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The transverse components of the susceptibility and fluctuation for the spin van der Waals

model are obtained for high- and low-temperature XY- and Ising-like regimes. The difference
between the susceptibility and fluctuation, which arises because of noncommutativity, is related

to certain correlation functions of S,. In the XY-like regime, the difference vanishes since the

principal long-range order is (S„). But in the Ising-like regime, the difference persists since the

principal long-range order now is (S,). Our results are compared with the bounds of Falk and

Bruch on the ratio of the susceptibility to the fluctuation. In the critical region as well as in the

high-temperature region the upper and lower bounds merge. In these regions, the two correla-

tion functions become identical in the manner indicated by Falk and Bruch, In the low-temper-

ature region, the bounds do not merge. Here we find that in the Ising-like regime of the model

the susceptibility and fluctuation are properly different, but in the XY-like regime the two func-

tions nevertheless become identical. Thus, the susceptibility and fluctuation can evidently be

the same without the bounds necessarily merging.

I. INTRODUCTION

For interacting spin models, the zero-field isother-
mal susceptibility X and the variance Y in the long-
range-order operator can be different. This differ-
ence arises if [H,S ] W 0, where H is the Hamiltoni-
an and S is the long-range-order operator. One may
explicitly obtain the difference between X and Y by
solving, for example, the susceptibililty in terms of
the simpler fluctuation.

Falk and Bruch' obt'ained upper and lower bounds
for the ratio X/ Y. Should the upper and lower
bounds merge in some physical domain, e.g. , the crit-
ical region, the result of Falk and Bruch implies that
the two quantities behave in the same manner in that
domain. One of us2 demonstrated that the suscepti-
bility and fluctuation for the nearest-neighbor three-'

dimensional spin- —,XY model have the same critical

behavior in accordance with Falk and Bruch.
If the two bounds do not merge, the difference

between the susceptibility and fluctuation although
still bounded is not resolved. There is also the possi-
bility that in some domain one quantity may ap-
proach the other without merging of the bounds.
This possibility is not necessarily incompatible with

Falk and Bruch, but we believe that the behavior of
the bounds alone cannot explain it. The work of
Falk and Bruch was formulated for systems with
finite-range interaction. To what extent their work

applies to systems with long-range interaction is
somewhat unclear.

The spin van der Waals model allows one to
study some of the questions raised above. For this

mean-field-like, long-range interaction model, exact
expressions for the susceptibility can be given for all
temperatures. Thus, one can obtain the difference
between the susceptibility and fluctuation, compare
the resultant ratio X/ Y with the bounds of Falk and
Bruch, and explore other possibilities.

The spin van der Waals model is divided into two
physical regimes. The equilibrium and nonequilibri-
um behavior of the model in one regime is generally
quite different from the behavior in the other regime.
This difference in behavior may also be reflected in
the difference between the susceptibility and fluctua-
tion, which arises because of noncommutativity. If
this connection is realized, we have a means of relat-
ing the effects of noncommutativity to some physical
observables and thereby seeing how noncommutativi-
ty manifests itself.

Our paper is organized as follows: In Sec. II, the
susceptibility for the van der Waals model is ex-
pressed as integrals involving certain equilibrium
correlation functions. In Secs. III and IV, these in-
tegrals are evaluated, respectively, in the XY- and
Ising-like regimes of the van der Waals model. In
Sec. V, we briefly examine the bounds of Falk and
Bruch from a perspective of the van der Waals
model. In Sec. VI, we discuss our results, in particu-
lar, the effects of noncommutativity.

II. FLUCTUATION AND SUSCEPTIBILITY FOR
THE VAN DER WAALS MODEL

The spin van der Waals model refers to a system of
spins arranged in a regular lattice, each of which is
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coupled to all other spins with equal strength. ' The
model may be defined by the following Hamiltonian:

N

0 = ——g[J(s,"sf +s/sJ)+ J,sfsj], (1)
i&j

where N is the tota1 number of spins, ' the coupling
constants J and J, are both taken to be non-negative,
s; denotes the o. component of the spin- —operator

on the ith site of the lattice where n =x, y, or z. The
system will be referred to as XY-like if J & J, and as
Ising-like if J & J,. The general equilibrium behavior
of this model is now-well established. 4 8

The fluctuation and susceptibility for this model
are defined in the usual manner, ' respectively, as

III. L~ IN THE XY-LIKE REGIME

A. High temperature

For T ) T, = J/2k, Dekeyser and Lees have ob-
tained the following for the correlation functions:

($2n) 2tt' ($2)n
2 n!

and

($2n$2) ($2n) ($2)

for n =1,2, 3, . . . .
Using Eqs. (7) and (8) in Eq. (6), we obtain

yaa Jt'aa(o) (2)
Lxn ($2)F + ($2)F

where
and

toPX-=P-' d) it-(Z),
0

(3)
with

taP

F =P '
~ dh. Ve'ot"~

f Jo (1O)

where

lt aa()t) = (e"HS e "HS ) —(S )

where S = X,. s;, the angular brackets ( )
denote the canonical ensemble average.

It is convenient to denote the temperature integral
in Eq. (3) by L', i.e., X = L (S )', and—also to
define gLaa=Laa —($'). Then, gL«=Xaa —y«
Thus, it is sufficient to consider L or AL for this
model in the limit N ~. %e shall limit our study
to L or 4L only since L =L~ and AL "=0.

The temperature integral L may be evaluated if
the time evolution of S„ is given. Dekeyser and Lee'
have shown that

S (t) =e '"'[(cos2totS, )$ —(sin2rotS, )$~] (Sa)

$(X) = —h. re+2K «P($, )

On the high-temperature side, Fo and F~ can be
readily evaluated. ' Thus to order N,

Lan ($2) + 0(1) (12)

8. Low temperature

For T ( T„Dekeyser and Lee have obtained the
following for the correlation functions

where (S2) =
2 N/(2 —pJ). Hence, to order N,

AL =0. That is, X = Y for the high-temperature
XY-like van der Waals model. Our high-temperature
result is exact to order N. '

and

(S„(t)$,) =e '"'[((cos2totS, )$„)
+ ,

'
i ((sin2tn—tS,)S, ) ] (Sb)

and

($2n) n ' ($2) n

2"n!

($2n$2) ($2n) ($2) ($2n+2)

(13)

(14)
where co = /2J/N and hJ =J —J, . We can readily ob-
tain the "temperature" evolution S,(—i X)
= e"HS„e "H and the "temperature" correlation func-
tion (S„(—ih. )$„), respectively, from Eqs. (Sa) and
(Sb) by replacing t by —i ) Hence, . = (Sn')FO+~($')Fi —2~'($')'F2 . (1S)

for n =1,2, 3, . . . . Using Eqs. (13) and (14) in

Eq. (6), we obtain

pL~= Jt dX e ""((cosh2h.AS, ) S„2)

+
2 „t dh. e ""((sinh2hooS, )$, ) (6)

On the low-temperature side, the F 's may be ex-
pressed in terms of Dawson's integral D, '

Fo=~ 'Db), ~'= ,'P'~'(S, ') ~—
To evaluate the above integrals, it is necessary to first
obtain the correlation functions (S,2") and (S,'"S„'),
where n =1,2, 3, . . . , in the XY- and Ising-like re-
gimes for temperatures above and below the critical
temperature. "

1
Fi = ,pFo—
2F2 = P/o) + (—P2 P/cu) Fo—(16b)

(16c)

The argument of Dawson's integral is very sma11 if
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we let X ~ while T is kept low but fixed. ' Thus,
we can replace the integral by its asymptotic form and
obtain, "

3.0

&L-=-,' p (S.') --,'(p )'(S.')', (17) 2.5

where (S2) = 2N/PhJ. We note that hL =O(1).
Hence, to order N, X = Y for the low-temperature
XY-like van der Waals model. This result is exact to
this order.

2.0

IV. L~ IN THE ISING-LIKE REGIME
I.5

A. High temperature

For T ) T, = J,/2k, the partition function is for-
mally identical to that for the high-temperature XY-
like. That is, Eq. (9) applies here with (S,')
= —,N/(2 —pJ, ), which although finite in the XY-like

regime can now diverge if T T,+. The F 's depend
strongly on the phase factor @(A.). But, to order N,
we obtain the same result as in the high-temperature
XY-like case.

I.O

0.5

I

0.5
I

I.O

T/T
C

I.5
I

2.0

B. Low temperature

For T & T„Dekeyser and I.ee have obtained the
follow ing for the correlation functions: To the lead-

ing order in N,

and

(S2n) S 2N

(S,2"S2) = (S2".) (S2)

(18)

(19)

+
4 N(1 —coshPo hJ, )/Pb J, (20)

where So= , No. so that o. = O(1) a—nd o.1

—(T, —T)' as T~T,
If T T„ then hL =O(o) and X Y to the

leading order in %. But for 0 ( T & T„hL
= O(N). Thus, for the low-temperature Ising-like
regime, the susceptibility and fluctuation are indeed
distinguishable. ' In Fig. 1, the susceptibility and
fluctuation for the Ising-like van der Waals model are
illustrated for different values of J,/J using our high-

and low-temperature results. For T ) T„ the suscep-
tibility and fluctuation are the same, both following

(p,J, —pJ) '. For T ( T„ the two quantities are
different as indicated, the susceptibility being the

for n =1,2, 3, . . . , where So is the long-range order,
which vanishes at T T,—and is of order N, and
(S2) =

2
N/P/tJ„where hJ., =J, —J, which is now

finite at T= T, Using Eqs. (18.) and (19) in Eq. (6),
we obtain to the leading order in N,

L = (S2) sinhPohJ, /Pa. /t J,

smaller of the two, excepting at T, where both
merge. Observe that the amplitudes of the suscepti-
bility and fluctuation strongly depend on J,/J, but the
maxima occur at T, independent of the anisotropy,
already noted by Dekeyser and Lee. s As J,/J I,
the amplitudes of the susceptibility and fluctuation
grow, finally diverging at the isotropic limit when
T T,. The difference between the susceptibility
and fluctuation becomes more pronounced as J,/J be-
comes larger and also as T becomes sm'aller.

U. BOUNDS OF FALK AND BRUCH

Falk and Bruch have given the upper and lower
bounds for the ratio X/ Y in the following form

f„(r ) ~x/Y~ 1

where

f (o)) =(1 —e &+')/ —,
'

pcs

(21)

and co = v2/2 Y, where v2 is the second moment (see
below) and Y is the mean-square fluctuation. "'s

FIG. 1. Susceptibility vs fluctuation for the Ising-like van
der Waals model, The susceptibility and fluctuations are
shown for several different values of the anisotropy J,/J.
For T ) T„where T, =J,/2k, the susceptibility and fluctua-
tion are the same, following (IagJz PJ) For T & T the
susceptibility (dashed lines) and fluctuation (solid lines) are
indeed different, obtained from Eq. (20).
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The lower bound f (cu) is a weaker lower bound.
Falk and Bruch have found a stronger lower bound

f, (co), satisfying f„(~)~ f, (cu) ~ X/ Y. We shall
first discuss the weaker lower bound and the possibil-
ity of its merging with the upper bound. When the
weaker lower bound does not merge with the upper
bound, it is then useful to examine the stronger
lower bound to see how close or far it is from the
upper bound. We shall consider the stronger lower
bound at the conclusion of this section.

The above bounds (21) are flexible from the lower
side only through the parameter ao. The two bounds
can merge if co 0. That is, m 0 implies X Y.

This possibility arises for systems with finite-range
interaction if, as noted by Falk and Bruch, Y diverges
as in the critical region while v2 remains finite. " (We
exclude certain symmetric systems for which v2 =0 so
that X= Yalways. ) If ro does not vanish, Eq. (21)
places bounds on X/Y. If, for example, —,Pro =0.1,
0.952 ~ x/Y «1. The susceptibility may neverthe-
less still approach the fluctuation. That is, X Y

does not necessarily imply cu 0. (In this case, the
behavior of ~ seems to be insufficient to explain the
behavior of the susceptibility with respect to the fluc-
tuation. ) All of these possibilities are realized in the
spin van der Waals model.

We shall thus briefly examine the bounds of Falk
and Bruch with respect to the van der Waals model.
Falk and Bruch deduced the upper bound X/ Y ~ 1

based on the following three properties of E(h.): (i)
K(X) =E(P it), i.e., K(h) is—symmetric in A.

about h. =-, P, (ii) minE(h. ) =E(—,P), (iii) for

0~~» 2/3, maxE(h. ) =E(0). These general
1

properties are sufficient to establish the upper bound,
independently of the details of H. For the van der
Waals model, these properties are satisfied in the lim-
it N ~ in the high- and low-temperature XY- and
Ising-like regimes, and the upper bound holds pre-
cisely in accordance with Falk and Bruch.

Falk and Bruch deduced the weaker lower bound
requiring only that certain sum rules are satisifed.
But the lower bound, unlike the upper bound, con-
tains model-dependent quantities Y and v2, the latter
of which is defined as

vy = (lS , [H,S ]I) (23)

p2 =o)((S„')—(S,')) (24)

which behaves essentially like the energy. ' Thus,
v& = O(1) in the high-temperature XY- and Ising-
like regimes; whereas v2 = O(N) in the low-

temperature regimes. That is, co =0 for T T, but
= O(1) for T ( T, . Hence, for all high tempera-

tures, the upper and lower bounds must necessarily
merge. But for low temperatures the two bounds do
not merge. In the XY-like critical region, ~ 0 in
the manner of Falk and Bruch so that the two
bounds merge. In the Ising-like critical region, even
though Y does not diverge, ~ 0 also.

The above double commutator is familiar through the
f sum rule. The van der Waals model satisifes the
sum rules including the f sum rule. 20 Thus the lower
bound is applicable. One can readily show that for
this model

TABLE I. Lower bounds for X/Y in the XY-like regime. This table shows the values for the
weaker lower bound (WLB) and stronger lower bound (SLB) as a function of Tand J/J, . In the
columns for the bounds, the upper number corresponds to the WLB and the lower number to the
SLB. One can determine ~ from Eq. (24) with Tand J/J, given. The range of the anisotropy J/J,
is from 1.5 to 100.

100 1.5

WLB

SLB

WLB

SLB
WLB

SLB
WLB

SLB

0.997 76 0.99848 0.998 85 0.99921
0 94 .00

0 998 51
. 03 05 0 998 98 0 3 0 999 23

0.00 8 0 99947

0.90 0.01376
'99 0.009 45

' 0.007 24
' 3 0.005 04

0.995 42 0.996 85 0.997 59 0.998 32

0.80 0.06960 0.04901 0.03856
0 98718 0.02849

0.965 99 0.975 89 0.98097 0.985 89

0.70 0.19494 0.14098
0.908 89 0.932 71

0.953 47
0.11436 0.091 11

0.944 94 0.955 79

0.961 63
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TABLE II. Lower bounds for X/Y in the Ising-like regime. This table shows the values for the
weaker lower bound (WLB) and stronger lower bound (SLB) as a function of T and J,/J. In the
columns for the bounds, the upper number corresponds to the WLB and the lower number to the
SLB. One can determine ~ from Eq. (24) with Tand J,/Jgiven. The range of the anisotropy J,/J
is from 1.1 to 2.

1.5 1.2

WLB

SLB

WLB

SLB

WLB

SLB

WLB

SLB

Q 98389
0 1

0 99283
'

0 99820
0.976 14 0.989 39 0.997 31 0.99920

0.90 0.085 20 0.037 87 0.009 47 0.002 82
0.958 58 0.981 30 0.995 28 0.998 59

0.80 0.197 14
'

0.087 62
'

0.021 90
' 0.006 52

0.935 20 0.970 97 0.992 71 0.997 83

Q 7Q Q 35Q 34 0 155 7] Q 038 93 0 980 79 0 01 1 58
0 994 23

0.886 17 0.948 64 0.987 06 0.996 14

According to the susceptibilities evaluated in Secs.
III and IV, in the high-temperature XY- and Ising-
like regimes, hL = O(1) so that X Y, which is

consistent with merging of the bounds. In the low-

temperature XY-like regime, hL = O(1) also so
that, in spite of the bounds not merging, X Y .
In the low-temperature Ising-like regime, ~L
= O(N) so that X W Y, which, however, is entirely
consistent with nonmerging of the bounds.

%e shall now briefly examine the stronger lower
bound,

f, = tanhy/y

where y is the root of y tanhy = —,Pro. Thus the

stronger lower bound f, also depends on co. One can
determine co from Eq. (24) given T and the anisotro-

py J vs J,. In Tables I and II, we have compared the
two lower bounds at various temperatures below T,
for different values of anisotropy, J/J, for the XY-

like and J,/J for the Ising-like. In Table I (XY-like),
the anisotropy ranges from 1.5 to 100. At T/T,
=0.94 and J/J, =1.5, both lower bounds are close to
unity (the upper bound), the stronger lower bound is
a little closer to the upper bound. But still it is decid-
edly far enough away from the upper bound. As
T/T, becomes smaller while the anisotropy remains
fixed, the gap between the two lower bounds widens
and also the gap between the upper and lower bounds
widens. If the anisotropy becomes greater while the
temperature remains fixed, the same trend is observed.

In Table II (Ising-like), the anisotropy ranges from
1.1 to 2, much smaller than in Table I. The same

general trends noted for Table I are observed. The
main difference is in the change of the values of the
bounds as a function of the anisotropy. In the XY-
like regime (Table I), the weaker lower bound, for
example, remains reasonably close to the upper
bound for a very large range of the anisotropy. In
the Ising-like regime (Table II), the weaker lower
bound removes from the upper bound rather more
rapidly. This behavior perhaps is reflective of the
fact that for the XY-like regime X = Y but for the
Ising-like regime X W Y .

VI. DISCUSSION

The noncommutativity of S„with 0 gives rise to
the possibility of defining for the van der Waals
model the susceptibility X which may be apparently
different from the fluctuation Y . The effects of the
noncommutativity for this model, i.e., 4L, are con-
tained essentially all in the correlation functions in-
volving S, [see Eq. (6)]. For high temperatures, one
can show that S, = 0 (N' 2) whether the model is
XY-like or Ising-like. Thus, the noncommutativity
contributes only to overall corrections, all of which
vanish as N ', and the susceptibility and fluctuation
are identical to the leading order in N. In the low-

temperature XY-like regime of this model, S, is not
the principal long-range order. Thus, the effects of
the noncommutativity are again negligible and the
susceptibility and fluctuation are identical. But in the
low-temperature Ising-like regime, S, is now the prin-
cipal lang-range order. That is, 4L is of the same
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order in N as l. itself. Hence, the susceptibility and
fluctuation are indeed different quantities.

The different behavior of S, from the XY-like re-
gime to the Ising-like regime of the van der Waals
model noted above is also reflected in the time corre-
lation function (S„(t)S„).For T ) T„ the Ising-like
time correlation function is Gaussian, but for T ( T,
it becomes oscillatory. The XY-like time correlation
function remains Gaussian for T above and below the
critical temperature. The parallel behavior between
the susceptibility and the time correlation function is
not unexpected since the temperature evolution and
the time evolution of S„, for example, are formally
similar.

Finally, our study of the susceptibility for the van
der Waals model illustrates the generality of the
bounds of Falk and Bruch. The applicability of the

bounds on the ratio of the susceptibility to the fluc-
tuation evidently extends to systems with long-range
interaction if they satisfy certain leading sum rules.
We have demonstrated via the van der Waals model
that merging of the upper and lower bounds can take
place outside the critical region. We have also shown
that the susceptibility and fluctuation can be the same
without merging of the bounds.
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