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Incommensurate and commensurate phases in asymmetric clock models
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When the ordinary nearest-neighbor p-state clock model (discrete xp model) is generalized to
include asymmetric interactions, an incommensurate phase appears for integer p ~3 in addition
to the usual liquid and commensurate phases. Aside from being theoretically interesting, it is of
practical importance in studies of the commensurate-incommensurate transition where the ex-
istence of a discrete nearest-neighbor model with this property gives a computational advantage
over further-neighbor and continuum models. For p =3, the incommensurate phase always has
a high degree of discommensuration and a Lifshitz point will occur where the incommensurate,
liquid, and commensurate phases coincide. For p =2 no incommensurate phase occurs. The
system is analyzed at low temperature using a transfer matrix technique recently used by J. Vil-
lain and P. Bak to analyze a similar model with further-neighbor interactions.

I. INTRODUCTION
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Of particular current interest in statistical mechan-
ics is the investigation of the commensurate-incom-
mensurate (C-IC) transition. ' ' This transition oc-
curs when a commensurate (C) phase with long-

range order melts to an incommensurate or "float-
ing" phase. The commensurate phase has a periodi-
city which is a rational multiple of the periodicity of
the underlying lattice. In two dimensions, the IC
phase has algebraic decay of order-parameter correla-
tions and a wave vector describing the order parame-
ter which varies continuously with the temperature
and interaction parameters. In the present work, it is
found that the nearest-neighbor p-state clock model
probably has an incommensurate phase when it is
generalized to include asymmetric interactions. An
interesting result of this analysis is that the three-
state asymmetric model has an IC phase while the
corresponding symmetric three-state (Potts) model
does not. Although results which are similar to those
found here have been recently derived for a related
model with second-neighbor interactions as well as
first-neighbor interactions, ' the results presented here
are interesting because the present model may be the
simplest model in which an IC phase occurs. The
conclusions also imply that the three-state Potts
model with ferromagnetic interactions along one axis
and antiferromagnetic interactions along the perpen-
dicular axis has a low-temperature phase with alge-
braic order.

The Hamiltonian of the asymmetric p-state clock
model is given by

where p is integer and the integers n; and n, range
between 0 and p —l. The summation is over the
nearest-neighbor sites "i " and "j"of a square lat-
tice and R„"is the unit vector between sites i and j

Rs = (R; —RJ)/iR; —Rji (1.2)

and 6 = Ax, Each bond is counted once. For 5 = 0,
the model reduces to the ordinary clock model. The
parameter 6 causes a tendency for the phase angle
2rrn;/p to have a continuous rotation as a function of
position along the x direction. This competes with
the restriction that the phase angle must be discrete
and this competition causes the appearance of the C-
IC transition,

Note the following symmetries of the partition
function Z(d, T)

Z ( 5, T) = Z ( —d, T) = Z ( 6 + m, T) (1.3)

n r=n; -mX (1.4)

The commensurate phases which occur can be la-
beled by the average integer progression as one
moves parallel to the y axis. The pitch of the phase
is defined to be the average value of n (x,y) —n(x
—l,y), i.e., the pitch-1 phase has the sequence
0123450123. . . for the six-state model, while the
pitch-2 phase has the sequence 024024 or 135135.
Since the symmetry in Eq. (1.3) is valid, it is suffi-
cient to study only the phase diagram for
0 ~ 6 ~0.5. A consequence of the analysis is that
only integral-pitch phases with long-range order exist
so that the only ordered phase which needs to be

when nt is an integer. This symmetry is easily seen
by relabeling the integer variables n; to n. at each site

along each row parallel to the y axis,
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FIG. 1. Phase diagram for the asymmetric p ~ 5-state
clock model is shown, In an incommensurate (IC) phase, a
continuously varying wave vector describes the order. The
ferromagnetic pitch 0 and 1 (Co and C1) phase has true
long-range order, while the liquid phase has exponential de-
cay of orientational order.
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3
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for 5 «0.5. There is no floating phase in this case.
For p = 3, the commensurate phase extends into

the liquid but an incommensurate floating phase ex-

p=4

considered explicitly is the pitch zero and possible
coexistence with pitch-1 phase. The phase diagram
as a function of 4 and T for the various integer
values of p, based on the calculation in the present
paper is shown in Figs. 1—4. For p =4, the com-
mensurate phase melts to a disordered liquid directly
only at 5 =0. Otherwise the melting proceeds via an
IC floating phase. For p «5, the commensurate
phase never extends into the liquid.

The Hamiltonian for p = 2 is equivalent to an Ising
model in zero field, and the phase transition between
solid and liquid occurs on the self-dual line of aniso-
tropic Ising model:

FIG. 3 ~ For p =3, the ferromagnetic phase extends into
the liquid, while the floating phase occurs for values of 5

1
near —and at low temperature.

2

ists for values of b =
&

. It is found that the average
1

pitch of the floating phase is —, at 5 = —,, so that the
1 1

favored integer sequence is 001122001122. . . . The
line determined by 5 =0.5 is thermodynamically
equivalent to the line 5 =1.5 in the three-state
model. The latter ease corresponds to a three-state
Potts model with ferromagnetic interactions along
the y axis but antiferromagnetic interactions along x

H 1 g 1 (1.6)

(1.7)

and an xy-like transition' to a liquid at finite T.

Thus this model too is expected to have a low-

temperature phase with algebraic order. It is interest-
ing to note that this mixed ferro-antiferromagnetic
model has a favored integer sequence given by

010101,020202, or 1212121, obtained from the
pitch--, sequence via the transformation in Eq. (1.4).
The results derived here indicate that this version of
the three-state Potts model has algebraic order in the
spin order parameter

ii/(R) ( 1)x~2nin( R )/3

Li

2.0

0.5 6, = I.O

FIG. 2. Transition between solid and liquid occurs only at
integer 6 for the four-state asymmetric model. For nonin-
tegral 5 the transition from solid to liquid occurs via the in-

commensurate phase.

0 0.5
FIG. 4. Case where p =2 is equivalent to the Ising model

in zero field. No floating phase occurs in this case.
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"Locking™in"is believed to occur in three-
dimensional (3D) systems, and occurs if there is a
phase with long-range order and an arbitrary rational
value for the pitch. 5 It should be noted that in none
of these models is there a "locked-in" phase at a

pitch other than integral values of p.

II. RELATION TO OTHER %ORK

+/r cos(n@) (2.1)

This model is expected to represent the C-IC transi-
tion correctly in the absence of vortices and should
therefore accurately represent critical behavior along
the C-IC line well belo~ the liquid phase for the
clock models also.

It is of interest to compare the present model with

the ANNNI'4 and ANNNC models studied in Ref. l.
Th|;se systems have the Hamiltonian
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where the summations are over nearest neighbors in

the first two terms and over the second neighbors
along the y direction in the third term. The site "i "
is chosen above or to the right of the site "j." For
the value p =2, the model reduces to the ANNNI
model studied by Selke and Fisher. '4 Note that the
competition between the second-neighbor and first-
neighbor interactions gives rise to the incommensu-

The symmetric clock models have been studied in

detail by a number of authors. ' These models have
"accidentally commensurate" floating phases, "
where the reciprocal-lattice vector describing the or-
der parameter is zero. For p «5, the incommensu-
rate phase is an extension of these floating phases to
off the symmetry axis 4 =0. The symmetric clock
models are self-dual, a property not shared by the
asymmetric model, since the dual of an asymmetric
clock model has complex (number) interactions. '9 "

A continuum version of the asymmetric xy model
in which vortices are neglected has been studied by
Schulz. '3 The Hamiltonian studied there was given
by

1 r

= —Jtdx dy E„~—8 +fC»
kqT Bx By

rate phases. The asymmetric clock model of the
present work is strictly nearest neighbor, and the
variation of the parameter 4 changes the commen-
surability.

In spite of these microscopic differences, the
analysis of these two models is very similar with

respect to domain walls and vortices. The free fer-
mion analysis in Ref. I can therefore be applied with

very few modifications to the present problem, and
the method will not be discussed in any great detail
in subsequent sections. A substantial advantage of
the present nearest-neighbor clock model over the
ANNNC models occurs with other methods of
analysis in which the nearest-neighbor property is an

advantage, for instant Monte Carlo analyses or
finite-size scaling,

The domain-wall theory of incommensurate over-
layers was considered in detail by V. Pokrovsky and
A. Talapov. ' The algebraic decay of order-
parameter correlations was deduced in their work.

III. FREE FERMION ANALYSIS

(3.1)

where g; = exp [2'

i�
(n; —

—,
' x;)/3] and x, is the x coor-

dinate of site i. The system can be characterized
by domain walls where the phase angle increases by
27r/p as one moves from x to x+1. A typical
domain structure is shown in Fig. 5(a). The distance
between domain walls is at least one lattice spacing,
and the number of domain walls n„cannot exceed
L„,the number of sites of the system in the x direc-
tion.

At finite temperature we must consider kinks in

the walls, an example of which is shown in Fig. 5(b).
These have a probability per unit length y of occur-
ring, relative to no kink, where y is given by

y = exp[ 2/T sin'(rr/p) ]— (3.2)

The yth row is described by kinks at x],x~, . . . , x„.
W

Let us consider the Hamiltonian (1.1) in the spe-
cial case 4 =0.5 and T =0. In this case, there is an
infinite ferromagnetic interaction along each bond in

the y direction, resulting in each row parallel to the y
axis having the same value for the integer "spin" n;.
Assume that the row at x has spin 0. Then the entire
next row can have spin 0 or I with equal probability.
There is therefore a large ground-state entropy which
scales like 0'i', where f) is the system size. (Of
course, the ground-state entropy per site is zero in
the thermodynamic limit. ) Using a 1D transfer ma-
trix, one easily shows that
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0112 001
0112 001
0112 001
0112001
0112 001

0001122
0001122
0001122
0011122

(a)

position x

Iy) =c'(x))c'(«2) c'(n„)lvac) (3.5)

where Ivac) is the vacuum state containing no
domain walls. In this representation, the transfer
matrix can be seen to be approximately given by

T =exp( —HF)

where HF is given by

HF = y —gc (x)c(x —1) +c (x —1)c(x)

(3.6)

(3.7)

This approximate equality is easy to check by expand-
ing the exponential in a power series in HF.

In the thermodynamic limit, the ground state of HF
dominates the partition function

0011122 (b) Z„=exp( —
Ly eo) (3.8)

where e0 is the ground-state energy in the presence
of n fermions. The ground-state energy is given by2001201

2001201
r

2yL„. 7m„
(3.9)

2001201
2000001
2000001 (c)

Therefore the partition function is given by

Z„=exp[L~(2yL„/rr) sin(7m„/L„)] (3.10)

The grand partition function is a sum over n„ofZ„

FIG. 5. (a) Typical domain-wall structure for the three-
state asymmetric model is shown. The distance between
domain walls is two lattice spacings, on the average. (b) A

kink in the domain wall between the 0 and 1 domain is

shown. This type of excitation destroys long-range order
within the rows, and causes the crossover to algebraic order.
(c) A vortex consists of three domain walls for p =3, which

join at a point. This type of excitation causes the floating
phase to melt into the fluid.

Thus the "state" of the yth row is written as

ly) = lxi(y).»b) «..(y)) . (3.3)

The probability that state Iy +1) occurs above state

Iy) relative to the probability that Iy) is repeated is-
given by a transfer matrix T by

(y+ 1l Tly) =y (3.4)

where m is the number of kinks at level y.
A domain wall at (x,y) can be described by a fer-

mion' at position x and "time" y. The fermion
statistics are essential in keeping the domain walls
from crossing, a situation with high energy since a
"2"would then appear to the right of a "0",for in-

stance. Thus we can define creation and annihilation
operators which obey the usual anticommutation rela-
tions and which create or destroy a domain wall at

z(s, T) =gz„e"~ ",
n

(3.»)

In the thermodynamic limit, the minimum term in

Eq. (3.17), occurring at n„=n, dominates the sum,
so that the complete partition function can be
evaluated as

Z(d„T)= exp IL~L„[2y/rr sin(mp) —ppl) (3.13)

where the fermion density p is defined to be n„/L„
and satisfies

cos(mp) = p/2y (3.14)

Note that the pitch is equivalent to the fermion den-
sity.

The phase structure of the original model is there-
fore apparent. In the range of 4 and T for which the
inequality

I p/2yl »1 (3.15)

is valid, the pitch varies continuously with 4, while
for the opposite case, the pitch is either zero or one
corresponding to commensurability. The phase
boundary is given by the equality of Eq. (3.15), and

where Tp, is the chemical potential per unit length of
a domain wall

p, =1/T Icos(2m'/p) —cos[27r(1 —5)/p]I . (3.12)



402 S. OSTLUND 24

p(xy) = 2rr [ n (x y) —px ]/p (3.16)

where n (x,y) is the value of the integer clock field at
the site (x,y). The order parameter rir( r ) is defined
to be

Eq. (3.14) determines the pitch as a function of 5
and T Th. e condition p, (5 =0) =2y provides an esti-
mate for the maximum temperature at which the fer-
romagnetic phase exists. It remains to show that the
order-parameter correlations indeed decay algebraical-
ly and that vortices can be neglected. If these condi-
tions are valid, the existence of the floating phase
will be considered to be established.

The deviation angle @(x,y) is defined by

satisfying to see that the Ising model is not stable
against vortices, in agreement with the known phase
diagram for p = 2. In fact, the equation p, = 2y gives
the correct expression for the phase boundary to first
order in an expansion in e ' of the exact phase
boundary given by Eq. (1.S). The calculation of the
correlation functions is not applicable to the Ising
model however, because the vortices must be taken
into account, and these eventually cause the correla-
tions to decay exponentially at large distances.

IV. CRITICAL PROPERTIES

y( r ) ei$( r )

The correlation function C( r ) defined by

(3.17)
The IC-Li transition is expected to be identical to

the ordinary xy transition studied by Kosterlitz and
Thouless. There is a correlation length which obeys

C( r ) = (y( r )y'(0) ) (3.18) ,-]/2r (4.1)

can be calculated using the free fermion approxima-
tion. Since the algebra of the calculations is very
similar to the analogous calculation for the ANNNC
model, the details will not be presented here. '

Indeed, it is found that in the region where the wave
vector is continuously varying, that C( r ) decays
algebraically

C(r) =f(x/y) r ~, (3.19)

g" = g + 0 (yf ) (3.20)

when vortices are taken into account. ' The vortex
fugacity is denoted yf,

A vortex in the present model is shown in Fig.
5(c). Using a simple trigonometric identity one can

easily show that the energy of the vortex is p, so that
the vortex fugacity is

y p-P/Tf (3.21)

The KT analysis also indicates that vortices become
unbound when q reaches the value —.The condi-

tion for stability of the phase with algebraic order
against vortices is therefore given by" '7

where 71 is given by q =2/p' when vortices are
neglected. It is somewhat surprising that q does not
depend on temperature. The angular function
f (x/y) does depend strongly on both 6 and T

Since the decay of the angular correlations is alge-
braic, one can associate the clock model with the xy
model at large lengths. Using the Kosterlitz- Thouless
(KT) renormalization group, ' one finds that the (re-
normalized) exponent rt" is given by

C (x y) ~ [(x/g„)' + (y/(» ) '] ~~

where the correlation lengths g„and g» obey

(4.2)

where r ~
~
T —T,

~
as the critical line is approached at

constant 4. Only essential singularities proportional
to g

' occur in the specific heat. The xy "angle
field" associated with this transition is given by Eq.
(3.16). The exponent g approaches the value —, with

a square-root cusp as the transition line is ap-
proached.

The solid-to-liquid transition occurring at 4 =0 is
either Ising-like or three-state-Potts-like for p =2 or
3. It is consistent with ideas of universality that the
transition remains three-state-Potts-like off the sym-
metry axis until the IC phase is encountered at the
Lifshitz point for p =3. The properties of this special
point cannot be investigated by the present method.

For arbitrary p, the exponent relation q =2/p' is
valid close to the entire C-IC line, and this value is
also approached at low temperature. Due to the rela-
tive divergence of the correlation lengths g„and (»
defined below, one must take some care when con-
sidering this limit however. For 4 =0, one must
consider closed domain walls, and the present
analysis is not expected to remain valid. With these
caveats, one can analyze the properties near the IC-C
transition by extracting the critical behavior in the
free fermion approximation. It can be checked that
the results obtained this way indeed agree with the
results obtained by Schultz for the Hamiltonian in

Eq. (2.1) in the limit of a iarge field h.
Close to the C-fC transition, the correlation func-

tion obeys

4
~2/p~+const e»~r (3.22) (4.3a)

For sufficiently small temperature, this inequality al-
ways holds for p ) 242, so that the existence of the
floating phase for integer p ~ 3 is established. It is

(4.3b)

(the y direction lies parallel to the domain walls).
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There is therefore a divergence in the anisotropic
properties of the correlation function. The pitch p
obeys

(4.4)
There is a specific-heat singularity as the transition is

approached from the IC side which scales like („but
the amplitude must vanish as the symmetry point
6 =0 is approached leaving only the essential singu-

larity characteristic of an xy transition for p «5.
The Hamiltonian in Eq. (1.1) is believed to have a

Kosterlitz-Thouless transition for 5 =0 for p «5. If,
however, the cosine potential is replaced by a poten-
tial which is more strongly peaked at 0=0, there may
be a first-order transition directly from the locked
phase to the liquid. This situation occurs for the
five-state Potts model, which is the limiting case of
such a peaked potential. With such a peaked poten-
tial, there is then a Lifshitz point possible in the
asymmetric model when 4 is not zero and the phase
diagram would be represented by Fig. 3 with the IC-
Li transition being first order. Since the arguments
in Sec. III only depend on the assumption that the
energy of a vortex exceeds the energy of a kink, it is
expected that any continuous potential replacing the
cosine in Eq. (1.1) will result in an IC phase near
5 =0.5.

avoid phases with long-range order and an arbitrary
rational value of the wave vector describing the order
at sufficiently low temperature. " With the assump-
tion that only lattice sites are occupied and that only
interactions between nearest-neighbor particles are
important, one can investigate the phase structure of
the resulting model. Admittedly the above assump-
tions are a very severe limitation on any possible can-
didate for a system to be mapped into such a model,
but the analysis may well turn out to be realistic at
least for a certain range of coverage and temperature.

One can approximately calculate the behavior of
the structure factor measured in an x-ray experiment,
The structure factor is given by

S(q) = $ exp[iq [U(R„)—U(R )]], (5.1)
(nm )

where the particles are labeled by their location in the
commensurate zero-temperature location R„and
U(R„)is their actual position. This prescription
makes sense at low temperature when dislocations
are absent. The structure factor can then be evaluat-
ed in the free fermion approximation. In this appli-
cation, the parameter p, is the chemical potential per
unit length of a straight domain wall and y is the
fugacity of a kink. These quantities are therefore
given by

y =exp[ —V~(ao/p)/T] (5.2a)
V. RELATION TO STRONGLY ADSORBED

OVERLAYERS

It has been suggested" that the Hamiltonian which
is relevant to the melting of a strongly absorbed sub-
monolayer of atoms is given by

H = X V(u; —u~, K,J)+5 XR,J (u; —u~) . (4.5)
t, ig) (IJ')

The vector R„"is the lattice vector separating unit
cells of the adsorbed solid and u; is the displacement
fields which are provided by the substrate in each
overlayer unit cell. The term proportional to 5 is a
chemical potential term, promoting compression of
the overlayer and V(u, R) obeys the symmetry

V(u, R) = V( —u, R) (4.6)
The potential V is periodic in u, with a periodicity es-
tablished by the overlayer and the difference vector
u; —

u& is understood to be translated back into the
unit cell before the dot product is taken. Thus for a
1 & 3 overlayer on a square lattice, the displacement
field u; takes the values

u„=aonx (4.7)
where ao is the lattice constant of the overlayer in the
x direction.

The present analysis may be applicable to strongly
adsorbed 1 x p overlayers on a square or rectangular
lattice. The assumption that the particles not be al-
lowed to occupy interstitial sites is crucial in order to

S q n(1+ p/p)

n(K ) —n(O)
)exp iq Rm+

px

(5.4)
~here 0 is the system size in the absence of the
domain walls and the extra factor of (I + p/p) is due
to the expansion by the walls.

p, = V„(ao)—V„[ao(1—p ')]+pz . (5.2b)

The length ao is the distance between atoms in the
absence of domain walls along the x direction and V„
is the interaction potential along the x axis between
adjacent molecules. The parameter V~ is the interac-
tion between molecules separated by a distance ao/p
apart in the x direction and a lattice spacing apart in
the y direction. The chemical potential p, q is the
external chemical potential supplied by the gas above
the surface.

The vectors R„aredefined so that the locations of
the atoms at zero temperature in the absence of
domain walls are given by integer coordinates. In the
presence of domain walls, the location U(R„)of this
molecule will obey

U(R ) —U(0) =R + [n (R ) —n (0) ]/px, (5.3)

where r) (R) is the number of domain walls to the
left of site R. Therefore
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By using the cumulant expansion, one finds that

S(q) = $ exp[iq [R + (n(R ) —n(0))/px]}0 1+pp

2

xexp — ", ([n(R„)—n(0) —(n(R ) —n(0))]')
2p

(s.s)

The quantity (n(R ) —n(0)) is nothing but R xp and the expression for the cumulant has been given in Eq.
(4.2). One therefore finds that

S(q) = $ exp[iq„(1+p/p)R„+iq»R»] [(R„/g„)'+(R/( )']0 1+p (5.6)

Near the Bragg condition

q„(1+p/p) =2rrn„+g„

gy
= 2

Olney

+.5y

(5.7a)

(s.7b)

stead to consider holes a's forming chains in an other-
wise full lattice. The phase structure is therefore
qualitatively symmetric in the interchange of particles
and hole chains, so that the phase diagram is sym-
metric in the change of variable

where n„and n~ are integers, one finds that the
structure factor has power-law singularities of the
form

S(q) 4g,1+p

The critical behavior of g„and g» and p is given by
Eqs. (4.3)—(4.5). By considering the stability against
dislocations (which are equivalent to vortices in this
case) one is led to the phase diagram in Fig. 6 for
densities less than 2. Away from the C-IC phase

boundary, vortices will modify the exponent in Eq.
(5.8).

For densities in excess of —, , instead of considering

the particles as forming chains, it is appropriate in-

n 1 —n (5.9)

S(q) = A~[(1 —2/p)5 q +1/p~5 & ] (s.lo)

where ft is the system area and Q, are the substrate
reciprocal-lattice vectors given by 27r(n„,n»), where
n„and n» are integers and Q, are the hole-cell

where n is the particle density relative to the fully
packed 1 &&1 overlayer. Thus the phase diagram for
densities near

~
coverage corresponds to the densi-

1

ties near —coverage and the holes may form a 1 x 6
overlayer at sufficiently low temperature.

Let us consider the structure factor in the case
~here holes form a commensurate 1 && p overlayer
lattice and the density is n =1 —1/p. The structure
function S(q) is then given by

2 4

I

6

FIG. 6, Phase diagram for an overlayer that orders in chains on a square substrate is shown. The incommensurate floating
.phases are shown by the shaded parts of the phase diagram. The phase diagram is qualitatively symmetric under the change of
variable n~ 1 —n where n is density. This reflects the hole-particle approximate symmetry. The chemical potential is plotted
along the ordinate, and the chemical potential at

2
coverage is denoted p, &~2. Of course, nonideal effects may invalidate this full

phase diagram except over a restricted region of temperature and chemical potential.
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reciprocal-lattice vectors 2m(n„/p, n~) where n; are
again integers. There are, therefore, large 8-functiori
peaks in the structure factor at the reciprocal-lattice
vectors of the substrate and p weaker 5-function
peaks evenly spaced between the substrate peaks due
to the hole-hole correlations in the scattering.

In the incommensurate phase the 8-function peaks
at Q, vanish and are replaced by power-law singulari-
ties identical in form to the Eq. (5.8).
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