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The incommensurate (IC) phase transition in NaNO2 is studied on the basis of a lattice

dynamical model. At finite wave vector, molecular reorientations of the NO2 groups around the

crystallographic c axis are coupled to acoustic lattice displacements. A modulation, along the a

axis, of nonequilibrium expectation values of the orientational order produces a modulation of
expectation values of acoustic displacements with polarization in the b direction. The IC transi-

tion corresponds to a freezing-in of both types of motion. Connection with phenomenological

theories is made. The temperature and wave-number behavior of diffuse x-ray scattering peaks

above the IC transition is explained.

I. INTRODUCTION

Since the discovery of ferroelectricity in NaNO2 by
Sawada et al. , ' this substance has attracted much at-
tention as a model system for an order-disorder
structural phase transition. Generally, order-
disorder transitions have been given this appellation
in contradistinction to displacive transitions. The
main experimental feature characterizing a displacive
transition is the occurrence of a soft phonon at cer-
tain symmetry points in the Brillouin zone. ' Such a
phonon softening is absent in NaNO2 as is shown
from neutron scattering4 and ultrasonic results. ' Crit-
ical dynamics attributed to the reorientational motion
of the NO2 molecular groups has been investigated by
neutrons and by dielectric measurements.

A very interesting fact in NaNO2 is the occurrence
of an incommensurate antiferroelectric phase7 in a
narrow temperature range between the paraelectric
and the ferroelectric phases. This antiferroelectric-
phase was described as a sinusoidal modulation of the
magnitude of the dipolar moments. ' More recently,
additional insight has been gained from x-ray' '" and
neutron-diffraction' studies. The authors of Ref. 10
propose a model where in addition to the order-
parameter modulation, ' all atoms in the successive
unit cells along the a axis are assumed to be
sinusoidally displaced from their average positions in

b direction. In Ref. 11, a theoretical interpretation
of structure data led to a model where occupation
factors of both equilibrium positions for the Na ion
and the NO2 molecule are modulated by a sine func-
tion. Finally the neutron results of Ref. 12 are inter-
preted in terms of a model which takes into account
the modulation of the occupation probability of each
atom. This leads to a long=range order parameter de-
fined in successive sheets composed of the whole b c
plane and modulated along the a axis.

The previous results' ' suggest that the picture of

an order-disorder transition applied to NaNO2 so far
is incomplete. Another indication in that direction of
thought is obtained from an atomistic model of
NaNO2 which was proposed by Ehrhardt and the
present author. " Based on the steric hindrance po-
tential of the NO2 molecule in the deformable cage of
neighboring Na ions, the model leads to a Hamiltoni-
an with bilinear coupling between translations and ro-
tations. The latter are formulated in terms of
symmetry-adapted functions. The orientational order
parameter belongs to the ungerade representation 8„
of the orthorhombic group. In the long-wavelength
limit it couples only to optical lattice displacements.
The model of Ref. 13 explains the absence of acous-
tic soft modes in the long-wavelength limit. 4' It also
accounts for the temperature behavior of the elastic
constants. ' If one wants to extend the model to a
description of the incommensurate (IC) phase transi-
tion, one has to study the properties of the bilinear
coupling at finite wave vector.

From symmetry reasons it becomes obvious that
away from the Brillouin-zone center there should ex-
ist a nonzero coupling between the orientational or-
der parameter and acoustic displacements. This cou-
pling should manifest itself at an incommensurate
wave number and influence the nature of the modu-
lated IC phase.

A phenomenological theory of the IC transition in
NaNOz and SC(NH2) 2 has been proposed by Levan-
yuk and Sannikov. '" The authors consider the situa-
tion where a one-component order parameter q cou-
ples with a generalized coordinate g which has
transformation properties different from q. Although
a Lifshitz invariant' ' is absent in the case of a
one-component order parameter, the existence of
gradient invariants of type vj5$/5z and $8g/Sz leads
to a phase transition with an IC structure.

Recently McConnell and Heine" have developed a
macroscopic approach for the description of IC transi-
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tions in insulators. The theory is based on the ex-
istence of a subsidiary mode which can only have an
interaction with the main mode at nonzero wave vec-
tor. Among the examples where their theory applies,
the authors of Ref. 17 consider NaNO2. There the
lattice shear is the subsidiary mode. '

In the present paper, the lattice dynamical model of
Ehrhardt and Michel" is extended and applied in or-
der to study the IC transition in NaNO2 from a mi-
croscopic point of view. The microscopic theory al-
lows us to specify the meaning of the parameters that
are relevant for the occurrence of an IC transition.
In particular one thereby obtains precise information
on the wave vector —and temperature dependence of
the static order-parameter susceptibility which
diverges at the IC transition. This allows us to study
the temperature —and wave-vector behavior of the
intensity of diffuse x-ray scattering and to explain the
corresponding experiments' in the paraelectric phase
when the temperature is decreasing towards the IC
transition. %e establish the connection between mi-
croscopic and macroscopic approaches by calculating
the nonequilibrium free energy on the basis of the
microscopic model. The present paper is divided in
several sections.

In Sec. II the translation-rotation coupling is stud-
ied at finite wave vector q. There exists a nonzero
coupling to acoustic displacements and at small wave
vector this coupling vanishes as q' for q 0. The
acoustic displacements refer to center-of-mass dis-
placements per unit cell. They involve both the dis-
placements of the Na atoms and of the centers of
masses of the NO2 molecules.

The bilinear coupling produces an effective orienta-
tional interaction between reorienting molecules.
This lattice-mediated interaction (Sec. III) has to be
considered in addition to the direct electrostatic di-

pole interaction between NO2 groups. The combined
effect of both interactions leads to resonances at fin-
ite wave vector in the orientational static susceptibili-
ty at the IC phase transition.

Next (Sec. IV) the nonequilibrium free energy is
calculated in the framework of molecular-field theory
from the microscopic model. It is shown that an in-
stantaneous configuration of molecular orientations
with a given spatial modulation leads to a correspond-
ing configuration of acoustic displacements with a
same modulation. A detailed discussion of the'possi-
bility of an IC transition is then given in Sec. V.
Comparison is made with x-ray diffuse scattering ex-
periments. In Sec. VI we investigate the possibility
of a lattice instability and the occurrence of a corre-
sponding anomaly in the phonon dispersion law.

II. TRANSLATION-ROTATION COUPLING

%e start with investigating the coupling of the
orientational order parameter to acoustic lattice dis-

placements at finite wave vector q. In Ref. 13, Eq.
(3.3), the following interaction potential has been ob-
tained:

y yR+ yTR (2.1)

Here V is a sum of single-particle potentials for each
NO2 molecule at site n, it represents a crystal-field
term:

Vs= Xc2cos[2$(n)] (2.2)

In Eq. (2.2), $(n) denotes the rotation angle of the
NO2 molecule for rotations about the c axis while
the 0—0 line is parallel to c. The value Q =0 corre-
sponds to an alignment of the molecule in the b
direction. The second term on the right-hand side
(rhs) of Eq. (2.1) stands for the bilinear translation-
rotation coupling. Its general form [Eq. (3.13) of
Ref. 13] reads

I
~ ~

Here ~ = n —K is restricted to nearest neighbors for
a NO2 molecule at site n surrounded by six Na atoms
at site n . The integers n and n measure lengths in
units half the lattice constants. The crystal fixed
Cartesian-coordinate system (components j = 1, 2, 3)
is taken such that the x, y, and z directions corre-
spond with the crystallographic axes b, a, and c,
respectively. In Eq. (2.3), u&(n, Na) and u&(n, D)
denote the translational displacements of the Na
atom and the NO2 =D molecule away from their
equilibrium positions X(n ) and X(n), respectively.
D stands for the center of rotation of the NO2
molecule. The rotational coordinates are given by
four symmetry-adapted functions
Y =—(cos$, sing, cos2$, sin2@) for the molecule at
site n. As has been shown in Ref. 13, cos$ and sing
are the components of the orientational order param-
eter.

Since the crystal field in NaN02 is strong, "cos@
takes essentially the two extreme values +1 and —1

which correspond to orientations of the NO2
molecule in positive and negative b direction. Then
sing is negligible. Here we are only interested in the
coupling of the translations to the orientational order
parameter. Therefore we retain only Y~ =cosP in Eq.
(2.3) and drop the index a in Eq. (2.3):

V X XUJ(T)Y(n)[uj(n, Na) —uj(n, D)]
jn, n

(2.4)

where Y~(n) —=cos@(n). The coupling matrix

3 2
V'R= X X X v,.(r-) Y.(n )

~ ~&J la 1n, n

x [u&(n, Na) —uj(n, D)] . (2.3)
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vj ( r ) was given in Ref. 13. Here we retain only the
first column (a=i). Explicitly

M
v(+1, 0, 0) = 0; C

v(0, v, tt)= 0
,0,

(2.5)

where M and C are constants that follow from the
microscopic steric-hindrance potential. In Eq. (2.5),
the argument (+1,0, 0) refers to the interaction of
the NO2 group with the two neighboring Na atoms on
the b —=x axis, the argument (0, v, A) with v = + 1,
X = + 1 refers to the interaction of the NO2 group
with the four neighboring Na atoms in positions
(0, +a/2, +c/2). We note that v(r) is symmetric
with respect to inversion of F.

We introduce Fourier transforms for the Na and
NO2 displacements:

with

v, (q) = Xv, (r) cos(q r)
T

(For details of this calculation, the reader should
consult Appendix A.) We rewrite Eq. (2.10a) as

(2.11)

't

v(q) = — Xv(r) sin'
m

(2.10b)

q„a+q,ct
+C sin2

' qyQ
—qgc

+sin2
4

We carry out the sum over P. and use explicitly Eqs.
(2.5). Only the first element in the 3 & 1 row matrix
~ is different from zero. The result reads4.2' b
i, (q) = —

lM sin
m

u(n, «) = $ u ( q, «) exp [ i q ~ X( n ) ) . (2.6a)
m„q (2.10c)

Here K =Na or D and m„ is the corresponding mass.
The total number of NaNO2 units is N. Making use
of v(r) =+v( —r), we rewrite Eq. (2.4) as

Vr"= X v&(r) Yt(q) cos(q r) u& q, Na

mph

u~(q, D)
'

QmD
(2.7)

with

Y (q) = X Y(n) exp[iq X(n)] . (2.6b)
N -„

s(q) =
t]/2 r i ]/2

u(q N )+ u(q, D) . (2.8)

The acoustical part of the bilinear interaction (2.7) is

then given by

Vr" = Xvi(q) Yt(q) (q) (2.9)

In Eq. (2.7) we use the summation convention over
repeated indices j.

As was shown previously, "in the limit q =0, Eq.
(2.7) provides a coupling of the order parameter to
optical modes while there is no coupling to acoustical
modes. We shall now investigate the coupling to
acoustic modes for finite wave vector q. We consid-
er primitive lattice cells with one NO2Na unit and to-
tal mass m = m~, +mD. The corresponding center of
mass displacements have Fourier components

Within our simplified model, rotations of the NO2
molecule around the c axis couple essentially with
acoustic displacements in b (i.e., x) direction. For a

given direction q this coupling leads to a propagating
wave of orientations and displacements. The modu-
lated incommensurate structure corresponds to a
freezing-in of such a mixed orientation-displacement
wave.

Obviously this coupling matrix vanishes only for
q =0. At finite q there is a coupling to acoustic
modes. Note however that this coupling vanishes as

q for small q. It is therefore different from the case
of KCN, where we have a bilinear coupling between
the orientational order parameter and acoustic dis-
placements which is linear in q for small wave vec-
tor." This difference is due to a different symmetry
of the CN and the NO2 molecules. It is most instruc-
tive to formulate the coupling of the orientations
with acoustic translations in terms of strains ~. In
the case of small wave vector, qs —Vs —e where "7
is the spatial gradient operator. The bilinear coupling
in KCN is then of the form V "-A Ye, i.e., a cou-
pling between lattice strains and orientational order
parameter, where A is a constant. On the other
hand, Eq. (2.9) leads for small wave vector to a cou-
pling of the form V~" —CV Ye, i.e., a coupling of
lattice strains with the gradient of the order parame-
ter, "where C is a constant. The bilinear interaction
between translations and rotations leads to a lattice-
mediated interaction between orienting NO2 mole-
cules. This interaction will be investigated in the
next section.

Here we have defined the center-of-mass trans-
formed coupling

III. ORIENTATIONAL INTERACTIONS
AND SUSCEPTIBILITIES

v(q) = fv(q) —v(q =0))
m

(2.10a) In order to study the lattice-mediated interaction,
we reconsider the potential Eq. (2.1) with Vr" re-
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placed by V„"and add to it an elastic part

Vrr = X 2 est(q)sg(q) (3.1)

reads

M(k) = k2[cg6, c202, cfog ]/p (3.6)

We then have to consider the potential

U VTT+ VTR+ VR (3.2)

In Eq. (3.1) M denotes the dynamical matrix for
acoustical phonons. The calculation of such a matrix
in the presence of rotational degrees of freedom is in
itself a lattice dynamical problem and it has recently
been treated for the case of the alkali cyanides. '

Here we assume that this problem has been solved.
In fact for NaNO2, M can be directly obtained from
neutron scattering data. 4

The bilinear interaction V„" leads to an adjustment
of the lattice to the instantaneous configuration of
molecular orientations. For a given configuration
[Y' (q)], we minimize the rhs of Eq. (3.2) with
respect to the displacement s, (q), thereby obtaining

ir)(k) =—
1

C sin' =—,(3.'7a)8 . 2 ka Cak
m, 4 2 m

and consequently Eq. (3.3) becomes

s'(k) = ' Y'(k) .
bcc 6

(3.8)

In a similar way, the lattice-mediated interaction (3.5)
becomes in the long-wavelength limit

Here we have only quoted the three nonzero diagonal
elements within the square brackets on the rhs of Eq.
(3.6); c66,c22, and c44 are the bare elastic constants.
The material density p is given by 2m/ V„V,= abc is
the volume of the orthorhombic unit cell. For the
same wave vector, Eq. (2.10c) reads

sf(q) =—M& '(q) ~&(q) Y'(q) (3.3) C„(k) k Ca
2cg6bc

(3.7b)

U~;„——XC(q) Y"(q) Y'(q) + Vs . (3.4)
q

Here C(q) is the effective interaction matrix
between orientationally ordered molecules:

C(q) =i&'(q)M '(q)ir(q) (3.S)

for the resulting acoustic lattice displacements. Here
the superscript e denotes an instantaneous expecta-
tion value. In particular, expression (3.3) demon-
strates that a freezing-in of a given pattern of orienta-
tions entails a corresponding freezing-in of lattice dis-
placements. Orientations and displacements are
characterized by a same wave vector q.

Introducing expression (3.3) into Eq. (3.2), we find
for the minimum of the potential

Note that the wave-vector dependence of this interac-
tion is different from the case of KCN where in the
long-wavelength limit the microscopic interaction'
takes the form of an elastic dipole interaction, ' as
was shown in Ref. 21.

In order to discuss the orientational phase transi-
tion, we have to consider in addition to the lattice-
mediated interaction also the electrostatic dipole-
dipole interaction. This interaction, formulated in
terms of an Ising spin model, has so far been con-
sidered as the dominant interaction in NaNO2.
The general form of the electric dipole interaction is
given by

p, (n) p, (1)
Vgg=

2 R3n, 1

Due to the simple structure of ~, the matrix C has
only one single element: C» = ir&(M ') t~~~. The
magnitude and direction of this interaction depend on
the wave vector q. The dynamical matrix M or
equivalently the corresponding elastic constants are a
measure of the lattice stability with respect to quasis-
tatic long-wavelength deformations. The smallness
of the elastic constants c66 expresses the softness of
the lattice with respect to xy shear deformations. '
Consequently the elastic Green's function
[(M (q)]~~ in Eq. (3.S) is most efficient in provid-
ing an effective, lattice-mediated interaction between
reorienting NO2 molecules for a wave vector q is in y
direction (i.e., direction of the a axis). For
q = (O, k, 0), the dynamical matrix of the orthorhom-
bic lattice is diagonal: In the long-wavelength limit it

3[p, (n) K][p,(1) R]
(3.9a)

p,„(n) = p, cos$(n) —= p, Y(n) (3.10)

where p. is the value of the dipole moment. The di-
polar interaction then becomes

Vgg= —, X J(n, 1) Y(n) Y(1) (3.9b)

Here n and 1 run over the equilibrium sites Dof the
NO2 lattice with R =—X(n).—X(1). The dipole mo-
ment at site n is denoted by p, (n). In the present
model, we consider only rotations around the c axis
and assume that the crystal field along the b axis is
strong. Then p, has only one nonzero component:
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with

(3.11a)

paper by Courtens and the present author. ' Corre-
sponding to instantaneous expectation values of the
secular variables sf(q) and Y'(q), the free energy is
a functional of the form

In Fourier-transformed form the interaction reads 5= %[sf, Y'] (4.1)

and

Ydd

J(q) XJ(K)ei7 R

R

(3.12)

(3.11b)

Here the superscript denotes the instantaneous ex-
pectation values.

The potential includes the elastic interaction, the
acoustic part of the translation-rotation coupling, the
single-particle term, and the dipole-dipole interaction

In order to discuss the possibility of a structural
phase transition, we now take into account the terms
U;„and Vqq which are given, respectively, by Eqs.
(3.4) and (3.12). The total orientational potential
reads for a given orientational configuration (Y'(q) [:

U= Uml~+ Vgg (3.13)

The main effect of the strong crystal field V" is to re-
strict the values of cos$ —= Yto values near +1 or —1.
This means" that the single-particle expectation value
(cos @) is close to one. Using the potential (3.13),
we calculate the collective orientational susceptibility
within the framework of molecular-field theory. The
result reads

x""(q) —= (Y"(q) Y'(q))/T=[T —K(q)l '

(3.14)

where T is the absolute temperature (units ks =1)
and where the total orientational interaction K (q) is

given by

8 = V"+V" +V"+V (4.2)

Here the four terms of the rhs are given, respective-
ly, by Eqs. (3.1), (2.9), (2.2), and (3.9a). Rewriting
Eqs. (2.41), (2.40b), and (2.51) of Ref. 24 in terms
of the present variables and coupling matrices, we
obtain in molecular-field approximation for the non-
equilibrium free energy

Fph +F~o+ (4.3)

Here the first term on the rhs stands for the harmon-
ic phonon free energy

F;h = —X [ 2tru„(q) + Tlnn„(q)]
q, v

(4.4)

The phonon frequencies co„(q) are the eigenvalues of
the dynamical matrix (3.1), and n„(q) is the Bose-
Einstein distribution for phonons of energy h~„(q).
The second term on the rhs denotes the free energy
corresponding to the single-particle potential

K(q) = C~t(q) —Co —J(q) (3.15)
Fg = —T lnSp exp( —V /T) (4.5)

In Eq. (3.15), Co is the self-interaction which is due
to the Onsager reaction field. In the present case it
reads

Here Sp stands for the trace over the orientational
states of the NO2 molecules. Finally the last term in

Eq. (4.3) is given by

C =—QC„(q) ~01

N
q

(3.16)
'U= $(—,'s,'"(q)Mlq(q)sf(q)

At decreasing temperature in the paraelectric phase, a
transition occurs at the largest value of T such that
T = K(q). One realizes that it is essential to study
the dependence of the orientational interaction K ( q )
on the wave vector. More quantitative details are
presented in Sec. V where we sha11 discuss the in-

commensurate phase transition.

IV. FREE ENERGY

In order to establish more closely the connection of
the present lattice dynamical model for NaNO2 with

the ideas which have been developed in the
phenomenological theories'" ' we calculate the in-

stantaneous nonequilibrium free energy of the
present model. Here we only present the results of
this calculation. For details the reader is referred to a

+ v~(q)sf(q) Y"(q)

+ —,
' [T+Co+J(q)] Y"(q) Y'(q) I . (4.6)

Here we have taken into account the fact that
(cos'$) = ( YY) o =1. Note that in Eqs.
(2.46b) —(2.51) of Ref. 24 the sign of J„„is wrong
and has to be changed. In writing down expression
(4.3) for 5, we did not retain contributions from the
kinetic energy of translations and rotations because
these are not relevant for our present purpose. How-
ever we have explicitly taken into account the On-
sager reaction field.

In order to find the minimum of the free energy,
we take advantage of the fact that in NaNO&, c66 are
the elastic constants with the lowest value. ' %e
therefore consider a transverse-acoustic wave, polar-



24 MICROSCOPIC THEORY OP LATTICE INSTABILITY AND. . . 4003

ized in x direction (b axis) and propagating in y
direction (a axis). Taking q = (O, k, 0) we tr'ansform

Eq. (4.6) by using the change of variables

s„'(k) = —M, ,
' (k) ir, (k) Y'(k) (4.7)

The result reads

V = X—,(X"R)-'Y"(k) Y'(k),
k

with

X""(k)= [T—Cii(k) +Co+J(k)] '

(4.8)

(4.9)

This expression represents the collective orientational
susceptibility, Eq. (3.14), for a particular wave vector:
q = (O, k, 0). We recall by Eq. (3.5) that C~t(k)
= u~(k)M~~ (k) v~(k), since M is diagonal for this
particular choice of wave vector.

The meaning of Eqs. (4.7) and (4.8) becomes tran-
sparent by the following considerations. For a given
configuration of orientations {Y'(k) ], we minimize
the free energy 'U, given by Eq. (4.6), with respect to
the displacements

the same form as the gradient terms which are intro-
duced in the phenomenological theories. ' " In par-
ticular, in Ref. 17 a coupling between the primary or-
der parameter and a subsidiary shear mode in NaNO2
was inferred from experiment. '

V. INCOMMENSURATE TRANSITION

In order to discuss the possibility of an IC phase
transition, one has to investigate the minimum of the
free energy. " In the present problem, the free ener-

gy (4.8) is a bilinear form, the coefficients Xs" of
which depend on the wave vector and temperature.
Expression (4.9) shows that for sufficiently high tem-
perature, X""(k,T) is positive for any value of k.
The disordered phase where Y'(k) =0 for any k is
then the one with the lowest free energy. The static
susceptibility X""(K,T) is a measure of order-
parameter fluctuations.

For a more quantitative study, we specify the coef-
ficients which enter Eq. (4.9) in the long-wavelength
case. Keeping in mind Eq. (3.6), we write

N)
ss„'(k)

(4.10) Mii(k) = u'k2, (5.1)

where a'=
cfog p

'—Obvio. usly e' )0. We also write

Here the subscript o indicates that the orientational
configuration is kept fixed. As a result of Eq. (4.10),
we obtain Eq. (4.7) which is also equivalent to Eq.
(3.3). Equation (4.8) represents the minimum of the
free energy obtained after adjustment of the acousti-
cal lattice displacements Eq. (4.7) to a given orienta-
tional configuration. The implications of the result
[Eqs. (4.8) and (4.9)] will be discussed in the next
section.

In order to establish more closely the connection
with the macroscopic approaches, we relate the
center-of-mass displacements to the strain field e(q)
by writing

f7, (k) =2ok (5.2)

J(k) = —d + crk2+yk4 (5.3)

where d & 0, y & 0, 8 ~0. This choice of coeffi-
cients follow from the numerical calculations of Ya-
mada and Yamada which have been confirmed in-

dependently by Grimm. " Making use of Eq. (4.9),
we then write

where a =—Ca'/4' follows from Eq. (3.7a). For
the dipolar interaction J(k), we use an expansion of
the form

ejJ( q) =iq, s&( q )/ Jm (4.11)
(X s) =—y(k, T) =uk +pk +w (5.4)

(Here and in the following we drop the superscript
e.) Then Eq. (4.7) reads in the long-wavelength lim-
it

e~(k) = ikY(k)
bcc66

(4.12)

Consequently the strain field is proportional to the
gradient of the orientational order parameter. The
bilinear coupling term in Eq. (4.6) now reads in the
long-wavelength limit

Xi&)(k)s (k) Y"(k)

where

u = 7, v = 8 4(r2/n'—
w = 7+Co —d

At sufficiently high temperatures such that

v —4uw 40

the secular equation

y(k, T) =0

(5.5a)

(5.5b)

(5.6)

(5.7)

Ca2
X[e~(ik Y) + ik Ye~], (4.13)
k

where e~ and Ydepend on k. Expression (4.13) has

has no solution. Then, since u &0, the function
y(k, T) is always positive. This situation corresponds
to the disordered phase: Y'(k) =0 for any value of
k. In the disordered phase, for a given temperature
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T, the susceptibility X""(k) has a maximum at
t i/g ' t i/p

+ 40 SCk

2u
(5.8a)

This requires —v )0 or equivalently

4(r~ —o. S)0 (5.8b)

With decreasing temperature, Xs"(k) increases and
becomes infinite at a temperature Tp obtained from
the solution of

u~ —4u~ =0, (5.9a)

i.e.,
(4a'/n' 8)—'

0 0+
4y

(5.9b)

The corresponding value of k is given by

kp= k (5.10)

M'(k)
Sk

(5.11)

where E is the total orientational interaction defined
by Eq. (3.15). Consequently k is independent of
temperature if the microscopic parameters y, o, ', S, a
entering E are independent of temperature. Experi-
ment shows however that the position of the max-
imum of X""in the paraelectric phases shifts to lower
values k with decreasing temperature. Since
a'= c6o6 p ', an increase of cfog with decreasing tem-

perature leads to a decrease of k~. However the vari-

where k is defined by Eq. (5.8a) with condition
(5.8b). An equation of type (5.7) has been also dis-

cussed in the phenomenological theories' ' where
one starts from an appropriate ansatz for the free en-
ergy. The present microscopic theory demonstrates
that NaNO~ fits into the general scheme which is as-
sumed by the phenomenological theories. In addition
it clarifies the physical meaning of the parameters
which enter these theories. We remark that condi-
tion (5.8b) is less restrictive than the condition 8 ( 0
which is required in Ref. 2. The presence of the bi-

linear coupling between rotatidns and translations
makes the existence of a minimum in the dipolar in-

teraction J(k) for k WO [see Eq. (5.3)] no longer a
necessary condition for the existence of an IC transi-
tion. Although the numerical calculations of the di-

polar interaction' indicate that there is a minimum in

J(k), we remark that this minimum is extremeiy
shallow. The numerical calculations have been per-
formed for dipoles on a rigid lattice. We expect
that the presence of thermal fluctuations in the lattice
parameters destroys the stabilizing effect of such a
shallow minimum.

It is straightforward to show that Eq. (5.8a) results
from the condition

ation of c66 with temperature' is too small to account
for the observed change in k . We also do not ex-
pect that the long-range dipolar forces are changing
sufficiently fast with temperature, although in princi-
ple the dipolar forces are influenced by the fluctua-
tions of the lattice.

In our opinion the temperature dependent of k
arises from a temperature dependence of the bilinear
coupling o- ~ C. The coupling parameter C has been
derived from the repulsive interaction of the NO~
molecule with the four surrounding Na atoms in the
(c, a) plane. "Returning to Eq. (2.5), we consider
the matrix element vii(0, v, X) = C, or equivalently

vtt( 7 ) = vii(R(n', Na) —X(n,D)) (5.12)

For each of the four vectors 7 with components
+ (O, a/2, c/2), + (O, a/2, —c/2), the element vti has
the same value C. There are two possible reasons for
a variation of C with temperature.

Firstly, a change of lattice parameters due to ther-
mal expansion leads to a change of the value of vii.
Taking the numerical values given by Kucharczyk in
Ref. 26, for a and c, we have calculated the distance

i r i for different temperatures. We find i Pi =3.247
and 3.249 A. at T =164 and 200'C, respectively.
Since the absolute value of C increases with decreas-
ing i r i, this variation of the lattice parameters leads
to a slight increase in C and correspondingly also in
k when T decreases from 200 to 164'C. Conse-
quently we conclude that the slight temperature vari-
ation of the lattice parameters does not account for
the substantial decrease of k with decreasing tem-
perature.

Secondly we investigate the influence of thermal
fluctuations which lead to an effective smearing out
of the lattice parameters about their equilibrium
values. Neutron and x-ray studies" reveal the im-
portance of thermal fluctuations in NaNO~. The
root-mean-square amplitudes of vibrations of all par-
ticles in NaNOq are large (10'/o of i Fi) in the disor-
dered phase. Their value increases with increasing
temperature. These fluctuations correspond to in-
stantaneous changes of i Pi and therefore of the cou-
pling parameter vii —= C. In order to take this effect
into account, we follow the established theory of
strongly anharmonic crystals (for a review, see, e.g. ,
Ref. 28). We are then led to replacing vti at fixed
values of the lattice parameters by the thermal aver-
age

(vil( r ) ) = g~«vll( r —r )g ( r ) (5.13a)

g( r ) = (8(r —u(n', Na) +u(n, D))) (5.13b)

Here g ( r ) is the pair-correlation function which has
to be calculated in the framework of the renormalized
harmonic approximation. '
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VI. LATTICE INSTABILITY

The coupling of acoustic displacements to the order
parameter is essential for the occurrence of the in-
commensurate transition. Therefore we expect that
this coupling will also manifest itself in the static
displacement-displacement correlation function at the
IC transition.

We examine again the free energy, Eq. (4.6). Now
we consider the acoustic displacements as primary
variables. For a given configuration of displacements
{s„(k)j, we minimize the free energy with respect to
the orientations:

5'U

8 Yc(k),

and obtain

(6.1)

Y'(k) =—[T+Co+J(k)] '~~(k)s„'(k) . (6.2)

The temperature dependence of the fluctuations is
now reflected in the temperature dependence of the
coupling parameter (v~~) -=C(T). The qualitative
argument is as follows. A fluctuation of a given am-
plitude which simultaneously decreases {r {,increases
simultaneously the absolute value of C. Due to the
shape of the repulsive overlap potential, we easily see
that this increase of C is larger in absolute value than
the decrease of C which results from a simultaneous
increase of { r { with a same amplitude. Therefore the
coupling C( T) should increase with increasing tem-
perature. Since C ~ a, it follows from Eq. (5.8a) that
k decreases with decreasing temperature until it
reaches the value kp at T = Tp. The decrease of the
incommensurate wave vector kp with decreasing tem-
perature which is observed by experiments "
should also result from a decrease of the amplitude
of fluctuations with decreasing temperature. Since
we expect that the decrease of the amplitude of fluc-
tuations has a different slope in the disordered and in
the IC phase, we expect a different slope in the tem-
perature variation of k (T) and ko(T). A detailed
analytical and numerical study of the influence on
fluctuations on the IC transition will be published
separately.

The existence of short-range interaction between
neighboring NO2 molecules has been previously pro-
posed by Yamada and Yamada. ' It was also suggest-
ed that thermal expansion would lead to a change of
this short-range interactions and consequently to a
variation of k (q, in the notation of Ref. 2) with
temperature. Our description is based on the short-
range interaction which expresses the direct contact
of the NO2 group with the surrounding Na ions. The
temperature variation of this interaction is mainly the
consequence of thermal fluctuations rather than of
the thermal expansion.

Eliminating Y'(k), we find for the minimum of the
free energy for the given configuration {s„'j:

V, = X—D„(k)s„'(k)s,'(k)
k

(6.3)

(s'"(k)s'(k)) = T/D, (k) (6.5)

The left-hand side of this equation represents the
static displacement-displacement correlation function
in the presence of the coupling of acoustic displace-
ments to molecular orientations. As a result of this
coupling, the term C~~X"" appears in the denomina-
tor of D~~(k), Eq. (6.4). Therefore a singularity of
X"(k) at the incommensurate transition, k = ko,
T = Tp leads to a vanishing of D~~ or to a divergence
in the static displacement-displacement correlation.
This situation shows again. that we have in NaNO2 a
phase transition of both order-disorder and displacive
character.

In order to make the connection with the descrip-
tion of phonon anomalies related to IC transitions, 3'

we use the fact that D~~(k) —= cur~(k), where ~r~ is
the transverse-acoustic-phonon frequency in the pres-
ence of translation-rotation coupling. On the other
hand, M~~(k) =-coo(k), where coo is the bare TA-
phonon frequency. In the present case ~here there
exists a strong crystal field, the single-particle suscep-
tibility is given by X0=1/T. Using also Eq. (4.9), we
then rewrite Eq. (6.4) as

o)r2A(k) = o)02(k) 1 — . (6.6)
x'C„(k)

I+xo J k +Co

Consequently there should appear a dip in the disper-
sion law of the TA phonons at T= Tp and k =kp.

Phonon anomalies at incommensurate transitions
have been known for several years, mainly in one-
dimensional conductors such as KCP and tetrathiaful-
valene-tetracyanoquinodimethane (TTF-TCNQ). 3'-

There a phonon instability (giant Kohn anomaly)" "
is related to a simultaneous Peierls instability of the
electrons near the Fermi surface. 34 One recognizes
that the analytic structure of Eq. (6.6) is very similar
to the corresponding expressions for the square of
the phonon frequency in these electronic systems. In
the translation-rotation coupled system, the modula-
tion of the orientational order is the analog of the

where D~& is given by

D„(k) = [1+C„(k)x""(k)1-'M„(k) . (6.4)

Here Xa"(k) is the collective orientational susceptibil-
ity which has been given in Eq. (4.9). The quantity
D»(k) is the renormalized dynamical matrix. It can
be directly related to the static displacement-
displacement correlation function. From the free en-

ergy (6.3) we obtain the probability distribution func-
tion exp( —V/T). Using standard concepts of statisti-
cal physics, ' we obtain immediately
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static periodic modulation of the conduction electron
density (charge-density wave") in one-dimensional
solids.

Soft modes at IC transitions have been also
discovered in insulators, in particular, in K2Se04
(Ref. 36) and in thiourea. 37 3s However, in NaNO,
the lattice instability described by Eq. (6.6) has not
been found in the phonon dispersion law measured
by neutron scattering. We believe that this is due
to the fact that neutron inelastic measurements at the
IC wave vector correspond to regime of frequencies
which are too high in comparison of the low frequen-
cy of the orientational relaxation mode in NaNO2.
A detailed study of the dynamics of the present
model is in preparation.

tudes of lattice displacements is also relevant for the
understanding of the variation of the IC wave vector
in IC phases in general.

Summarizing the present results, we have shown
that the microscopic model describes the IC phase
transition, that it confirms the basic assumptions of
the phenomenological theories and that it allows a
qualitative understanding of several experiments.

Among the problems we intend to treat in a future
publication is a qualitative and quantitative descrip-
tion of the static and dynamic phenomena in the in-

commensurate phase.
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We have shown the lattice dynamical model of
NaNO2 which has been proposed by Ehrhardt and the
present author'3 leads to a coupling of the orienta-
tional order parameter to acoustic lattice displace-
ments at finite wave vector. The microscopic model
describes the modulated structure in terms of posi-
tional rearrangements of both the Na and the NO2
particles. In the paraelectric phase, an orientational
density wave couples to a displacive density wave.
The incommensurate phase transition is described as
a freezing-in of such a mixed orientational order-
displacive wave. We recall that the theory has been
formulated (Sec. IV) in terms of nonequilibrium ex-
pectation values of orientational order and
trarisverse-acoustic displacements. Both types of
motion are modulated by a same IC wave vector.

By calculating the nonequilibrium free energy on
the basis of the microscopic model, we have esta-
blished the connection with macroscopic Landau-type
theories. ' " The microscopic model confirms the
basic assumptions of the phenomenological theory
concerning the coupling of a primary order parameter
to a subsidiary mode. " Since this coupling is the
essential mechanism that derives the IC phase transi-
tion, the existence of a minimum in the Fourier-
transformed dipole-dipole interaction2 is no longer re-
quired.

The coupling is a function of lattice parameters. It
is affected by therma1 expansion and by thermal fluc-
tuations which follow from lattice anharmonicities.
We have concluded that thermal fluctuations lead to
an increase of the effective orientational interaction
with increasing temperature. This feature suggests an
explanation of diffuse x-ray experiments by Yamada
and Yamada. The peaks in the diffuse x-ray intensi-
ties in the paraelectric phase shift to lower values of
the wave vectcor k when the temperature is lowered
towards the IC transition. It is likely that the tem-
perature variation of the root-mean-square ampli-
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APPENDIX

We want to extract the coupling to acoustic dis-
placements from the bilinear interaction between
translations and rotations, Eq. (2.7). We introduce
the space of six-dimensional displacements

}u,(q) }=—(u(q, Na), u(q, D) } (Al)

where p =1,2, 3 labels the three components
j =1,2, 3 of the displacements u/(q, Na) while

p =4, 5, 6 labels the three components of u/(q, D).
We define the 6 & 1 interaction matrix

v, (q)/ Jm„,
}v,(q)}= —v/( q ) /Qmo

t

(A2)

where j = 1, 2, 3 and where v/( q ) is defined by Eq.
(2.10). The interaction (2.7) is now rewritten as

Vra= Xvp(q) Yt(q)u (q) (A3)

explicitly,

e = mph'

~ ]//2 ~ ]/2

, 0, 0, , 0, 0
m

where summation is understood over repeated indices

p, 0.. We introduce three six-dimensional basis vec-
tors in the space of acoustic displacements

' 1/2
r

' 1/2'

my~ mg)

m
' ' m
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etc. Then the Cartesian components of the acoustic
dispiacements vector (2.8) are given by

and obtain by using Eqs. (A2) and (A4)

s,(q) = Xe~lu~(q) (i =1,2, 3)
P

(A6)
+/(q) = lu~(q) —u~(q =0) 1

m
(A8)

Similarly we define the acoustic coupling matrix

ir, (q) = Xe,'u, (q),
P

(A7)

which is equivalent to the matrix equation (2.10a).
The interaction potential of the orientational order
parameter with acoustic displacements is now given
by Eq. (2.9).
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