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A scaling theory for the Hall effect in disordered electronic systems is developed. It is sug-

gested that a universal scaling function for the Hall conductance exists, and the leading quantum

correction to the classical value (d —2) of this function is calculated (d is the dimensionality). It
I

is shown, by means of a scaling argument, that at the mobility edge the zero-temperature Hall

conductivity approaches zero with an exponent tH =2t, where t is the conductivity exponent.

This relation between the exponents is supported by a microscopic calculation in 2+ ~ dimen-

sions, which yields t =1, tH = 2,

I. INTRODUCTION

The purpose of this paper is to develop a scaling
hypothesis for the Hall effect in disordered electron
systems. Our arguments are based on the scaling
theory of electron localization which has recently
been developed by Abrahams et al. ' The scaling
parameter in their theory is the dimensionless con-
ductance g(L) = G(L)/(e'/II) at length scale L;
Here G(L) is the zero-temperature conductance of a

hypercubic sample of size L in d dimensions. The
conductance at scale bL ( b is the scaling factor) is
determined by the scaling relation'

g(bL) =f(b;g(L)),
or in continuous terms

d lng/d lnL = P(g) (1.2)

where, for each d, p is a universal function of g only.
The scaling theory predicts d =2 as the lower criti-

cal dimensionality in the following sense: The ex-
istence of a mobility edge is indicated by a zero of
the p function. At d =2, p(g) &0 for all finite g,
and no zero occurs. For d ) 2, p(g) has a zero, and
the conductivity

a(E) =(e'/lr) lim L' g(L;E)
L ~oo

(1.3)

The conductivity exponent t is related to the correla-
tion length exponent v by

I =(d —2)v

a result first obtained by Wegner. 3

(1.5)

is finite for Fermi energies E higher than the mobility
edge E,. Near (above) E„we have

rr(E) —(E —E )'

We want to extend the sca1ing arguments of Ref. 1

to the Hall effect. The influence of magnetic field on
the localization picture at d =2 has been discussed
from the microscopic point of view by several au-
thors. ~ 6 The calculations in these papers are restrict-
ed to the weak scattering limit. Here we shall give a
scaling hypothesis which gives the behavior near the
mobility edge. While our arguments are given for
temperature T =0, we expect that at finite T the
length scale is set by the temperature-dependent
Thouless length" Lr = (I„I;„)' ' where the I 's are
the elastic and (temperature-dependent) inelastic
mean free paths.

In Sec. II, we formulate the scaling hypothesis.
The hypothesis is supported to some extent by a mi-
croscopic calculation in Sec. III. In Sec. IV, we give
an explicit calculation in 2+ ~ dimensions ~here the
mobility edge is accessible by perturbation theory.
The conclusions are summarized in Sec. V.

II. SCALING HYPOTHESIS FOR THE
HALL CONDUCTANCE

GH = GUH/U

The Hall conductivity is defined as

(2.1)

(TH(E) = lim L' «GH(L;E)
L ~oo

For E & F.„i.e., in the insulating region, 0-H =0
since there can be no Hall voltage without an Ohmic
current. When the mobility edge is approached from
above, a.H(E) presumably approaches zero according
to

(2.2)

(2.3)

The Hall conductance GH is defined in terms of the
transverse Hall voltage UH, the longitudinal voltage
U, and the conductance G by
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which defines the Hall conductivity exponent t~.
Let us introduce a dimensionless Hall conductance

gtt(L) = Gtt(L)/(e /f) and try to understand how it

might scale with the sample size L.
It is instructive to start with the classical transport

regime. In this regime macroscopic transport theory
is valid, the parameter g(L) is much larger than uni-

ty and it scales with L as L . The Hall field

E~ = rBj, where I is the Hall constant of the material
and j is the current density. Since U& = E~L and
jL" '= UG, we have

I/n —(e /f) fBL (d )gU

or, using Eq. (2.1)

g (l.) =(e /t)rBL d g (L)

(2.4)

(2.5)

In this classical regime g(bL) = b 'g(L) and thus
Eq. (2.5) implies the following scaling relation for
g„(L):

gn( bL) ( e2/f ) rBL-(d —2) bd 2g2(L—)

—= h —,) (L)bd-2g2(L) (2.6)

The parameter h, ] has the meaning of a conductance
Ld 2/rB, measured in units (e2/f) In the. classical
transport regime both h, ((L) and the scaling parame-
ter g(L) scale as Ld 2, and so does the Hall conduc-
tance gtt (L).

We now assume that gtt(L) possesses scaling
behavior not only in the classical limit (i.e., for
g ~) but for any value of the scaling parameter
g(L). With Eq. (1.1) in mind, the generalization of
Eq. (2.6) suggests the following scaling relation:

gtt(bL) = h '(L) F(b;g(L)) (2.7)

where h (L) is a (dimensionless) conductance in-

versely proportional to the magnetic field B.
According to the universality argument of Ref. 1

the dimensionless conductance g (L) scales classical-

ly, i.e., as L ', whenever it is large. %e now as-
sume that the same is true for h (L), i.e.,
h(L) —Ld 2 for h » 1. For small enough 8 the
condition h && 1 will be satisfied whatever the value
of g is. In fact our assumption is that even when
quantum corrections to g (L) become important,
h (L) still scales classically if it is large enough.
Fukuyama's microscopic calculation4 in two dimen-
sions gives some evidence in favor of this assumption
as does the 2+ e dimension calculation in Sec. III.
Thus, if we require h to be large even at some typical
microscopic scale Lo, we get a rough criterion for a
weak magnetic field. This requirement gives
8 « fLod '/e~r. (Estimating r = I/enc =Lod/ec, we

have 8 « fc/eLO. If Lo is the order of interatomic
spacing this gives the usual requirement for a "classi-
cal" magnetic field in metals. )

If the conjecture about classical scaling of the

parameter h (L), for any value of g (L), is correct,
we have

gtt(bL) —L d ' F(b;g(L))

It follows from this equation that the Hall-
conductivity exponent [Eq. (2.3)]

(2.8)

ttt = 2(d —2) ) = 2t

To derive this result we introduce

&(L) = [g(L) —g. ]/g,

(2.9)

(2.10)

as the basic scaling parameter [rather than g (L) itself
as in Ref. I]. For L of the order of the correlation
length g this parameter is of order unity. For
L « ((:, h(L) « 1. In this case (—L b "(L) and
thus, for 5 « 1, the parameter 4(L) scales as

/( (L) = bO(L/Lo)'t" (2.11)

where Ao —(E —E,)/E, is the initial value of the
parameter at some scale, e.g. , the microscopic scale
Lo

%e consider now a sample of size 2 and divide it
into blocks of size L, i.e., b =g/L For a la. rge
(g » () sample with E above E, (i.e. , in the metal-
lic region), the Hall conductance G)t(2) must be pro-
portional to 2d 2, which via Eq. (2.8) implies

gtt(&) —L ' "(2/L) 'y(&(L)) (2.12)

Since 6 ~ E —E„we require, by Eq. (2.3) that for 5« 1, Q(&) —5 . Hence using Eq. (2.11) we have

g (g) L —(d —)(2g/ )Ld2b, HL H "
(2.13)

d Ingtt(L)/d InL = y(g(L)) (2.14)

Since the block size is arbitrary (the only condition
being L « g), it must cancel out from Eq. (2.13),
which immediately leads to relation (2.9) for the ex-
ponents. '0 Clearly, Eq. (1.5) for the conductivity ex-
ponent t can also be derived by a similar argument.

The Hall coefficient r(E) is proportional to
(rtt(E)/o. '(E). Thus it follows from Eq. (2.9) that
r(E) approaches some constant value when E E,
from above. This constant is presumably of the same
order of magnitude as the Hall coefficient in the clas-
sical transport regime. Thus we conclude that strong
disorder near or at the mobility edge affects the Hall
coefficient much less than its affects o(E) or ott(E)..
In fact a perturbative calculation in the weak scatter-
ing limit shows that leading quantum correction to
o.(E) and o.tt(E) cancel each other in r(E).4 6 Thus
our results for r(E) near and at the mobility edge
can be viewed as a generalization to strong disorder
of the corresponding results in the weak scattering re-
gime. 4 6

Taking b =1+5(5 0), the scaling relation (2.8)
[or (2.7)] can be cast into differential form
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where y(g) is a universal function of the scaling
parameter g(L). For g ~, i.e., in the classical
transport regime, gH(L) —L~ ' and hence y =d —2.
On the other hand, for g 0, i.e., in the strongly lo-
calized regime, gH(L), as well as g (L), is exponen-
tially small and y —~. Thus the qualitative
behavior of the y function is similar to that of the p
function. ' However, quantitatively these two func-
tions are different as is shown in the next section. It
is this difference which accounts for the difference in
the critical behavior of o (E) and o H(E).

Finally we would like to comment on the following
point: In the above arguments, as well as in the fol-
lowing calculations in Secs. III and IV, we ignore the
dependence of the scaling parameter g (L) on the
magnetic field B. This is justified6 only for
8 « tc/4eL', where L is either the sample size or
the Thouless length, whichever is smaller. In partic-
ular, if T =0 and the sample size L ~ (it is under
these conditions when the critical exponents can be
rigorously defined) any finite field would change

g (L) in an essential way, and thus our results for
this case refer strictly speaking to an infinitesimal B.
At present there seems to be no definite answer to
the important question about relevance of the mag-
netic field to the Anderson transition. Calculations
in the weak scattering regime' " ' suggest that a
weak magnetic field acts as a delocalizing factor and
that it represents a relevant perturbation, i.e., it does
influence scaling functions and critical exponents of
the transition. In particular, it was recently claimed'
that, at d =2, a single parameter scaling theory is not
applicable. If this is the case also for d & 2, then our
results for T =0, L ~ are indeed restricted to in-

finitesimal 8 (i.e., the magnetic field only "probes"
the system, but does not affect the transition). On
the other hand a recent calculation of Sadovski" sug-
gests that a magnetic field, when strong enough, can
only increase localization. Such a field might be an
irrelevant perturbation for the Anderson transition,
i.e., it might only shift the mobility edge without
changing the scaling functions and the exponents. If
this is the case, our results are valid also for finite B,
although in the explicit calculations we neglect the
dependence of the scaling parameter g on B.

III. %EAK SCATTERING REGIME

In this section we calculate the leading (i.e., pro-
portional to 1/g) quantum correction to the classical
limit (d —2) of the y function. Thus we consider the
weak scattering regime kl » 1, where k is the Fermi
wave number and l is the electron mean -free path.

For the P function this leading correction has been
calculated in Refs. 2 and 16. This correction is due
to the maximally crossed diagrams, which can be
summed explicitly. The sample size L enters the cal-

(3.1)

Here A =2m' ~(2n') S, where Sd =2m
x [I'(d/2) ] ' is the area of a d-dimensional sphere of
unit radius. The first term in Eq. (3.1) represents
the classical conductance, with

g0 ——2(e /g)d '(27r) Sdk" 'I (3.2)

The second term in Eq. (3.1) represents the leading
quantum correction. It was assumed in the deriva-
tion of Eq. (3.1) that the sample size L is bigger than
the mean free path l. The factors 2 in the expres-
sions for A and o-0 account for spin degeneracy.

In the limit d 2 Eq. (3.1) takes the form

g = (g/e') o0 —(I/m') ln(L/I) (3.3)

and the result of Ref. 2 is recovered.
For the perturbative calculation above to be valid

the second term in Eq. (3.1) must be much smaller
than the first one, which, with the help of Eq. (3.2),
leads to the following criterion:

a(L;E) —= —(kl)d ( g 1
1 ——l

7r d —2 L

d-2 « 1 . (3.4)

In three dimensions the weak scattering condition
kl » 1 itself ensures the fulfillment of criterion
(3.4), for any L (bigger than f) However, n. ear two
dimensions, i.e., for (d —2) « 1, the condition
(3.4) is satisfied, for any L, only if a more restrictive
requirement on kl is imposed, namely, kl » 1/
(d —2). (As we shall see below this corresponds to
energies much higher than the mobility edge. ) Oth-
erwise the condition (3.4) can be satisfied only for
not-too-long samples. In particular, at two dimen-
sions the condition (3.4) reduces to ln(L/I) « kl,
and hence for large enough L the perturbative calcu-
lation breaks down, however high is the energy. In
terms of the parameter a Eq. (3.1) can be rewritten
as

g(L;E) =(g/e )a0(E)L 2[1 —a(L;E)] . (3.5)

The P function calculated from Eq. (3.1) is

P(g) = d —2 —A /g (3.6)

Since A is a constant, depending only on dimen-

culation of Ref. 2 via the lower cutoff 1/L in some
integrals over the momentum space. This leads to an
L-dependent conductivity o (L) from which one ob-
tains the conductance as G(L) =Ld 2 o(L).
Although the explicit calculation in Ref. 2 has been
done for d = 2, it is trivially generalized to any
dimension, with the following result:

' d-2

g(L;E) = o0—(E)L4A 2 . A L
e2 d —2 I (E)
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sionality, the perturbation calculation supports the
existence of a universal scaling function p(g).

We now discuss quantum corrections to the Hall
conductance gH(L). The contribution of the maxi-
mally crossed diagrams to the Hall conductivity in
two dimensions has been calculated by Fukuyama4
and, using a somewhat different technique, by
Altshuler et al. Again the restriction to d =2 in
Refs. 4 and 6 is not essential and in fact the value of
d is introduced only at the final state of the calcula-
tion. Employing the technique of Ref. 6 we find

gH(L;E) =
Ql& r'

2
O'pL

e
2A L

d —2 I

= pp, r(t/e') apL '[1 —2u(L E)], (3.7)

where co, = e8/mc is the cyclotron frequency (m is
the electron effective mass). Thus the quantum
correction to the Hall conductance, relative to the
leading classical term, is twice as big as the correction
to the Ohmic conductance [Eq. (3.5)]. This result
which for d =2 has been derived in Refs. 4 and 6,
holds for any dimensionality.

Differentiating Eq. (3.7) and using Eq. (3.1) for g,
we obtain

dlngH =d —2 — 2A 1 —e
d lnL g 1 —2n

(3.8)

With the approximation involved in calculation of g
and gH [Eqs. (3.5) and (3.7)] it would be inconsistent
to keep the small a term's in Eq. (3.8). Our approxi-
mation enables us to derive only the leading quantum
correction in the y function:

y(g) = d —2 —2A /g = —(d —2) +2p(g) . (3.9)

In order to check if there are indeed no nonuniver-
sal terms of order uA/g in the y function one needs
to calculate both g and gH to the accuracy n2. The
existence of the universal p function implies that
there is no a' term (nor higher-order terms in a) in
Eq. (3.5). For d =2 the absence of the a' term has
been proven in Ref. 16. On the contrary, if a univer-
sal y function exists, one must expect a term a' (and
no higher-order terms in a) in the square brackets in
Eq. (3.7). This would ensure that Eq. (3.9) holds
also to higher order in n.

Integrating Eq. (3.9) we have

gH(L) = g p(HL/Lp) [g (L)/gp], (3.10)

where gp and gHp are the initial values of g (L) and
gH(L) at some (microscopic) scale Lp Equation.
(3.10) implies that the leading quantum correction
does not spoil the classical, i.e., as L~ 2, scaling of
the parameter h(L) [Eqs. (2.7) and (2.8)]. This is in
agreement with the assumption we made in Sec. II.

On this basis, we conclude that the Hall conductivity
exponent has the value tH =2r =2(d —2) v.

IV. e EXPANSION NEAR T%0 DIMENSIONS

In this section we shall be interested in the critical
behavior of o.(E) and oH(E) near the mobility edge
E,. The only physical dimension of interest in this
problem is d =3, since at d =1,2 all the states are lo-
calized and there is no mobility edge at all. ' Unfor-
tunately at d =3 the calculations of the preceding sec-
tion are not valid near E„because the parameter kl
there is of order unity, while the weak scattering re-
gime requires kl )& 1. However, st d =2+ ~ with
e (& 1, one can establish a connection between the
weak scattering regime and the critical regime. This
is possible because E, ~ when e 0, and thus for
small ~ the parameter kl remains large even at the
mobility edge. In terms of the scaling parameter g
this means that for small e, g, is large, and therefore
the necessary weak scattering condition g )) 1 is ful-
filled at the mobility edge (while for d =3, g, =1).

The calculation is straightforward. The p function
for small ~ is given by

p(g) —= d lng 1

d lnL ~2g
(4.1)

Small terms of the order p/g are omitted in Eq. (4.1).
The zero of the p function is g, = I/m2p » 1, In-
tegrating Eq. (4.1), with g(Lp) =gp as an initial con-
dition, we obtain

g(L) =g, [1+Lip(L/Lp) ] (4.2)

where hp= (gp —g, )/g, . In fact, this equation, with a
properly chosen gp, is the same as Eq. (3.1). The
difference is that Eq. (4.2) is valid in a much larger
region than the initial Eq. (3.1). Namely, in Eq.
(4.2) there is no restriction on L due to the condition
u (( I [Eq. (3.4)]. This is of course because we are
relying on the universal character of the p function.

~ Thus the only condition for validity of Eq. (4.2) is
g » 1. This means that for hp ~0 (i.e., above or at
the mobility edge) Eq. (4.2) is valid for any L. On
the contrary, for 60 (0, i.e., below the mobility
edge, Eq. (4.2) is valid for not too large a sample.

The exponents t and v are immediately obtained
from Eq. (4.2). For hp & 0 and in the limit L
g(L) is proportional to ApL'. Since hp —E —E„ this
means that the conductivity exponent t =1. It fol-
lows then from the scaling relation (1.5) that the lo-
calization length exponent u = I/p. The values for
these exponents have been also obtained by an ap-
proach based on a Lagrangean formulation of the lo-
calization problem (see Refs. 11—13 and references
therein).
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The Hall conductivity exponent t~ is obtained in a
similar way. Equation (3.9) for the y function and
hence Eq. (3.10) for gn are valid if g »1. Thus,
for e « 1, Eq. (3.10) is valid for a sample of any
size L all the way down to the mobility edge. Substi-
tuting expression (4.2) for g(L) into Eq. (3.10) we
obtain

gn(L) = (gHO/go ) (L ILo) 'g,'[I+~o(L ILo)']

(4.3)

For fixed Lp, the initial parameters gp and g~p
depend on energy, i.e., on hp. Since we are interest-
ed in the region near the mobility edge (6o « I),
we can take in Eq. (4.3} the values of these parame-
ters at the mobility edge. It follows from Eq. (4.3)
that in the limit L ~, grr(L) is proportional to
bpL', and thus the exponent t~ =2. This result con-
firms the scaling relation (2.9) between the ex-
ponents.

In addition to the difference in the critical behavior
of a (E) and crn(E) (in an infinite sample), there are
some essential differences in the behavior of g (L;E)
and gn(L;E) as functions of sample size L, for fixed
Fermi energy E: (i) At E = E, the conductance
g (L) =g, and it is independent of L. In contrast, the
Hall conductance gn(L) at the mobility edge does
depend on L as L '. (ii) If the energy is fixed slight-

ly above E, (i.e., do « 1), the conductance g(L) is
a monotonically increasing function of L. However,
the Hall conductance grr(L) first decreases with L
and reaches a minimum at a scale equal to the corre-
lation length g=Loh '~'. Only for L & g does gn(L)
increase monotonically with L.

These differences between g (or o.) and grr (or
o.rr) arise from the quantitative difference between
the scaling functions P(g) and y(g), and in particu-
lar, from the fact that these functions have zeros at
different values of g. For small e, the zeros of P and

y functions are at I/m e and 2/n e, respectively.
Note that it is only the zero of the P function which
is associated with a critical point [the fixed point g, of
the recursion formula (1.2)]. The zero of y function
has no such meaning, since the scaling behavior of
g~ is driven by g.

Finally, at finite T and near the mobility edge the
relevant length scale for the conductivity is set by the
temperature-dependent Thouless length" L& rather
than by the correlation length g (see Ref. 9). Then
the conductivity a( T) and the Hall conductivity
arr(T) are expected to be proportional to Lr' and
Lr", respectively [compare to cr(E) —( ' and
on(E} —g

' at T =0.]. This statement is not re-
stricted to small ~. Thus in three dimensions, at low
temperatures, one expects near and at the mobility
edge cr(T) —Lr' (Ref. 9) while urn(T) —Lr'.

V. CONCLUSIONS

r(E) = lim L4 2Un(L;E)/BI(L;E)
g ~oo

(5.1)

where U~ is the Hall voltage and I is the current.
For large sample size (i.e., L » g) both Un and I
are exponentially small, and it is not clear whether
r(E), for E & E„ is finite, infinite, or zero. At finite
temperature, when the length scale is set by the
Thouless length L~, the Hall coefficient, as well as
the conductivity or the Hall conductivity, will be a
continuous function of E at E,.

Finally, we believe that the phenomenological scal-
ing results of this paper, such as t~ =2t, are valid for
any classical magnetic field. On the other hand, the
numerical values t =1, t~ =2 of the exponents refer,
strictly speaking, to an infinitesimal field.

We have developed a scaling hypothesis for the
Hall effect in disordered systems. It is suggested that
a universal scaling function for the Hall conductance
exists, and the leading quantum correction (-1/g)
to the classical value (d —2) of this function is calcu-
lated.

It follows from our theory that the critical ex-
ponent t~ for the Hall conductivity is twice the con-
ductivity exponent t. Since the Hall coefficient r is
proportional to an/a2, we conclude that r( E) ap-'

proaches a constant value when the mobility edge is
approached from above. On the other hand, the Hall

mobility pn = crier approaches zero as (E —E,)'. The
behavior of the Hall coefficient is in agreement with
the accepted view"'8 that in a degenerate electron
gas the "classical" expression I/enc for the Hall coef-
ficient (n is the electron concentration) remain ap-
proximately valid even in the regime kl —1. The
agreement with the picture of Refs. 17 and 18 of
course fails when it comes to the Hall mobility near
E„since the minimum metallic conductivity assumed
in Refs. 17 and 18 does not occur in the scaling theory.

It is important to note that we have ignored com-
, pletely the effect of electron-electron interactions. It

was shown in Ref. 6 that in the weak scattering re-
gime interaction effects introduce essential changes
into the Hall conductivity as compared to the case of
noninteracting electrons. Interaction effects, almost
certainly, also remain relevant near the mobility
edge, although the extent to which the results of this
paper will be changed is not clear at present.

In this paper we have considered the Hall coeffi-
cient above the mobility edge. Below the mobility
edge, i.e., in the insulating phase both o.(E) and
on(E) are zero. However, the Hall coefficient r (E)
of the material is still a meaningful quantity defined as
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