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A scaling theory for the Hall effect in disordered electronic systems is developed. It is sug-
gested that a universal scaling function for the Hall conductance exists, and the leading quantum
correction to the classical value (d —2) of this function is calculated (d is the dimensionality). It
is shown, by means of a scalingl argument, that at the mobility edge the zero-temperature Hall
conductivity approaches zero with an exponent ty =21, where ¢ is the conductivity exponent.
This relation between the exponents is supported by a microscopic calculation in 2 + € dimen-

sions, which yields t =1, 5 =2.

I. INTRODUCTION

The purpose of this paper is to develop a scaling
hypothesis for the Hall effect in disordered electron
systems. Our arguments are based on the scaling
theory of electron localization which has recently
been developed by Abrahams et al.!'> The scaling
parameter in their theory is the dimensionless con-
ductance g (L) = G(L)/(e?*/k) at length scale L.
Here G(L) is the zero-temperature conductance of a
hypercubic sample of size L in d dimensions. The
conductance at scale bL (b is the scaling factor) is
determined by the scaling relation!

g(bL) =f(b;g(L)) , (1.1)
or in continuous terms ‘
ding/dInL =8(g) , (1.2)

where, for each d, B is a universal function of g only.

The scaling theory predicts d =2 as the lower criti-
cal dimensionality in the following sense: The ex-
istence of a mobility edge is indicated by a zero of
the B function. At d =2, 8(g) <0 for all finite g,
and no zero occurs. For d > 2, B8(g) has a zero, and
the conductivity

o(E) = (ez/ﬁ)Llim L (LE) 1.3)
is finite for Fermi energies E ﬁigher than the mobility
edge E,. Near (above) E,, we have

o(E) ~(E—-E)" . (1.4)

The conductivity exponent ¢ is related to the correla-
tion length exponent v by

t=(d-2)v , (1.5)

a result first obtained by Wegner.?

We want to extend the scaling arguments of Ref. 1
to the Hall effect. The influence of magnetic field on
the localization picture at d =2 has been discussed
from the microscopic point of view by several au-
thors.*=® The calculations in these papers are restrict-

“ed to the weak scattering limit. Here we shall give a

scaling hypothesis which gives the behavior near the
mobility edge. While our arguments are given for
temperature T =0, we expect that at finite 7 the
length scale is set by the temperature-dependent
Thouless length”® Ly = (I,li,)'/? where the /s are
the elastic and (temperature-dependent) inelastic
mean free paths.

In Sec. II, we formulate the scaling hypothesis.
The hypothesis is supported to some extent by a mi-
croscopic calculation in Sec. III. In Sec. IV, we give
an explicit calculation in 2 + € dimensions where the
mobility edge is accessible by perturbation theory.
The conclusions are summarized in Sec. V.

II. SCALING HYPOTHESIS FOR THE
HALL CONDUCTANCE

The Hall conductance Gy is defined in terms of the
transverse Hall voltage Uy, the longitudinal voltage
U, and the conductance G by

G”=GUH/U . (21)
The Hall conductivity is defined as
oy(E) =L1im L*4Gy(L;E) . 2.2)

For E < E,, i.e., in the insulating region, oy =0
since there can be no Hall voltage without an Ohmic
current. When the mobility edge is approached from
above, oy (E) presumably approaches zero according
to

oy(E) ~(E—-E)'" (2.3)
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which defines the Hall conductivity exponent f.

Let us introduce a dimensionless Hall conductance
gy (L) =Gy (L)/(€?/k) and try to understand how it
might scale with the sample size L.

It is instructive to start with the classical transport
regime. In this regime macroscopic transport theory
is valid, the parameter g (L) is much larger than uni-
ty and it scales with L as L¢~2. The Hall field
Ey =rBj, where r is the Hall constant of the material
and j is the current density. Since Uy = EyL and
jL4 1= UG, we have

Uy = (e2/k)rBL= gl 2.4)
or, using Eq. (2.1)
gy (L) =(e*/k)rBL~14"Dg2(L) . (2.5)

In this classical regime g (bL) = b9"2g (L) and thus
Eq. (2.5) implies the following scaling relation for
gn(L):

gH(bL) = (ez/ﬁ)rBL-(d—Z)bd-zgz(L)
=hg' (L)b47%*(L) . 2.6)

The parameter h. has the meaning of a conductance
L92/rB, measured in units (e%/£). In the classical
transport regime both 4. (L) and the scaling parame-
ter g(L) scale as L2, and so does the Hall conduc-
tance gy (L).

We now assume that g5 (L) possesses scaling
behavior not only in the classical limit (i.e., for
g — o) but for any value of the scaling parameter
g(L). With Eq. (1.1) in mind, the generalization of
Eq. (2.6) suggests the following scaling relation:

gu(bL) =h"Y(L)F(b;g(L)) , 2.7)

where # (L) is a (dimensionless) conductance in-
versely proportional to the magnetic field B.

According to the universality argument of Ref. 1
the dimensionless conductance g (L) scales classical-
ly, i.e., as L972, whenever it is large. We now as-
sume that the same is true for h(L), i.e.,
h(L) ~ L4 2 for h >>1. For small enough B the
condition A >> 1 will be satisfied whatever the value
of gis. In fact our assumption is that even when
quantum corrections to g (L) become important,
h (L) still scales classically if it is large enough.
Fukuyama’s microscopic calculation® in two dimen-
sions gives some evidence in favor of this assumption
as does the 2 + € dimension calculation in Sec. III.
Thus, if we require 4 to be large even at some typical
microscopic scale Ly, we get a rough criterion for a
weak magnetic field. This requirement gives
B << #L§?/e*r. (Estimating r =1/enc = L§/ec, we
have B << kc/eL$. If L, is the order of interatomic
spacing this gives the usual requirement for a ‘‘classi-
cal”” magnetic field in metals.)

If the conjecture about classical scaling of the

parameter 4 (L), for any value of g (L), is correct,
we have

gy(bL) ~L~Y-DF(b;g(L)) . (2.8)

It follows from this equation that the Hall-
conductivity exponent [Eq. (2.3)]

ty=2(d=2)v=2¢t . (2.9)
To derive this result we introduce
A(L)=[g(L) —g.l/g. (2.10)

as the basic scaling parameter [rather than g (L) itself
as in Ref. 1]. For L of the order of the correlation
length ¢ this parameter is of order unity.® For

L << & A(L) << 1. In this case ¢ ~LA™"(L) and
thus, for A << 1, the parameter A(L) scales as

A(L) =Ag(L/L)Y , (2.11)

where Ay~ (E — E,)/E, is the initial value of the
parameter at some scale, e.g., the microscopic scale
Ly.

We consider now a sample of size £ and divide it
into blocks of size L, i.e., b=&/L. For a large
(£ >> ¢) sample with E above E, (i.e., in the metal-
lic region), the Hall conductance Gy (£) must be pro-
portional to £972, which via Eq. (2.8) implies

gy (L) ~ L~ D(e/L)2¢(A(L)) . (2.12)

Since A « E — E,, we require, by Eq. (2.3) that for A
<< 1, $(A) ~A™. Hence using Eq. (2.11) we have

gu(£) ~ L= (g/L)d2A1 L "H” (2.13)

Since the block size is arbitrary (the only condition
being L << £), it must cancel out from Eq. (2.13),
which immediately leads to relation (2.9) for the ex-
ponents.!® Clearly, Eq. (1.5) for the conductivity -ex-
ponent ¢ can also be derived by a similar argument.

The Hall coefficient r (E) is proportional to
oy(E)/o*(E). Thus it follows from Eq. (2.9) that
r (E) approaches some constant value when E — E,
from above. This constant is presumably of the same
order of magnitude as the Hall coefficient in the clas-
sical transport regime. Thus we conclude that strong
disorder near or at the mobility edge affects the Hall
coefficient much less than its affects o(E) or oy (E).
In fact a perturbative calculation in the weak scatter-
ing limit shows that leading quantum correction to
o(E) and oy (E) cancel each other in r(E).*% Thus
our results for r (E) near and at the mobility edge
can be viewed as a generalization to strong disorder
of the corresponding results in the weak scattering re-
gime.**

Taking b =1+8(5—0), the scaling relation (2.8)
[or (2.7)] can be cast into differential form

dlngy(L)/dInL =y(g(L)) , (2.14)



%]

where y(g) is a universal function of the scaling
parameter g(L). For g — oo, i.e., in the classical
transport regime, gy (L) ~L?~2 and hence y=d —2.
On the other hand, for g —0, i.e., in the strongly lo-
calized regime, gy (L), as well as g(L), is exponen-
tially small and y — — oo. Thus the qualitative
behavior of the y function is similar to that of the 8
function.! However, quantitatively these two func-
tions are different as is shown in the next section. It
is this difference which accounts for the difference in
the critical behavior of o(E) and oy (E).

Finally we would like to comment on the following
point: In the above arguments, as well as in the fol-
lowing calculations in Secs. III and IV, we ignore the
dependence of the scaling parameter g (L) on the
magnetic field B. This is justified® only for
B << #kc/4eL?, where L is either the sample size or
the Thouless length, whichever is smaller. In partic-
ular, if T =0 and the sample sizeé L — oo (it is under
these conditions when the critical exponents can be
rigorously defined) any finite field would change
g(L) in an essential way, and thus our results for
this case refer strictly speaking to an infinitesimal B.
At present there seems to be no definite answer to
the important question about relevance of the mag-
netic field to the Anderson transition. Calculations
in the weak scattering regime®®!1-13 suggest that a
weak magnetic field acts as a delocalizing factor and
that it represents a relevant perturbation, i.e., it does
influence scaling functions and critical exponents of
the transition. In particular, it was recently claimed!*
that, at d =2, a single parameter scaling theory is not
applicable. If this is the case also for d > 2, then our
results for T =0, L — o are indeed restricted to in-
finitesimal B (i.e., the magnetic field only ‘“‘probes’
the system, but does not affect the transition). On
the other hand a recent calculation of Sadovski'® sug-
gests that a magnetic field, when strong enough, can
only increase localization. Such a field might be an
irrelevant perturbation for the Anderson transition,
i.e., it might only shift the mobility edge without
changing the scaling functions and the exponents. If
this is the case, our results are valid also for finite B,
although in the explicit calculations we neglect the
dependence of the scaling parameter g on B.

III. WEAK SCATTERING REGIME

In this section we calculate the leading (i.e., pro-
portional to 1/g) quantum correction to the classical
limit (d—2) of the y function. Thus we consider the
weak scattering regime k/ >> 1, where k is the Fermi
wave number and / is the electron mean free path.

For the B function this leading correction has been
calculated in Refs. 2 and 16. This correction is due
to the maximally crossed diagrams, which can be
summed explicitly. The sample size L enters the cal-

(LB =L g(B) L2 -
e
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culation of Ref. 2 via the lower cutoff 1/L in some
integrals over the momentum space. This leads to an
L-dependent conductivity o (L) from which one ob-
tains the conductance as G(L) =L?~2 o(L).
Although the explicit calculation in Ref. 2 has been
done for 4 =2, it is trivially generalized to any
dimension, with the following result:

L. d-2
I(E)l —1I'

3.1

.
d—2

Here A =27"'(27)~4S,, where S;=2x"
x [T(d/2)]17! is the area of a d-dimensional sphere of
unit radius. The first term in Eq. (3.1) represents
the classical conductance, with

ao=2(e/r)d 1 (2m)~4S,k4 =1 . (3.2)

The second term in Eq. (3.1) represents the leading
quantum correction. It was assumed in the deriva-
tion of Eq. (3.1) that the sample size L is bigger than

. the mean free path /. The factors 2 in the expres-

sions for 4 and o account for spin degeneracy.
In the limit d —2 Eq. (3.1) takes the form

g=(#/e?)ao—(1/m)In(L/D) , (3.3)

and the result of Ref. 2 is recovered.

For the perturbative calculation above to be valid
the second term in Eq. (3.1) must be much smaller
than the first one, which, with the help of Eq. (3.2),
leads to the following criterion:

d-2
. =_d_ 1—-d 1 _ —_— _L
a(L,E)—W(kI) d—2[1 [L] <<1 . 34)

In three dimensions the weak scattering condition

kil >> 1 itself ensures the fulfillment of criterion
(3.4), for any L (bigger than /). However, near two
dimensions, i.e., for (d —2) << 1, the condition
(3.4) is satisfied, for any L, only if a more restrictive
requirement on k! is imposed, namely, kI >> 1/

(d —2). (As we shall see below this corresponds to
energies much higher than the mobility edge.) Oth-
erwise the condition (3.4) can be satisfied only for
not-too-long samples. In particular, at two dimen-
sions the condition (3.4) reduces to In(L /) << kI,
and hence for large enough L the perturbative calcu-
lation breaks down, however high is the energy. In
terms of the parameter « Eq. (3.1) can be rewritten
as

g(LiE) =(k/e?) oo(E)L?2[1 —a(L;E)] .(3.5)
The B function calculated from Eq. (3.1) is
B(g)=d—-2—-A/g . 3.6)

Since A is a constant, depending only on dimen-
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sionality, the perturbation calculation supports the
existence of a universal scaling function 8(g).

We now discuss quantum corrections to the Hall
conductance gy (L). The contribution of the maxi-
mally crossed diagrams to the Hall conductivity in
two dimensions has been calculated by Fukuyama*
and, using a somewhat different technique, by
Altshuler et al.® Again the restriction to d =2 in
Refs. 4 and 6 is not essential and in fact the value of
d is introduced only at the final state of the calcula-
tion. Employing the technique of Ref. 6 we find

)

=w.r(F/e2)aol? 1 =2a(L;E)] , (3.7)

24
d—2

L

gu(LE) =mcf{-:—2o-oL"2— ;

where o, =eB/mc is the cyclotron frequency (m is
the electron effective mass). Thus the quantum
correction to the Hall conductance, relative to the
leading classical term, is twice as big as the correction
to the Ohmic conductance [Eq. (3.5)]. This result
which for d =2 has been derived in Refs. 4 and 6,
holds for any dimensionality.

Differentiating Eq. (3.7) and using Eq. (3.1) for g,
we obtain

dingy
dInL

24
g

l—a
_ 3.
7. (3.8)

With the approximation involved in calculation of g
and gy [Egs. (3.5) and (3.7)] it would be inconsistent
to keep the small o terms in Eq. (3.8). Our approxi-
mation enables us to derive only the leading quantum
correction in the y function:

y(g)=d—-2-24/g=—(d-2)+28(g) . (3.9

In order to check if there are indeed no nonuniver-
sal terms of order a4 /g in the y function one needs
to calculate both g and gy to the accuracy o®. The
existence of the universal 8 function implies that
there is no o’ term (nor higher-order terms in «) in
Eq. (3.5). For d =2 the absence of the a? term has
been proven in Ref. 16. On the contrary, if a univer-
sal y function exists, one must expect a term o« (and
no higher-order terms in «) in the square brackets in
Eq. (3.7). This would ensure that Eq. (3.9) holds
also to higher order in a.

Integrating Eq. (3.9) we have

gu(L) =guo(L/Ly)~“—D[g(L)/go]? , (3.10)

where g, and gy are the initial values of g(L) and
gu (L) at some (microscopic) scale L,. Equation
(3.10) implies that the leading quantum correction
does not spoil the classical, i.e., as L? 2, scaling of
the parameter 4 (L) [Eqs. (2.7) and (2.8)]. This is in
agreement with the assumption we made in Sec. II.

On this basis, we conclude that the Hall conductivity
exponent has the value t; =2t =2(d —2)v.

IV. € EXPANSION NEAR TWO DIMENSIONS

In this section we shall be interested in the critical
behavior of o(E) and o5 (E) near the mobility edge
E.. The only physical dimension of interest in this
problem is d =3, since at d =1, 2 all the states are lo-
calized and there is no mobility edge at all.! Unfor-
tunately at d =3 the calculations of the preceding sec-
tion are not valid near £, because the parameter k/
there is of order unity, while the weak scattering re-
gime requires k/ >> 1. However, at d =2 + € with
€ << 1, one can establish a connection between the
weak scattering regime and the critical regime. This
is possible because E, — oo when € —0, and thus for
small e the parameter k/ remains large even at the
mobility edge. In terms of the scaling parameter g
this means that for small €, g, is large, and therefore
the necessary weak scattering condition g >> 1 is ful~
filled at the mobility edge (while for d =3, g, =1).

The calculation is straightforward. The 8 function
for small € is given by

dlIng 1
=4mns _ 1 4.1
Ae) dinL ~° 7% “.D

Small terms of the order €/g are omitted in Eq. (4.1).
The zero of the 8 function is g, =1/#% >> 1. In-
tegrating Eq. (4.1), with g (L) =g as an initial con-
dition, we obtain

g(L) =g l1+A0(L/Ly)e] , - 4.2)

where Ag=(go—g.)/g.. In fact, this equation, with a
properly chosen gy, is the same as Eq. (3.1). The
difference is that Eq. (4.2) is valid in a much larger
region than the initial Eq. (3.1). Namely, in Eq.
(4.2) there is no restriction on L due to the condition
a << 1 [Eq. (3.4)]. This is of course because we are
relying on the universal character of the 8 function.
Thus the only condition for validity of Eq. (4.2) is
g >> 1. This means that for Aj=0 (i.e., above or at
the mobility edge) Eq. (4.2) is valid for any L. On
the contrary, for A¢ <0, i.e., below the mobility
edge, Eq. (4.2) is valid for not too large a sample.
The exponents ¢ and v are immediately obtained
from Eq. (4.2). For Ay > 0 and in the limit L — oo,
g (L) is proportional to AgL¢. Since Ay~ E — E,, this
means that the conductivity exponent ¢ =1. It fol-
lows then from the scaling relation (1.5) that the lo-
calization length exponent v=1/e. The values for
these exponents have been also obtained by an ap-
proach based on a Lagrangean formulation of the lo-
calization problem (see Refs. 11—13 and references
therein).



24 SCALING THEORY OF THE HALL EFFECT IN DISORDERED . .. 4029

The Hall conductivity exponent ty is obtained in a
similar way. Equation (3.9) for the y function and
hence Eq. (3.10) for gy are valid if g >> 1. Thus,
for € << 1, Eq. (3.10) is valid for a sample of any
size L all the way down to the mobility edge. Substi-
tuting expression (4.2) for g(L) into Eq. (3.10) we
obtain

gy(L) = (gHO/g(% )(L/Lo)"gﬁll +A0(L/Lo)‘]2 .
4.3)

For fixed L, the initial parameters go and ggo
depend on energy, i.e., on Ay. Since we are interest-
ed in the region near the mobility edge (A << 1),
we can take in Eq. (4.3) the values of these parame-
ters at the mobility edge. It follows from Eq. (4.3)
that in the limit L — oo, gy (L) is proportional to
A3L<, and thus the exponent t; =2. This result con-
firms the scaling relation (2.9) between the ex-
ponents.

In addition to the difference in the critical behavior
of (E) and oy (E) (in an infinite sample), there are

- some essential differences in the behavior of g (L;E)
and gy (L ;E) as functions of sample size L, for fixed
Fermi energy E: (i) At E =E_ the conductance
g(L) =g, and it is independent of L. In contrast, the
Hall conductance g5 (L) at the mobility edge does
depend on L as L~ (ii) If the energy is fixed slight-
ly above E, (i.e., Ay << 1), the conductance g(L) is
a monotonically increasing function of L. However,
the Hall conductance gy (L) first decreases with L
and reaches a minimum at a scale equal to the corre-
lation length ¢ = Lo,A~"¢. Only for L > ¢ does gy (L)
increase monotonically with L.

These differences between g (or o) and gy (or
oy) arise from the quantitative difference between
the scaling functions B8(g) and y(g), and in particu-
lar, from the fact that these functions have zeros at
different values of g. For small €, the zeros of 8 and
vy functions are at 1/72e and 2/72e, respectively.
Note that it is only the zero of the 8 function which
is associated with a critical point [the fixed point g of
the recursion formula (1.2)]. The zero of y function
has no such meaning, since the scaling behavior of
gy is driven by g.

Finally, at finite 7 and near the mobility edge the
relevant length scale for the conductivity is set by the
temperature-dependent Thouless length”-? L rather
than by the correlation length ¢ (see Ref. 9). Then
the conductivity o(T) and the Hall conductivity
oy (T) are expected to be proportional to L7 and
L72¢, respectively [compare to o(E) ~ £~ and
oy(E) ~ ¢72¢at T =0]. This statement is not re-
stricted to small e. Thus in three dimensions, at low
temperatures, one expects near and at the mobility
edge o(T) ~ Li! (Ref. 9) while oy(T) ~ L%

V. CONCLUSIONS

We have developed a scaling hypothesis for the
Hall effect in disordered systems. It is suggested that
a universal scaling function for the Hall conductance
exists, and the leading quantum correction (~1/g)
to the classical value (d —2) of this function is calcu-
lated.

It follows from our theory that the critical ex-
ponent ¢ty for the Hall conductivity is twice the con-
ductivity exponent ¢ Since the Hall coefficient r is
proportional to o /a2, we conclude that r (E) ap-
proaches a constant value when the mobility edge is
approached from above. On the other hand, the Hall
mobility uy = cro approaches zero as (E — E,.)’. The
behavior of the Hall coefficient is in agreement with
the accepted view!”!® that in a degenerate electron
gas the “‘classical”” expression 1/enc for the Hall coef-
ficient (# is the electron concentration) remain ap-
proximately valid even in the regime k/ ~1. The
agreement with the picture of Refs. 17 and 18 of
course fails when it comes to the Hall mobility near
E,, since the minimum metallic conductivity assumed
in Refs. 17 and 18 does not occur in the scaling theory.

It is important to note that we have ignored com-

. pletely the effect of electron-electron interactions. It

was shown in Ref. 6 that in the weak scattering re-
gime interaction effects introduce essential changes
into the Hall conductivity as compared to the case of
noninteracting electrons. Interaction effects, almost
certainly, also remain relevant near the mobility
edge, although the extent to which the results of this
paper will be changed is not clear at present.

In this paper we have considered the Hall coeffi-
cient above the mobility edge. Below the mobility
edge, i.e., in the insulating phase both o (E) and
oy (E) are zero. However, the Hall coefficient r (E)
of the material is still a meaningful quantity defined as

r(E) =Lli_r‘n L9 2Uy(L,E)/BI(L:E) , G.1)

where Uy is the Hall voltage and I is the current.
For large sample size (i.e., L >> ¢) both Uy and 1
are exponentially small, and it is not clear whether
r(E), for E < E_, is finite, infinite, or zero. At finite
temperature, when the length scale is set by the
Thouless length Lz, the Hall coefficient, as well as
the conductivity® or the Hall conductivity, will be a
continuous function of E at E..

Finally, we believe that the phenomenological scal-
ing results of this paper, such as ¢y =2¢, are valid for

. any classical magnetic field. On the other hand, the

numerical values ¢ =1, t5 =2 of the exponents refer,
strictly speaking, to an infinitesimal field.
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