+&) + Jpmz(mz 2+—m +2) ] Xm.
2 N

(2.9)

+J2(m, 2+ m, +2) ] (2.10)

It should be remarked that this set of equations ad-
mits, in general, more than one solution. In this case
a physically relevant solution must be found which
gives the lowest value for the mean-field Gibbs free
energy Etl. (2.9).

III. MEAN-FIELD CALCULATIONS IN ZERO FIELD

where m, is given by the solution of the system of N
coupled equations

m, =tanhp[H +4Jom, + J~(m, ~ + m, +~)

where

(3.4)

kT, =max, [J(q)] =J(q, ) (3.5)

The ordered phases just below the transition tem-
perature are shown in the diagram of Fig. 1. The
modulated phase near the transition temperature is
characterized by the wave vector q, given by

J(q) = 4Jo+ 2Jt cosq + 2J2 cos2q
I

As we decrease the temperature of the system, Eq.
(3.3) will begin to exhibit nonvanishing solutions for
a critical value of q which maximizes J(q). Thus,
the transition temperature is determined by

cosq, = —Ji/4Jq (3.6)
For the sake of completeness, and to emphasize

some aspects of our calculations, we present in this
section a few results in zero field, some of which
have been obtained by a number of authors. It is
well known that the model system may undergo a
second-order phase transition from a paramagnetic to
a sinusoidally ordered phase with varying periodicity.
For finite N the values of the wave vector q are limit-
ed to the multiples of 2rr/N due to the periodic boun-
dary conditions. To allow for commensurate as well

as incommensurate periodicities, we must take the
thermodynamic limit N ~. In this case, which will

be considered in our work unless otherwise stated,
the wave vectors vary continuously in the first Bril-
louin zone.

whereas q, =0 in the ferromagnetic phase and q, = m

in the metamagnetic phase.
In this work we consider mainly the case JO, J] & 0

and J2 (0. The expressions for the transition lines
from the disordered to the ordered phases in the T-p
plane (see Fig. 2), where p = —J2/J~, follow immedi-
ately from Eq. (3.5). The field parameter p measures
the competition between nearest and next-nearest
spins in the z direction. For p (—the system orders

ferromagnetically, and the paramagnetic-ferromagnet-

A. Order-disorder transition lines

The transition between the disordered (m, =0) and
the ordered (m, WO) phases can be determined very
simply from Eq. (2.10). For small m, we have

J, 0
J,

Metamagnetic

phase
Ferromagnetic

phase

m, = p[4Jom, + Jt (m, ~ + m, +t) + J2(m, 2 + m, +2) ]

(3.1)

If we introduce the Fourier components of m„ac-
cording to

2

I I

-4

'"o
Modulated phase
I I I I

-2 -I 0 I

Jt~Jo

m, = mqe'q',
q

where the sum is over the first Brillouin zone
( —m & q ~m), Eq. (3.1) yields

m, =pJ(q)m,

(3.2)

(3.3)

FIG. 1. Projection of the regions of ordered phases found
at T = T, and T =0, in zero field, onto the J2 vs J] plane.
The solid lines separate the three ordered phases found just
below T„whereas the dashed lines separate the ferromag-
netic, metamagnetic and (2,2) antiphase states found at
T =0. J& +4J2-0 are projections of the lines of Lifshitz
points, while J~ f 2J2 =0 are lines of multiphase points.
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OZ- kB—(T —T )L

small, and we may write the following expansion:

P[4Jom*+ Ji(m*-t +m, +&) + Jz(m, 2+ m, +2)]

=tanh m=m+ —m + —m + ~
1 3 1

Z Z 3 Z 5 Z

A purely sinusoidal magnetization

m, = M, cos(q, z + $, )

(3.10)

(3.11)

is clearly inconsistent with Eq. (3.10). Therefore, we
will seek a solution in the form of a Fourier series

FIG. 2. Phase diagram of the model near the Lifshitz
point (TL,p&), as determined from the asymptotic expres-
sions. The dot-dashed line is the projection of the tricritical
lines on the T-p plane. The insert shows a larger region
around the Lifshitz point (LP), for the case Jo= J1, which
separates the paramagnetic (PM), ferromagnetic (FM), and
modulated (M) phases.

m, = Mt cos(q, z + P&) + M3 cos(3q, z + @3)

+M5 cos(5q, z + $5) + (3.12)

where, in this particular case, we need not consider
the even harmonic components. Also, the coeffi-
cients M„are, for convenience, supposed real. Sub-
stituting Eq. (3.12) into Eq. (3.10), and comparing
the coefficients of the same harmonics, we obtain in
leading order

ic X line is given by

kTo= J(0) =4Jo+2J~+2J2 =4Jo+
z J& —2J~hp

(3.7)

where b p =p —
4

. For p & —,the system orders
1 1

sinusoidally, and the paramagnetic-sinusoidal A. line is
given by

J2
kT„=J(q, ) =4Jo —2J2-

4J2

1/2

M1=+2 1—
Tc

J(3q, )
' '

M3= ——1—
12 J(q )

J(5q, ) ' J(3q, )

J(q ) J(q )

(3.13)

(3.14)

—3 M15

(3.15)
= kTo+16Jthp2+ O(hp3) (3.g)

It then follows that both A. lines join smoothly at the
Lifshitz point (TL,pL) where pL = —, and

kTL =4JP+ —J1 . .3 (3.9)

B. Higher harmonic components of
the magnetization

The mean-field values of the magnetization per
spin in a layer are given by the solutions of the set of
coupled equations (2.10). Near the transition m, is

In order to obtain an asymptotic expression, close
to the Lifshitz point, for the ferromagnetic-
modulated transition line, and to examine the nature
of this transition, we have to go beyond Eq. (3.1) and
consider the higher harmonic components of the
magnetization per layer. This will be done in the
next paragraph.

In general, the coefficient of the n th harmonic term,
where n is an odd integer, approaches T, as
(T, —T) "~'. One of the phases, say $t, is arbitrary,
but then the other phases are determined by the con-
dition

Q„=nest+ vm (3.16)

where v is an integer. Expressions (3.13) to (3.15)
correspond to the choice v =0. Strictly speaking, the
phase P~ is fully arbitrary only for incommensurate
wave vectors. For commensurate wave vectors the
expansion (3.12) is finite and the phase @& has to be
chosen properly in order to minimize the free energy.
This point is discussed in more detail in Appendix A.

Close to the X line, our results show that the
modulated phase is fairly well represented by a
sinusoidal layer magnetization with wave vector q, .
The higher harmonic components contribute as per-
turbations, and become more important as we
penetrate into the modulated region.
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C. First-order transition line

In zero field the Gibbs free energy may be expanded as the following power series in m, :

N 3GMF(TH=0, N;[ m}) = —kTln2+ X[—[4Jom, +J,m, (m, , +m, +()+Jzm, (m, z+m, +z)]
2N

+kTm, z+
6 kTm,4+

, 5
kTm—P + } (3.17)

+ kT(M—)4 + —M(3M3) + kTM(6 —+
32 3 96

(3.18)

Since M) is of order (T, —T)'~z, and M3 of order

M&, we need not consider the third harmonic com-
ponent in the leading asymptotic expression of the
free energy, which is given by

N GMF = —kTln2 —2kT 1— (3.19)

To obtain an expression for the Gibbs free energy
in the ferromagnetic phase, we have to go back to
Eq. (3.17) and make m, = m for all z. In this way we

have

N 3GMF = —kT ln2 ——J(0)mz
2

Decomposing m, in its Fourier components as in ex-
pression (3.12), we may also write

N 3GM„=—kT ln2+ [kT ——J(q, ) ]M)z

+ '[kT ——J(3q, ) ]Mz

The three transition lines TQ, T&, and T~ join with a
common tangent at the Lifshitz point, as depicted in

Fig. 2.
Since it has recently been argued, on the basis of

Monte Carlo calculations, 7 " that the ferromagnetic-
modulated transition line might be of second order
near the Lifshitz point, it is worth emphasizing the
first-order nature given by our mean-field results.
Also, it is worth to remark that the higher harmonic
components have no influence either on the critical
lines (To and T),) for H =0, or on the first-order fer-
romodulated transition line T~ asymptotically close to
the Lifshitz point. However, not only is T~ affected
by the higher harmonic components when we are
sufficiently far from TL, but, more significantly, the
nature of the transitions may change in the presence
of a magnetic field and the higher harmonic com-
ponents have to be properly considered. This will be
the main point of the next section.

+ (m'+ —m + )kT 2 i 4
6

and in leading order

S/2

m=+43 1—
TQ

(3.20)

(3.21)

IV. MEAN-FIELD CALCULATIONS
IN NONZERO FIELDS

A. Order-disorder transition surface

The leading asymptotic expression for the free energy
in the ferromagnetic phase is thus given by

12

N GMF = —kTln2 —-kT1—-3 (f) 3 T
4

TQ
(3.22)

Equating the free energies (3.19) and (3.22) we ob-
tain the following asymptotic expression for the
ferromagnetic-modulated transition line close to the
Lifshitz point

kT( = kTo —(2+ J6)16J(hp' (3.23)

where hp =p ——„and To is defined by Eq. (3.7).
This is a line of first-order transitions, with a jump of
the entropy given asymptotically by

In the presence of a magnetic field, Eq. (2.10) ad-

mits a nonvanishing uniform solution mQ = m„for all

z, which is determined by

mo = tanhP[H +J(0)mo] (4.1)

m, = mQ+5m, (4.2)

At high temperatures this solution gives the lowest
free energy, that is, the system is in the paramagnetic
phase. As the temperature is decreased, however, a
nonuniform solution may emerge with lower free en-
ergy. In the modulated phase and close to the transi-
tion we may write

N
—(S(3m) g(J) ) 8Jg ) gp2

T$
(3.24)

where 5m, goes to zero as one approaches the critical
surface. Substituting this expression for m, into Eq.
(2.10) we obtain
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P[4Jp™~ Jl(gm -1 + gmc+1) + J2(&m, 2 + Bm, +3) ]= Sm, + gm3 + gm3 +1 mo 2 1 +3mo2

1 —mp (1 —mp ) 3(1 —m02)'

(4.3)

Now 5m, can be expanded in a Fourier series,

Sm, = $mpe'p',
e

so that Eq. (4.3) gives in first order

mp = P(1 —mp2 )J (q) mp

(4.4)

(4.5)

8. Higher harmonic components of
the magnetization

As it was shown in the last paragraph, close to the
critical surface 5m, is determined by Eq. (4.3). The
solution of this equation can be sought in the form of
a Fourier expansion

which is analogous to Eq. (3.3) of the last section.
The critical surface is thus given by

kT =maxpJ(q) =J(q, )
1 —mo

(4.6)

kT
1

02
J(q, ) [J(q, ) —J(0)]' (4.7)

where mp is related to H by Eq. (4.1). Equation (4.6)
shows that the periodicity of the modulated phase
close to the critical surface is a function of the
parameter p only, that is, it does not depend either
on T or on H. For small fields, we may write the
equation for the critical surface in the form

Sm, = Mp + M1 cos(q, z + $1 ) +Mz cos(2q, z + pz)

+M3 cos(3qcz + $3) + (4.8)

m11pJ(q, )

2 1 —[J(O)/J(q, )] (4.9)

f

where the even harmonic components should be duly
taken into account. For convenience we will assume
that Mo, M~, M2, . . . are real numbers. Substituting
expansion (4.8) into Eq. (4.3), and comparing the
coefficients of the same harmonics, we obtain in
leading order

which shows the usual quadratic depression of the
critical temperature by the applied field.

mpPJ(q, )
2 1 —[J(2q, )/J(q, )] (4.1O)

J(3q, )
' '

M = ——[PJ(q )]3 1 — (1+3mp ) —6m11 1—3 1$ c J( )
1 1

J(2q, )

J(q, ) (4.11)

and

2J(O)
M1 = +2[PJ(q, ) ] 1 —3mp —2mp

1

[(1—m03 ) P J(q, ) —1]'~' (4.12)

In general the nth harmonic coefficient M„,for
n ~2, depends asymptotically on the nth power of
M~. According to the discussion of the last section,
the phase d11 is arbitrary, but the other phases are
given by @„=n1t1.

I

ply

MT p =&'mo (4.14)

whereas in the modulated phase Sm, is given by the
Fourier expansion (4.8), so that

C. Line of tricritical points Mr~ = N3(mp+Mp) (4.15)

Mr = Xm, = $(mp+sm, )
~$ ~$

(4.13)

In the paramagnetic phase Bm, =0 and we have sim-

In the previous paragraphs we have assumed that
the transition is always continuous. However, it may
become first order for high values of the applied field
and low temperatures. To examine this possibility let
us consider the total magnetization

Equation (4.9) shows that mp and Mp have opposite
signs close to the transition surface. Accordingly, at
fixed T, the total magnetization of the system is al-
ways smaller in the modulated phase than in the
paramagnetic phase. Both branches of the total mag-
netization, in the MT-0 plane, meet with different
slopes at the transition point. A van der %aals loop,
which characterizes first-order transitions, occurs
when the derivative (dMr /8H) calculated at the
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transition point becomes negative. Therefore, the tri-
critical points are located by the condition

~Mr, m
critical

=
~ surface

(4.16)

From Eqs. (4.9), (4.12), and (4.15) we obtain the
following expressions for the tricritical temperature
and field:

kTi,
3 2J(0)

J(q, ) J(q, ) —J(0)

J(2q, )
+

J(q, ) —J(2q, )

kT„""
+H =—J(0) 1—tr J(q, )

j

kTtr1+1-J(")
+

2
kT„ln

1 —1 — kT„
J(q, )

(4.17)

(4.18)

FIG. 3. Phase diagram of the model for the case Jp = J~,
in the presence of an applied magnetic field. The dash-
dotted lines of tricritical points separate the second-order
transition surface from the first-order tra'nsition surface (in-
dicated by dotted lines). The lines of tricritical points end at

p =2.946. . . . For larger values of p, lines of critical and
double critical endpoints, which are not shown, are expected
to appear. Inside the modulated region there exist many
distinct modulated phases, but they are not shown in this
picture.

kTtr = kTp+ i9 Jihp

where, as before, ~p =p —
4 and
1

i/2
232 72 1

1 I

(4.19)

(4.20)

In the vicinity of the Lifshitz point we may write In general, the expression for the tricritical tem-
perature Eq. (4.17) is not valid for all p, since it may
become negative for large p. It is necessary, there-
fore, to investigate the stability of the tricritical
points. This will be done, in the next section, in the
context of Landau's theory of phase transitions.

These results show that, at the Lifshitz point, the two
lines of tricritical points have a common tangent with
the lines T&(p), Tp(p), and T|(p), determined in the
last section. This feature of the tricritical lines can
be seen in Fig. 3.

U. LANDAU THEORY IN NONZERO FIELDS

The mean-field expression for the Gibbs free ener-
gy is analytic in Sm„defined by Eq. (4.2), and may
be expanded in the form

N 'GMp(THN;{Smgj) =N 'Gp + X{—, [4JpSm, '+J—)Sm,(Sm, |+8m, +)1+J28m, (Sm, 2+8m, +2)]

+ 238m,2+ 3BSm, + CSm,4+—DSm,5+ ESm—6+ . I— (5.1)

where Gp is a regular function of T and 0, and the coefficients A, B, . . . ,E are given by

kT
1 —mp2

(5.2)

mpB =kT( 2),

1 +3mp2

3 (1 —mp' )'

mp(1+mp )
(1 —m')4

1 +10mp2 +Smp4
E =kT-

5(1 —mp2 )'

(5.3)

(5.4)

(5.5)

(5.6)
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By representing Sm, in terms of its Fourier components as in expression (4.4), we may write the expansion of the
free energy in the form

N 3GMF(TH, N;{mq}) =N Gp + —X [A J—(q, )]mp mp h(q t+q 2)+ 38 g mp mp m~ LL(ql+q2+q3)
3

+—'C X m~ mp mp m~ 4(q&+q2+q3+q4)+ (5.7)

where the I function, defined by

A(q) = X S(q +2m n) (5.8)

expresses wave vector conservation (moduio 2m).
To obtain the expansion of G up to the sixth-order term in the order parameter, it is enough to consider up to

the third harmonic component in Sm, . As in the last section, let us call

'@n
mp=Mp, 2m„q =M„e " (n « I) (5.9)

where, for convenience, Mp, Mi, M2, . . . are supposed real. Disregarding the possibility of umklapp terms we

have

N 3G =N 3Gp+ 2ApMp2+ 4A1M12+ 4A2M22+ 4A3M32

+8[ Mp +
4 MtM2 COS($2 2@t) +

2
MpMi +

2
MpM2 +

2
MtM2M3cos($3 $2 @1)]

+C[ 32 Mt +
4 MQM1 +

p
MtM& +

p
MtM3cos(4I3 3/1) +

~ MQMtM2cos(@2 2$t)]

+8[—Mt M2cos($2 —2/i) + MpMt4] —+
9p

EM| (5.10)

where

A„=A—J(nq, ) (5.11)

The minimization of G with respect to Mp, M2, and M3 gives

Mp = apMi + bpMi"

M2 = a2M) + b2Mi

M3 = a3Mi3

(s.12)

(s.i3)

(5.14)

where the coefficients ak and bk are functions of A„,&,8, . . . ,E. The phase P1 is arbitrary, but the other phases

are fixed according to $„=n @t. Inserting expressions (5.12) to (5.14) into Eq. (5.10) we have the expansion

N 3G(THN;Mi) =N Gp(TH N)+C2(TH)Mi +C4(TH)Mt +C6(TH)Mtp + (5.15)

where

1C2= —Ai (5.16)

B2 2 1C4=- + +—C
16

(5.17)

C6=—
16 3Ap ApA2 A2A3 32 Ap ApA2 A2 A2A3

BD 3 +2
16

C +5E
64A, 96
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The critical surface and the lines of tricritical points
are determined by the conditions C~ =0 with C4 & 0,
and C~ = C4 =0 with C6 & 0, respectively. Needless
to say, in this way we obtain the expressions which
had already been calculated in the last section. The
condition C6 & 0 ceases to be satisfied for a suffi-
ciently large value of the parameter p. When
Cq = C4 = C6-0 and C8 & 0 a new kind of multicriti-
cal point emerges, which corresponds to the limit of
stability of the line of tricritical points. " In the par-
ticular case Jo= J~ this multicritical point was found
occur at p =2.946, . . . For still larger values of the
parameter p the system exhibits two distinct end-
points, namely, the critical endpoint and the double
critical endpoint, in analogy with metamagnetic sys-
tems. ' This behavior was observed in the numerical
calculations for the case p =4, as will be discussed in
the next section.

Finally, we observe that when umklapp terms are
present they should be taken into account. However,
for the particular case J~ & 0 in which we are interest-
ed, the umklapp terms have no influence on the loca-
tion of the tricritical points.

VI. NUMERICAL RESULTS IN THE
MODULATED PHASE

In the preceding sections we have examined the
properties of the model near the critical surface. It
was shown that the modulated phase in this region is
a distorted sinusoidal wave with the periodicity deter-
mined by the parameter p = —Jq/Jt. As the tempera-
ture is decreased, however, transitions may occur to
other modulated phases. Indeed, at zero field, it is
known that this model presents a large number of
distinct modulated phases. 9 In this section we

show, through numerical calculations, the main
features of the effects of an applied field on the
modulated phases.

Within the mean-field approximation, the problem
consists in the solution of the infinite number of cou-
pled nonlinear equations (2.10). Since it is not possi-
ble to obtain a general analytic solution, we have to
resort to numerical calculations. " Let us suppose
that the solution is periodic with a periodicity of L
lattice spacings. With this assumption, the infinite
system of equations (2.10) reduces to a system of L
coupled equations, which can be solved self-consis-
tently. As initial configurations we may use
sinusoidal structures with different periodicities. In
this way periodic solutions with periodicity L are ob-
tained. In the calculations we restricted ourselves to
the particular case Jo = J& & 0, J& & 0, and 0 & 0.
Moreover, we considered only periodicities of up to
20 lattice spacings, that is, we examined solutions
with wave vectors of the form q =2n K/L, where
0«K & L «20. Among the various solutions

0—

kgT/Jq = 4.5
p=1

'H/J 1=0.75

Q2& q= 2TV5

(b) ksT/J)=4. 625
p=0.6

H/J~= O.lS

0—

(c)

ii' 'I

QR 52) q = TT/7

FIG. 4. Various plots of the magnetization per spin in a
layer m„asa function of the layer coordinate z, which were
found numerically for the case Jo= Ji in nonzero fields.
The continuous curve represents the sum of the zeroth and
first harmonic components.

found for a given point in the T-p-H space, only that
one which minimizes the free energy is physically
relevant. Needless to say, the procedure just
described does not take into account all the possible
commensurate phases, not to mention the incom-
mensurate ones. Therefore, our results are limited to
the main commensurate phases, and it is to be un-
derstood that in between them there may exist other
commensurate or incommensurate phases.

Some of the average spin configurations found in
the presence of a field are shown in Fig. 4. Figure
4(a) shows the average spin configuration of the
modulated phase with wave vector q =2m/5. To
better characterize this phase we will adopt the nota-
tion (32), which means that three planes with spins
predominantly parallel to the field are followed by
two planes of spins predominantly antiparallel to the
field. s According to this notation, Figs. 4(b) and 4(c)
correspond to the average spin configurations of the
modulated phases (3332) =—(332) and (32332). The
continuous curves superimposed on these figures
show the sum of the zeroth and the first harmonic
components of the magnetization. It is clear from
these figures that the magnetic field has the effect of
inhibiting the occurrence of antiparallel spins, thereby
producing a net total magnetization parallel to the
field. It can also be seen that there are, in general,
significant contributions of the higher harmonic com-
ponents to the magnetization.

Phase diagrams in the T-0 plane, for three
representative values of p, are shown in Figs. 5, 6,
and 7. In the case p =0.4, shown in Fig. 5, the
ground state is ferromagnetic, and the modulated
phase is limited to a hump-shaped region which is
stable only for small fields. This observed behavior
for p =0.4 is characteristic of all T-0 phase diagrams
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FIG. 7. Temperature vs magnetic field phase diagram as
determined numerically for the case Jp= J& and p =4. The
heavy line is a second-order transition line ending at the
critical end point (CE). The insert shows the details around
the double critical end point (DCE), which was determined
numerically.

FIG. 5, Temperature vs magnetic-field phase diagram as
determined numerically for the case Jo = J& and p =0.4.
The heavy line is a second-order transition line ending at the
tricritical point {TCP).

for which 0.25 & p (0.5. In the case p =0.6, shown
in Fig. 6, the ground state in the modulated phase is
the (2,2) antiphase state, denoted by (2) in the nota-
tion introduced previously (see Appendix B). Notice
that the modulated phase is dominated by the simple
commensurate phases with wave vectors q/2m = 4,

I
I

P =- J2/Jq= 06
Tcp

I

5)

kBT

Jg

I

0.0 I

0 I

O. l

I

0.3

FIG. 6, Temperature vs magnetic field phase diagram as
determined numerically for the case Jo= J~ and p =0.6.
The heavy line is a second-order transition line ending at the
tricritical point (TCP). The insert shows the details around
the phase (3 ).

, and —„.It is interesting to observe that the

modulated phases (3) and (235) are limited to a
small region of very weak fields. This fact is prob-
ably related to the nonmonotonic behavior of the
wave vector for p =0.6 and to the bulging of the
phase (3) observed in the T pphase d-iagram. s Fi-
nally, the T-H phase diagram for a large value of the
parameter p, namely, p =4, is shown in Fig. 7. We
can observe that the modulated phase is overwhelm-
ingly dominated by the (2,2) antiphase. Indeed, in
our numerical calculations we did not find any other
phases except the (2,2) antiphase. This is due to the
limitations of the numerical calculations discussed
previously, since we know that close to the A. surface
the modulated structure has the wave vector deter-
mined by Eq. (4.6). Furthermore, a detailed numeri-
cal study near the A. surface was hindered by the fact
that the convergence of the numerical process may
become very slow. The fact that the phase diagram
for p =4 is almost fully occupied by the (2,2) anti-
phase is not surprising, since for large p the model
can be imagined as consisting of two weakly coupled
interpenetrating metamagnetic systems. Notice that
in this case the first-order transition line does not
meet tangentially with the A. line, but it penetrates
into the modulated region, becoming a line of coex-
istence of two (2,2) antiphases. The end points of the
A. line and of the first-order transition line are the
critical end point and the double critical end point,
respectively, in analogy with metamagnetic systems. '

The behavior of some thermodynamic functions
when the system passes through different modulated
phases was also examined. Figure 8 shows the graph
of the entropy as a function of temperature for zero
applied field and p =0.6. gt should be remarked that
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claiming to have found a true devil's staircase as de-
fined by the mathematicians. ' In Fig. 9 we show a
graph of tPe magnetization as a function of the ap-
plied field for p =0.6 and (ks T/Jt) =2.75. By refin-
ing the numerical calculations between the commen-
surate phases (2) and (32), a number of other
modulated phases were found. Therefore, the devil' s
staircase picture is likely to hold as a function of ei-
ther temperature or of applied field.

I

3.050

0.0 I I

kgT/J)

FIG. 8. Graph of the entropy as a function of tempera-
ture in zero field for the case Jo= J& and p =0.6. The insert
shows the details of the transition between the phases (2)
and (32).
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FIG. 9. Graph of the net magnetization per spin vs ap-
plied magnetic field for the case Jo = J~, p =0.6, and
kT/J~ =2.75. The insert shows the details of the transition
between the phases (2) and (32).

in between the main commensurate phases the sys-
tem undergoes a number of first-order phase transi-
tions to other less stable commensurate phases. It
has been suggested that the corresponding curve of
the wave vector as a function of temperature could
be an example of the devil's staircase. " This
means that the wave vector as a function of tempera-
ture would be, for a certain temperature interval,
continuous, monotonic, and with zero derivative al-
most everywhere. ' Whether this model can display a
true devil's staircase behavior or not has been a sub-
ject of various studies, ' ' and it is not our inten-
tion to deal with this complex and subtle problem. In
any event, there is no possibility of identifying the
true devil's staircase numerically, and our use of the
term devil's staircase does not imply that we are

VII. SUMMARY AND CONCLUSIONS

%e have studied a layered Ising model with com-
peting interactions between nearest and next-nearest
layers in the presence of an applied magnetic field.
All the calculations were performed within the
mean-field approximation in which distinct effective
fields are assigned to each plane. The A. surface, and
the ordered region just below it, were studied analyti-
cally by means of the standard mean-field techniques
and the Landau theory of second-order phase transi-
tions. The modulated structure near the A. surface is
a distorted sinusoidal wave with a period determined
by the ratio p of the competing interactions. Com-
rnensurate structures, in which the period is an in-

tegral multiple of the lattice spacing, are pinned to
the lattice by the umklapp terms, whereas incom-
mensurate structures can undergo a free translation
relative to the lattice without changing the free ener-
gy. Both odd and even higher harmonic components
are present in nonzero fields, as opposed to the case
of zero fields where only odd higher harmonic com-
ponents are present. The nth order harmonic com-
ponent depends asymptotically on the n th power of
the main harmonic component. The A. surface is
bounded by two lines of tricritical points which join
smoothly at the Lifshitz point and end at multicritical
points for a particular value of the parameter p,
beyond which lines of critical and double critical end
points are expected to appear. The modulated phases
at low temperatures were studied by means of a
direct numerical analysis of the mean-field equations.
Some modulated phases which are present at zero
field were found to be stable only for very weak
fields. The modulated phases in the T-H plane for
0.25 (p (0.5 are limited to a hump-shaped region,
while for larger values of the parameter p they be-
come increasingly dominated by the (2,2) antiphase.
Devil's staircase behavior is likely to occur either as a
function of the temperature or of the magnetic field.
At least in principle, some steps of the devil's stair-
case should be amenable to an experimental observa-
tion, in the magnetization measurements, as a series
of first-order transitions taking place in a very narrow
field interval. Finally, we would like to point out that
our results have the well-known deficiencies of the
mean-field theories. Moreover, the numerical calcu-
lations are further restricted by the fact that only the
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main commensurate structures were taken into ac-
count. Notwithstanding these limitations, we believe
that the main qualitative conclusions, in particular
those concerning the phase diagrams, are correct.

Nore added in proof. After the completion of this
work, Dr. P. Lederer informed us about recent data
of J. P. Jamet, J. Phys. (Paris) 42, L123 (1981), for
the electric fieltl versus temperature phase diagram of
thiourea, which is in remarkable qualitative agree-
ment with Fig. 5 of this paper.
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APPENDIX A: LANDAU THEORY IN ZERO FIELD

1. Results near the Lifshitz point

Magnetic systems with uniaxial spontaneous mag-
netization were studied by Michelson, ' in the vicini-

ty of the Lifshitz point, on the basis of Landau's
theory of second-order phase transitions. The Ising
model considered in this paper is probably the sim-
plest possible realization of a uniaxial system exhibit-
ing a Lifshitz point. To facilitate the comparison, we
will obtain the phenomenological coefficients of
Michelson's work as a function of the microscopic
parameters of the model.

Substitution of the Fourier decomposition of the
layer magnetization Eq. (3.2) into the expansion of
the free energy Eq. (3.17) gives

N 3G = —kTln2+ X —[kT —J(q)]m», m» 6(qt+q2)

1

„~,2n(2n —1)
q2n

m, m, A(q, + +q2„) (Al)

Near the Lifshitz point the umklapp terms can be neglected. Hence we have

N G= —kTln2+ —gA ~mq~ + B' X — m m + —C' X m m +4 q& q4 6 q6
q q~+ ~ ~ +q4 0 + ~ ~ 0 +q ~Q

1 6

(A2)

where, in Michelson's notation

A»=kT —J(q) =Ao+nq2+ —Pq" +

Ao = kT —(4JO+ 2Jt +2J2)

a= J,(1-4p), P=- —,
' J (1-16p)

B'= —kT C'= —kT
3 f '

5

(A3)

I

Fourier series

iq s -iq s l3q s
m, =mqe '+m qe ' +m3qe

C C C
(A4)

where only the odd harmonic components are
present. By substituting Eq. (A4) into Eq. (Al), and
keeping only the terms up to sixth order we obtain

N G =' —kTln2+ 4A)M) + 2A3M3

The properties of the model near the Lifshitz point
are described by Michelson's results with the coeffi-
cients of the Landau expansion given by Eqs. (A3).

2. Effect of the umklapp terms

Away from the Lifshitz point„umklapp terms may
become relevant for commensurate wave vectors.
Indeed, as pointed out in Sec. IIIB, umklapp terms '

are responsible for the pinning of commensurate
phases with respect to the lattice. To illustrate this
point, let us consider, for instance, the commensu-
rate phase with wave vector q, =»r/3. This phase is

realized, below T„for p = —,. For this value of q,
the magnetization may be written as the finite

2m =M~e, m3 M3 ~

qc qc
(A6)

Now, the minimization of G with respect to M3 gives
in leading order

M3 = — M, cos3@t
kT

12A3

and the free-energy expansion takes the form

+ —,2
kT[

8 M," +M3Mi cos3@t]

+»Io kT[10Mt6 +Mt6 cos6@t]+, (A5)

where A„is defined in Eq. (5.12), and as usual we
have put
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1

N G =—kTln2+ —AtM~ +—kTMt + kT 2 —— + ——— cos6@~ M~ +-3 4 i 1 kT 1 1 kT 6
4 32 3 A3 5 3 A3

I

(Ag)

The phase Pt has to be chosen so as to give the
lowest possible value for the free energy. The above
expansion shows that, near T„ptis determined by
the sixth-order term according to the sign of

1 1 kT 4 8 Jo
5 3A3 45 27 Ji

(A9)

Thus, for Jo & 0.3Jt, @t =0 (mod m/3) whereas for
Jp & 0.3Jj, @t = m/6 (mod m/3).

Generally speaking, commensurate phases of the
form q =2rrK/L are pinned with respect to the lat-
tice by the Lth order umklapp terms. For incom-
mensurate wave vectors, the phase of the main har-
monic component is arbitrary, and the modulated
phase can undergo a free translation relative to the
lattice without changing the free energy.

APPENDIX B: GROUND STATE

The ground state of the model, in the mean-field
approximation, can be determined by minimizing the
zero-temperature free energy

The ground-state spin configuration is a sequence
of groups of spins as indicated in the index of the
minimum e. For example, if ~+ + has the lowest
energy, then the ground state is the sequence
+ ——++——+, that is, the (2,2) antiphase
state. The possible ground states in zero fields are
shown in Fig. 1. The ground state is metamagnetic
for J~ & 0 and J2 & 0.5J~, ferromagnetic for J~ & 0
and J2 & —O.SJ tand the (2,2) antiphase state for
J, & 0 and

~
J, ) & 2(J, ~. For arbitrary H and J» 0,

the ferromagnetic and the (2,2) antiphase states are
the only possible ground states, as shown in Fig. 10.
However, we remark that for J~ & 0 other ground
states are possible.

Of particular interest are the transition lines sepa-
rating the (2,2) antiphase from the ferromagnetic
phases in Fig. 10. On the transition line H = Jt(—1

+2p) & 0 we have e+= e+ +, and infinitely many
ground states can be constructed from the arbitrary
arrangement of groups of spins + and +——+. The
ground-state degeneracy D„,in the thermodynamic
limit, is given by

N GMF(T =O,H; (mg}) lim —lnD~ =lnx =0.32228. . .1

N
(BS)

g [4Jpm, '+ J~m, (m, t + m, +2)

+J2m, (m, 2+m, +2)] —H Xm, , (Bl)
z

where the layer magnetization m, is limited to the
values +1. Since the spins in each layer interact fer-
romagnetically, expression (Bl) also gives the exact
ground-state energy of the model. The problem of
finding the ground state reduces, therefore, to that of
finding the ground state of the one-dimensional Ising
model described by the Hamiltonian

X = —X (Jto'go', +i + J2o'&0'&+2+ H(T&), (B2)
s 1

where o-, corresponds to m, . This problem can be
solved by the transfer matrix method or by a direct
counting of possible spin arrangements. ' The latter
method gives for the ground-state energy per spin the
result

E=min(e+, e, e+, e+, e+ +, e+ +}, (B3)
where

~+ = —J) —J2+H

H

J)

ii ik is ii

tiphase
ate

1r 1r 1r 1r

where x is the solution of the quartic equation
x3(x —1) =1. Due to symmetry, on the transition
line H -Jt(1 —2p) & 0 we have the same ground-
state degeneracy with the possible ground states con-
structed from the arrangements of groups of spins-
and —++—.Finally, on the point of intersection of
the two transition lines, that is, at the multiphase

=J) —J2

e+ = (J, +J2+H)/3

e+ += (J)+J2 —H)/3

~+--+ = J2 ~

(B4)
p=- J /J„

FIG. 10. Ground state of the model in nonzero fields for
the case J~ )0. The (2,2) antiphase state is separated from
the ferromagnetic phases by the lines 0 =+ J&(2p —1),
which meet at the multiphase point (MP).
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point (p, H) = ( 2, 0), the ground state is even more

degenerate. Possible ground states have a sequence
of at least two "up" spins followed by at least two
"down" spins. The ground-state degeneracy DN is
given by the recursion relation of Fibonacci's se-
quence, and one has in the thermodynamic limit, "

lim —1nD~ = ln
1 I+VS =0.48121. . . . (B6)

~N 2

We can observe that there is a residual entropy on
these transition lines in the case of one dimensional
systems, but not for higher dimensional systems.

APPENDIX C: SPHERICAL MODEL

The spherical version of the Ising model con-
sidered in this paper exhibits a Lifshitz point, and its
multicritical behavior was analyzed in detail by Horn-
reich et al. ' In view of the results obtained for the
Ising model, it is instructive to consider the spherical
version in the presence of an applied field.

The mean-spherical model partition function is

p+oo

Here we will limit ourselves to the case Jo,JI & 0,
J2 & 0, and, as usual, introduce the field parameter
p = —J2/Jt. Then, as in Sec. III, we have a fer-
romagnetic ordering q, =—0 for p ( 4, and a modu-

lated ordering q, = (0, 0,q, ), with q, given by Eq.
(3.6), for p ) ~. The Lifshitz point occurs at p = —'.
The paramagnetic-ferromagnetic A. line in zero field,
Tp(p), is given by

(cs)

H2 kTa(pH) ' d3q
+

[J(q,) —J(0)]' (2m)' " J(q, ) —J(q)
(c6)

The net magnetization per spin in the paramagnetic
phase is

k To (p) ' d'q

(2&)' J(0) —J(q)
No phase transition occurs for p (—in nonzero

fields. For p & 4, however, there exists a phase

transition even in nonzero fields. The paramagnetic-
modulated A. line becomes the X surface T„(p,H)
determined by

=-(p.H. I ) = II z
XPZ

1

x exp —pK —pp, Xo'~
(cl)

H

2[@,——,
' J(0)]

whereas in the ordered phase

(C7)

where X
variables
potential
spherical

is the Hamiltonian (2.1) but with the spin
ranging from —~ to + ~. The chemical
p, should be determined from the so-called
condition

(Xo.2 ) = —— ln =W1
JQC

p
(C2)

As it is well known, at and below the transition tem-
perature the chemical potential sticks to its critical
value, which is given by

H

2[p. —
—,
' J(0)l

(c8)

At the transition surface JM, is equal to p, Therefore,
the magnetization varies continuously through the
transition surface, which confirms its second-order
nature. The nonexistence of tricritical behavior is
not surprising, since this is already the case of a
metamagnetic spherical system. ' The form of the A.

surface is given by Eq. (C6), which may also be writ-
ten as

p, , =max-{—'J(q)) = —'J(q, )

where

J(q) =2Jo(cow. +cose, )+2Jt cosq, +2J2cos2q,

(c3) T),(p, H) =1-
T„(p,0) J2 (1 —4p)4

(C9)

Equation (C9) emphasizes, for fixed p, the usual par-
abolic shape of the transition line found in spherical
models.
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