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Hartree theory for the negative-U extended Hubbard model: Ground state
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We have investigated the ground-state properties of .the negative-Uextended Hubbard model
in the weak-coupling regime with the Hartree theory formulated in terms of the Bogoliubov
variational approach. While the pure phases of charge order (CO), singlet superconducting
(SS), and nonordered can be solved analytically with a model density of states, the mixed phase
of CO and SS requires numerical computation. The ground-state phase diagram is derived, and
the order parameters and the chemical potential of the ground state are analyzed. The charac-
teristic difference between the behaviors of the SS and the CO order parameters at very weak

coupling suggests a complicated competition between various interactions. Present results are
compared with those derived earlier for the strong-coupling regime.

I. INTRODUCTION

Extensive investigations on the Hubbard model'
point out the fact that the model Hamiltonian includ-
ing only the electron-transfer integral and the intra-
atomic Coulomb repulsion Uis inadequate to
describe realistic systems. One generalization is to
take into account the exchange and correlation
between electrons located on different atoms (the ex-
tended Hubbard model). We then face the problem
of what should be the proper values of these interac-
tion energies which are screened to various extents.
Even for the simple Hubbard model there is no
answer to the correct value of the screened effective
U. However, estimates suggested the possible ex-
istence of the novel situation of an effective intra-
atomic attraction (negative U) due to the coupling
between electrons and intramolecular vibrations or
electronic excited states, ' ' or between electrons in
different bands in a chemical complex.

Anderson, ' Street and Mott, and Adler and Yoffa
could explain the electrical, magnetic, and optical
properties of amorphous materials with such a Hub-
bard model with attractive intra-atomic interaction
(AII). Ionova et al. 6'0 suggested the use of this
model with AII to tackle the alternating-valence or-
dering in some inorganic compounds. The negative-

U states have recently been connected to the silicon
vacancies" and the defects in glasses. " Since it is
difficult to determine accurately the values of U in
different materials, the qualitative features of the AII
Hubbard model have been studied by many au-
thors" " taking Uas a varying parameter.

If the effective Uis negative, it favors the forma-
tion of pairs of antiparallel spin electrons on same
atom. Therefore, the ground state of the AII Hub-
bard model exhibits no magnetic ordering. For the
case of one electron per atom, the mean-field approx-
imation ' and the solution derived from the func-
tional integral method ' as well as the variational
treatment" predict a charge-ordered ground state in
the large-~ U~ limit.

On the other hand, there is only a little work on
the AII extended Hubbard model including the in-
teratomic electron interactions. The existing pa-
pers" ' ' have drawn interesting conclusions mainly
for the strong correlation limit. In this paper we will

investigate the ground-state properties of the AII ex-
tended Hubbard model for weak correlation with the
Hartree approximation (HA). From the study of the
ordinary Hubbard model, the HA gives rather reliable
results at T =0. For example, HA predicts the ex-
istence of an energy gap in the single-particle excita-
tion spectrum and gives the ground-state energy in
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good agreement with the exact solution of Lieb and
Wu in a large range of the value of U. ' Also, at
the zero-bandwidth limit the HA calculation for the
half-filled extended Hubbard model (positive U)
gives the exact ground-state energy and the correct
condition for the existence of the charge-ordered
state. 22

In Sec. II we present the Hartree theory for the AII
extended Hubbard model. It is possible to derive
analytical solutions for some special cases as we will

see in Sec. III. Section IV is devoted to the numeri-
cal solutions for the ground-state phase diagram, the
chemical potential, and the order parameters. A
short discussion follows in Sec. V.

II. HARTREE THEORY

Consider the AII extended Hubbard Hamiltonian

H X rticl~cj~ +
2

U X njgy nl —~
ljo icr

+2 X' Wjn, n —p, $n~
ijcro icr

(2.1)

+ X (W, +US,)
kk qcrcr

X Ck+~ cr Ck cr Ck — Ckk -qo cr
(2.2)

where ¹isthe number of atoms and ek and Wk are,
respectively, the Fourier transforms of tij and Wij.

Let N, be the number of electrons. We consider
the general situation that the electron density N, /N
has an arbitrary value between 0 and 2. However, we
restrict ourselves to systems which can be divided
into two interpenetrating sublattices A and 8. That
is, there exists a vector Q such that exp(iQ K) =1 if
R belongs to A and exp(iQ R) =—1 if R belongs to
8. Following the Bogoliubov approach, an upper
bound of the free energy can be obtained as

Fo =——ln {Tr[exp( —pHo) J j
1

+ (H Ho) o+pH— (2.3)

where p= 1/ksT, Ho is a trial Hamiitonian, and
( . )o is the thermal average with respect to Ho.

The first term in the Hamiltonian (2.1) is of the

where ci, ci, and n& are, respectively, the creation,
the destruction, and the number operators associated
with the localized orbital at site i. tij is the hopping
integral and U (0 is the intra-atomic attraction ener-
gy. The interatomic interaction energy 8'„" is as-
sumed in this paper to be spin independent for sim-
plicity. p, is the chemical potential. In the Bloch
representation we have

H X(fk p)Ckncka

Bloch-electron character and so will not yield any
magnetic ordering. No magnetic ordering can be in-
troduced by the third term in H since it is spin in-
dependent. The second term in Eq. (2.1) favors the
formation of pairs of antiparallel spin electrons on
various atoms. Therefore, the ground state of Hex-
hibits no magnetic ordering. We then only need to
introduce a charge order parameter b and a singlet-
superconducting order parameter X to construct
the trial Hamiltonian

Ho = X (kk p Ao)—ck ck
kcr

$ (Ack(pck+gg +H.C.)
kcr

+ —,
' X(X ck c', +H.c.)

ko
(2.4)

Here Ap, 4, and X are variational parameters to
minimize Fo. Comparing Eqs. (2.2) and (2.4), we
see that this approach is essentially the Hartree ap-
proximation, though some authors called it the
Hartree-Fock approximation in their treatments of
the ordinary extended Hubbard model with positive
U. Hp is also similar in mathematical structure to Eq.
(2.5) of Levin et al. 37 where they named it the
mean-field effective Hamiltonian. We will return to
this point for discussion in Sec. V.

Hp can be easily diagonalized with either the
Green's-function or the equation-of-motion approach.
The energy spectrum of Hp consists of four branches

A
'-= {«+p)'+

~
X~' j'" (2.5)

where

1 g ln 2cosh +ln 2cosh
pAk+ PAk

k J.

(2.6)

=1ng= & X(ck+g.ck )o
kcr

1

1+ 8k++ 1 —P Bk
k , k, k,

(2.7)

n=N Ck Ck P
=1

ko;

=1+ ${(Ek+P)Bk' (Ek p)Bk ~, — —
2N k

xo= $(Bk++Bk )
k

(2.8)

(2.9)

where Ek=(ok+6')' ', p, =p, +Ao, X=Xlt, and kis
restricted to the inner half of the first Brillouin zone.
In terms of the eigenstates of Hp, Fp can be readily
calculated as

Fo/N = (A o + p, ) ( n —1 ) + /k ng +Xxo' +X'xo

+
4 U(n +n$ 4+~ x~o) +

2 ZW(n n$)—
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with Bk-= (Ak+—) ' tanh(PAk-/2) and ZW= —Wg.
Here Z is the coordination number.

The next step is to minimize Fo with respect to 4,
X and Ao to obtain the optimum values of these
parameters as

and

b =(2ZW —U) ng/2

X= —Uxo,

A p
= (2 Z W + U) tl /2

(2.10)

(2.11)

(2.12)

We should point out here that 6 and Xare gap
parameters and ng and x are order parameters of the
charge-ordered and the singlet-superconducting
states, respectively. Substituting these relations into
Eq. (2.6), we have the minimum free energy

( 1) + ( U+2ZW) n' Q2

( U —2ZW)
1

lxl'
U

Eo l. ~o= lcm
N p- N

( 1) + (U+2ZW)n'
4

Q2

U —2Z8'

lxl' g(A„++A„-) .
k

(2.14)

1
X ln 2 cosh + In 2 cosh

pAk+ pAk

/3N k

(2.13)
The ground-state energy is then simply

For given values of U, 8', n, and the band struc-
ture ek, we can substitute Eqs. (2.10) and (2.11) into
Eqs. (2.7) and (2.9) and then solve the three coupled
equations (2.7) —(2.9) numerically for 6, X, and the
chemical potential p, . There are in general four
branches of solutions for different phases: (1) 6 AO
and X=O for the charge-ordered (CO) state, (2)
5 =0 and X W 0 for the singlet-superconducting (SS)
state, (3) LL &0 and X W 0 for the mixed (M) state
of CO and SS, and (4) 6 =X=0 for the nonordered
(NO) state. The energy of each state is then calculat-
ed from Eq. (2.14) using the corresponding solutions
of 5, X and p, as well as the value of Ao given by
Eq. (2.12). Comparing the energies of various states,
we can determine the ground-state structure.

III. SOME ANALYTICAL SOLUTIONS

Before presenting the numerical solution we will
first derive the analytical expressions for a few cases.
Such analytical results can be used to check the accu-
racy of the self-consistent numerical computation.
Since a model square density of states is used for the
numerical calculation in the next section, the analysis
in this section will also be restricted to this density of
states if necessary.

A. Mixed phase

We first examine the condition for the existence of
the M phase. If the M phase exists, i.e., if 4 &0 and
X &0, then subtracting Eq. (2.9) from Eq. (2.7)
yields

g —=8ZW/U(2ZW —U)

«» —,
' P[(Ek+p)'+ IXI']'"

N k EI, [(E + )~+ lXl~]~&~

tanh —,
' P[(E„-P)'+lXl']' '

[(Ek —p)'+ lXl']'~'
(3.1)

For n A 1, it is clear from Eq. (2.8) that p, AO. Since Q is an even function of p„we need only to examine the
region p, & 0. As a function of temperature, Q behaves as

1

0, for P=O
2

4 p
N k [(E„+—)~+ lXl~]~~'[(E —~)~+ lXl~]&&&

and for all values of P

tanh'+[(Ek+P)'+ lXI']'~' —tanh'+[(Ek —p7)'+ lXl']'~' & 0
dp 2N „Ek 2 2

Therefore, if we ignore the unphysical case of infinite temperature, we always have g =—8ZW/U(2ZW —U) & 0
if 5 &0 and X &0. Since U & 0, if n & 1 the necessary condition for the possible existence of the M phase is
either 8') 0 or 2ZH' & U. However, both the gap parameter 5 and the order parameter ng must be positive for
the M phase. From Eq. (2.10) we then obtain 2ZW —U =26/ng &0 if the M phase exists. Consequently, the
M phase may exist only if 8'&0.
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B. Pure phases

If we use a model square density of states, analyti-
cal results can be derived for the pure phases. For
the NO phase, since 4 = X=0, we only need to solve
Eq. (2.8) which becomes

and

Ep(NO)/N =Dn(n —2)/2+(2ZW+ U) n~/4 . (3.5)

Next we consider the SS phase for which b =0.
For T =0 with the square density of states, Eqs.
(2.8), (2.9), and (2.14) can be reduced to the simple
forms

n —1= g tanh~(ok+a, ) —tanh~(pk p)1

2N k 2 2

For a square density of states

(3.2)

and

p, ( T =0) = (n —I—)D coth 2D
U

X = 4n—(2 —n) D/sinh
~ 2D

U

(3.6)

(3.7)

for IEI & DpE= 2D
0, otherwise (3.3)

Ep'(SS) i
2 h

2D + (2ZW+ U) n'

(3.8)

p, (T=O) =(n —1)D (3.4)

it is easy to see from Eqs. (3.2) and (2.14) that at
T=0

Finally, we examine Eqs. (2.7), (2.8), and (2.14)
with X=0 for the CO phase. Again for T =0 and
the square density of states, analytical expressions are
derived as

/
'I

p(T-0) =D I —l~ —11cosh sinh
2D

2ZW —U
(3.9)

g2 =P( T =0)~ —(„—I )2D2 (3.10)

Ep(CO)/N=D rn —I(/sinh —
—,[I+(n —I)']coth + (3.11)

C. Phase boundaries

Since there is no M-phase solution for n & 1 and
W ~0, the ground state can be easily determined by
comparing the energies Ep(NO), Ep(SS), and
Ep(CO). We found the ground state always singlet
supe rco nducting.

For n =1, we see from Eq. (2.8) that p, =0.
Therefore, Eqs. (2.7) and (2.9) become

and

2ZW —U 4N xk

x(Bk +Bk )X X
U 4N k

(3.12)

(3.13)

Again we see no M-phase solution if W &0. In this
case the ground-state energy is the lowest value of
Ep(NO), Ep(SS), and Ep(CO). We found a SS

Since 5' ~0, from Eqs. (3.9) and (3.10) we conclude
that at T =0 the CO phase exists only if
2D/(2ZW —U) ~—In) n —I I.

I

ground state if W (0 and a CO ground state if
W)0. If W=O, Eqs. (3.12) and (3.13) are identical
except for the factors 5 and L Consequently, we
solve the same equation

g(~2+n2)-1/2~nb+(~2+n2)1/2 (3.14)
U 2N k 2

for the CO phase (n = 4), the SS phase (n = X), and
the M phase (n'= I'+X'). Also, the energies
Ep(CO), Ep(SS), and Ep(M) can be expressed as

Eo U a 1——X(«+n ) /

N 4 U N k
(3.15)

for the CO phase (n= 6), the SS phase (n= X), and
the M phase (n'= 5'+X'). Hence, in this case
(n =1 and W=0) the three CO, SS, and M phases
are degenerate. Comparing with the energy Ep(NO),
in this case we found the ground state to be degen-
erate in SS, CO, and M phases.

The numerical solution for n & 1 and W & 0, as
will be shown in the next section, indicates a
second-order transition between the SS and the M
phases. The phase boundary between the two phases
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can be analytically derived as follows. %e start from
the M-phase solutions (2.7) and (2.9). These two

equations can be combined as

SS ORDER
PARAMETER

0.3 '=

2ZW —U U 4N ~k Ek
(3.i6)

Approaching the phase boundary from the M phase,
we have 4 0. For a model square density of states,
along the boundary we substitute p, and Xfrom Eqs.
(3.6) and (3.7) into Eq. (3.16) to obtain

1

2ZW —U
1

1 —7I$ +[1+(1—2rl)$ 2]'/2

U 4D$ I +r)g +[I +(1+2')g ]'

where

U
g'= (n —1)'+csch'p2D

and

rl = —(n —1) coth 2D
U

(3.i7)

(3.1S)

(3.i9)

Z W/D

FIG. 2. SS order parameter for —U/D =0.4 (thin curves)
and for U/D =1.2 (—heavy curves).

In the next section, we can use this analytical phase
boundary to check the accuracy of the self-consistent
numerical solutions.

IV. GROUND-STATE PROPERTIES

As we mentioned before, for n &1 and 8' & 0 the
M phase must be solved numerically. Using a square
density of states (3.3), we solve numerically for all

the four phases and whenever possible check with the
analytical results derived in the previous section. Our
self-consistent solutions are found to be accurate
within 0.1%. Since the Hartree approximation is not

reliable for large values of the correlation strength,
we have restricted ourselves to U/D ~2 an—d

ZW/D «1.
Within this range of U/D and W/D, the NO and

the CO phases are unstable against the SS and the M
phases. In Fig. 1 we show the phase boundaries
between the M and the SS phases for various values

CO ORDER

PARAMET ER

N

0.5

0
0 0.5 ZWD

FIG. 1. Ground-state phase diagrams for various values
of U/D.

FIG. 3. CO order parameter for —U/D =0.4 (thin
curves) and for U/D =1.2 (heavy curves). —
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CHEMICAL

POTENTIAL
order parameter decreases monotonically, the SS or-
der parameter increases monotonicaily only if U—/D
is not very small. For very small value of U/—D, say

U/—D =0.4, we see the enhancement of the SS or-
der parameter in the M phase as compared to its
value in the pure SS phase. Consequently, the com-
peting interactions for various ordered phases become
more complicated as the intra-atomic attraction gets
weaker.

In Fig. 4 we show the chemical potential. As
predicted by Eq. (3.6), in the SS phase p, is linear in

~ n —1~ but independent of II'. -It is important to
point out that the stable phase always has the largest
chemical potential. Therefore, along the phase boun-
dary, two sheets of chemical potential join with a
cusp pointing downward.

ZW/D

FIG. 4. Chemical potential for —U/D =0.4 (thin curves)
and for U/D =1.2—(heavy curves).

of U/D. Th—e boundary has the same characteristic
feature as the one for the strong-coupling limit
derived by us earlier.

The ground-state SS and CO order parameters are
shown in Figs. 2 and 3, respectively. Approaching
the phase boundary from the M phase, while the CO

V. DISCUSSION

In this paper we have used the (broken symmetry)
Hartree approximation to investigate the Hamiltonian
(2.1). A complete Hartree-Fock decoupling on the
interatomic interaction N Jn; n should. consist of
the Hartree terms

II~j((nt )n +(n. )nt. —(n; ) (n. ))

the "normal" Fock terms

II tj ( (c;~cj~)cj~cj~ + (cj~c«) c&~cj~—(c«cj~) (cj~c&~) )

and the "anomalous" Fock terms

Wy( (c(~cj (f ) cj ac&~+ (cj—~c;~) ct~cj—~ (c&~cj Q)(cj ~c'~~) )

For the case W )0, the Fock terms only play a
secondary role, ' especially at T =0. The effect of
the normal Fock terms appears as a renormalization
of the band energy ek ek 28'q(c; cj ) Such re-.
normalization does not have strong influence on the
phase stability at T =0, since the transitions are
second order. The anomalous Fock terms are of
even less significance for 8' )0 as far as the phase
boundary is concerned. However, for 8'&0 the
Fock terms may stabilize another type of supercon-
ducting phase. This problem will be treated in detail
in a subsequent paper.

In an earlier paper' we have shown that for an al-

ternating lattice, the negative-Uextended Hubbard
Hamiltonian for arbitrary electron density n can be
exactly mapped onto the positive- U extended Hub-
bard Hamiltonian of n'. =1 with an Ising-type intera-
tomic exchange interaction in an effective magnetic
field. The effective magnetic field is not constant but
has to be determined from the self-consistent condi-

I

tion that the magnetization of the transformed sys-
tem along the z axis has a fixed value n —1. Since
the effective magnetic field is n dependent, in the
strong-coupling regime the phase diagram at T =0
exhibits only the SS and the M phases whereas the
CO phase is unstable with respect to the SS and the
M phases for any n &1. This conclusion is entirely
different from what one would expect from the
analogous behavior of the anisotropic antiferromag-
net in an external field. In this paper we found that
a similar property is preserved in the weak-coupling
regime, i.e., in the ground state the CO phase is un-
stable with respect to the SS and the M phases. Such
behavior is again related to the fact that in the
present case the chemical potential has to be deter-
mined self-consistently. It remains to be proved
whether this feature is a consequence of the sym-
metry requirement in the entire range of the coupling
strength.

It is interesting to notice some other features com-
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mon to both the weak- and the strong-coupling re-
gimes. From Eqs. (2.12) and (3.6), the true chemical
potential in the SS phase at T =0 can be expressed as

ttss(T=0) =
2

n(2ZW+ U) —(n' 1)D—coth(2D/U)

(5.1)

In the limit D/) U~ 0, it becomes

ittss(T=O) = U/2+nZW —2D2(n —1)/3U . (5.2)

Though Eq. (5.1) is valid only for weak intra-atomic
attraction, Eq. (5.2) is qualitatively correct since from
Ref. 29 we have the chemical potential at the strong

intra-atomic attraction as

ass(T=0) = U/2+nZW —D2(n —I)/2ZU, (5.3)

In this limit of strong coupling, from Eq. (3.7) we see
the SS order parameter turns out to be
xo = Jn (2 —n) if we naively extend the validity of
Eq. (3.7) to a large value of U/D—Yet.accidentally,
this is just the correct result derived previously for
the strong-coupling limit. '

Finnaly, we must emphasize that the numerical
results in this work are based on the model square
density of states. A realistic density of states may
change the phase diagram even qualitatively. We are
performing such a calculation and the results will be
reported in the near future.
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