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Phase transitions in elastic media, taking place under the application of the force conjugated to
the order parameter (the ordering force), are discussed theoretically. The force imposes to the

solid the symmetry of the new phase, and this produces a linear coupling between order param-

eter and scalar variables such as density and energy. If there exists a diverging susceptibility

X(T, q) in the absence of the force, it will generally become quenched by the induced coupling

to density in the elastic solid. Specifically, one finds that X acquires a discontinuity at the wave

vector q =0, with only X(T, O) that can diverge. This fluctuation quenching is discussed in gen-

eral, and detaiied calculations are given for the ferroelastic transition in KH2PO4. As light

scattering is a choice investigation method in that case, particular results are given for the

scattering intensity, as well as for the size and motion of the scattering cone under the applied

force. The force also modifies the dynamics in an essential way, as order-parameter fluctuations

become linearly coupled to entropy fluctuations. This coupling leads to a thermal central peak

whose strength and width are derived.

I. INTRODUCTION

Systems that undergo elastic transitions can be clas-
sified according to the dimension of their soft sub-
space in reciprocal space. A type-I instability corre-
sponds to transiti'ons with only soft directions,
v hereas type-II designates those with soft planes. '

There exist also type-0 instabilities for which only a

point, q =0, is soft in the Brillouin zone. Elastic
transitions with symmetry breaking are always of type
greater than zero." The converse statement is gen-
erally true, namely, nonsymmetry-breaking elastic
transitions are generally of type-0, except for acciden-
tal combinations of material parameters. Type-0 in-

stabilities are known to occur in a variety of systems,
for example in transitions obtained by H dissolution
in certain metals, 4 or in mixed-valence compounds in

which the volume compressibility exhibits an anoma-
ly. ' In such cases, macroscopic modes with q = I. ',
~here I. is a typical sample dimension, may become
important. 4 Those modes depend strongly on boun-
dary conditions, as recently demonstrated for the
Nb-H system. 6

Type-0 second-order transitions can also be in-

duced by application of the force conjugated to the
order parameter of a symmetry-breaking transition.
For example, application of the appropriate stress can
transform a type-I or type-II first-order instability
into a type-0 instability that terminates at a critical

point (corresponding to a critical value of the exter-
nal stress). A type-0 instability is also expected to
occur. in systems where the elastic degrees of freedom
are only secondary order parameters by turning on
the force conjugated to the primary order parameter,
e.g. , by applying a magnetic field on a compressible
ferromagnet. 7 The present paper considers the statics
and dynamics of such induced type-0 transitions, with
special attention to the case of KH2PO4 (KDP) for
which experiments have already been performed. ' In
that case, the transition is easily changed from type-I
to type-0 by application of a static electric field E
parallel to the z axis, which is the axis of the spon-
taneous polarization P that develops at the tetragonal
(42m) to orthorhombic (2mm) ferroelectric transi-
tion.

The absence of critical microscopic fluctuations in a
type-0 transition justifies the use of a Landau expan-
sion as will be done here. ' Indeed, at such a transi-
tion one expects no diverging correlation range, no
associated critical slowing down, and thus no cluster-
induced nonanalycity of the free energy. Further-
more, in the case of KDP, the transition without field
is type-I, which has an upper critical dimensionality
of only 2.5.' Hence, a Landau approach is fully jus-
tified for d =3. It should be noted that the absence
of critical microscopic fluctuations at a type-0 transi-
tion is purely an elastic effect. If one could ignore
elastic couplings, the conclusion mould be that
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second-order transitions induced by application of the
ordering force should behave just as the liquid-gas
critical point. ' In the hypothetical case of a phase
transition in a simple isotropic solid, Ginzburg and
Levanyuk already pointed out that it is the presence
of a nonvanishing shear modulus that prevents the
divergence of microscopic fluctuations and the obser-
vation of true critical opalescence in light scattering. "

KDP is the model substance for H-bonded ferro-
elastic ferroelectrics, as well as the prototype of a rich
family. ' ' It is generally agreed that the transition is
related to the ordering of protons. " This ordering
couples to an optic mode of 82 symmetry associated
with cation displacement parallel to the tetragonal c
axis. ' The resulting polarization couples piezoelectri-
cally to the strain component e6, ' that is, to xy
shear, " The corresponding acoustic branches be-
come unstable, producing the type-I transition indi-
cated above. Brillouin scattering ideally probes that
instability. The spectrum is proportional to the
relevant correlation function (SPSP)-, „where SP
designates the order-parameter fluctuations, and the
subscripts q, ao indicate space-time Fourier transfor-
mations. It is important to note, however, that Bril-
louin scattering does not give any indication as to the
origin of the optic-mode softening, nor can it test
tunneling theories. Conversely, the proton-ordering
aspect, which could be expected to belong either to
the 3D Ising or to the 3D dipolar universality classes,
becomes irrelevant sufficiently close to the transition
where the crossover to the type-I elastic universality
class has taken place.

The transition in KDP is known to be slightly first
order. ' Polarization measurements' as well as x-ray
diffractometry' have been used to investigate the
transition under hydrostatic pressure p, and have es-
tablished that it becomes continuous above a tricriti-
cai point (TCP) about 2.5 kbar. Under application of
the ordering electric field E, one expects two wings as
sketched in Fig. 1. The present work considers the
light-scattering behavior in an ET plane with p below
the TCP value. For convenience, the value p =0 is
selected. The transition with p =E =0 has already
been investigated thoroughly. ' " Hardening of the
adiabatic elastic constant under E has also been ob-
served. The early experimental work was impaired
by the presence of a rather strong central-peak
feature, which was later recognized to be static
and annealable. ' It is the availability of highly per-
fect annealed crystals that has now allowed the obser-
vation of the reduction under E of the overall scat-
tered intensity, an effect which indicates fluctuation
quenching. Simultaneously, a thermal central peak
occurs, whose intensity and width could also be mea-
sured. ' This peak is produced by the coupling of
thermal fluctuations to order-parameter fluctuations,
and it has a similar origin to the thermal central peak
of the ferroelectric phase. ' ' That particular aspect

FIG. 1. KDP phase diagram. In the E =0 plane, the
transition is of type-I, and it is continuous at pressures
above the TCP. On the wings, at E &0, the transition is of
type-0, orthorhombic to orthorhombic. It becomes continu-
ous on the lines E to TCP and E' to TCP.

of the present work has already been described quali-
tatively elsewhere. "

In the following sections, the above ideas are
developed in detail, first, in general terms, then, with
particular application to KDP. In Sec. II, an appropri-
ate Landau free-energy expansion is presented. In
Sec. III, this expansion is used to calculate the macro-
scopic response, the shift of transition temperature
with hydrostatic pressure, the ET phase diagram, and
the classical exponents. The relation to light scatter-
ing is discussed in Sec. IV: the scattered spectrum is
related to generalized susceptibilities using the
fluctuation-dissipation theorem, sum rules are
presented, and expressions are derived for particular
scattering geometries of interest for KDP. The micro-
scopic susceptibilities needed to calculate the spec-
trum are then obtained using the Landau free-energy
expansion; in Sec. V, only the quenching of integrat-
ed intensities, the shape of the scattering cone, and
its motion with E, are considered. In Sec. VI, the
spectral shapes are discussed: to this effect, dynami-
cal equations are derived, and these are used to cal-
culate the relative strength and the width of the ther-
mal central peak.

II. LANDAU EXPANSION IN PRESENCE OF
THE ORDERING FORCE

Consider a parent phase that transforms into a
lower symmetry distorted phase at some temperature
T„. The transition is assumed to be slightly first or-
der, so that the absolute instability of the parent
phase with respect to the distortion of interest occurs
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at a temperature T, slightly below T„. Here, for con-
venience, we take the parent phase to be the high-
temperature one. Let us assume that one can impose
externally the force conjugated to the order parame-
ter q. Under that force the symmetry is broken.
However, for small enough force, a jump in q at a

temperature near T„still occurs: this is a
nonsymmetry-breaking transition. By varying the
force, one obtains lines of first-order transition that
terminate at critical points. For a one-component or-
der parameter, the situation is as shown on the ET
plane of Fig. 1. Invariants of the group of the parent
phase can always be constructed by combining q with
those elastic degrees of freedom that transform as the
identity representation of the group of the distorted
phase. One such simple invariant is the product of
the second-order invariant in q with those strain
combinations that transform as the identity represen-
tation of the parent group. Under the applied force,
q is nonzero; the effect of the above terms is that the
nonsymmetry-breaking transition is elastically cou-
pled. Hence, it is generally a type-0 elastic transition.

The free energy is expanded about a reference con-
figuration of the parent phase. As the transition was

assumed to be slightly first order, there is no third-
order invariant in q. The susceptibilities are related
to second derivatives of the free energy. Hence, to
obtain the lowest-order changes of susceptibilities
produced by the applied force, it is necessary that the
expansion be complete up to all fourth-order invari-

ants, including all strain couplings to the same order
in q. To discuss stability limits, it would be sufficient
to restrict the expansion to those strain combinations
that transform as the identity representation of the
distorted phase. However, in Secs. V arid VI we will

also be interested in waves with more general
transformation properties. For this reason, it is ex-
pedient to write down a full expansion immediately.
To find all terms of the expansion, it can be con-
venient to consider the elastic stiffness tensor of the
distorted phase and to compare it to that of the
parent phase. Those elements that are new in the
distorted phase are polynomials odd in q, whereas
those elements that are common to both tensors are
even in q.

The above ideas are now applied to the particular
case of KDP. Here, two additional circumstances
have to be considered: (i) P and e6 are linearly cou-
pled in the parent phase. Hence, either one, or a
linear combination, could be taken as suitable order
parameter. We select P as primary order parameter,
as the applied force is the electric field E conjugated
to P. However, in the distorted phase, e6 is an odd
polynomial in P, and this generates additional terms
in the Landau expansion. (ii) The orthorhombic x,y
axes of the distorted phase are rotated by m/4 around
z with respect to the tetragonal x,y axes. This means
that the three orthorhombic strains eP (i -1 to 3 )

~p + GP + GE + GPE + GTE (2;1)

The reference configuration is for the moment taken
to' be the paraelectric phase at T = T, (free Curie
temperature), assuming that point could be reached,
and with no applied forces (E = o. =0). In Eq. (2.1):

(I) Fo is the background lattice free-energy densi-

ty, related to the background specific heat Cp, by

O'Fp pCp,

p T
(2.2)

where the subscripts designate constant polarization
and strain, and where p is the density.

(2) Gp is the polarization contribution, where only
P3 =—P will be considered, since only the ordering
field is applied

Gz= —a(T —T,)P2+ BP4+ PE —. (2.3)—
Here, T, is the "clamped" Curie temperature, which
is the instability point in the absence of coupling to
the elastic degrees of freedom. Note that B is not the
macroscopically measured "Landau B coefficient. "
The latter will be designated by BM and it is derived
in the following section. The dots represent sixth or-
der and higher terms necessary to stabilize the sys-
tem. A full expansion to sixth order in P would con-
tain a large number of unknown coefficients and
would hardly be useful. Hence, a term 6

CP will be
1

added simply to the macroscopic free energy in the
next section [Eq. (3.16)] in order to discuss the
phase digram. The coefficient C is then equal to the
macroscopic value that can be derived from polariza-

that transforms as the identity representations of the
distorted phase are related to strains e; in the tetrago-
nal axes by et =e2=

2
(et + e2), e6=e~ —e2, e3 =e3.

In the following, only tetragonal axes of the parent
phase will be used. However, as mentioned more
generally above, the expansion will not be restricted
to e& = e2 as we will later be interested in waves pro-
pagating along x.

To describe the isothermal macroscopic response
under constant external forces (constant stress a and
electric field E), it is appropriate to use the Gibbs
free-energy density G(o, K, T). To describe wave
properties, it is more convenient to use an expansion
in terms of strain and polarization (Helmoltz free en-
ergy F). The relation between G and F is simply

G(P, E, T) =F(e, P, T) —e a —P E,
from which e and P are eliminated using the equili-
brium conditions BF/Be, = a, and BF/BPJ = Ei. Here,
we proceed to a Helmoltz expansion and subtract the
products e;o.; and EP (only the ordering field E3 =E—
is considered). Although the canonical transforma-
tion will not be completed immediately, we call the
result the Gibbs free-energy density. It is written
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tion measurements. '

(3) GE is the pure elastic contribution to fourth order in P, remembering that e6 is linear, and that eq, e2, and e3

are quadratic in P:

GE=
2 C11E1 +

2 C11e2 +C12eie2+ 2 C33e3 +C»e1e3+C13e2e3+ 2 C66e6 +
2 C44e4 +

2 C44e5 —e&~1
1 2 1 1 2 1 2 1 2

+
2 C166e1&6 +

2 C166~2&6 +
2 C366e3e6 + C456e4e5e6+

41
C6666e6 ~

1 2 1 1 2. 1 4 (2.4)

+
2

466P'e6 (2.5)

~ ~ ~
0OO
0OO

0 ~ ~
~ ~

~ —« — ~ &&

0 —22 —0

—13——12 —~ 0
12—

0 0

(b)

FIG. 2. Diagrams of allowed tensor coefficients for
second-, third-, and fourth-rank tensors. Bars connect equal
elements: (a) Point group mm2, which is the orthorhombic
point group of the low-temperature phase of KDP. (b) The
same as (a) but with the (x —y) axes rotated by 45' about
i: here full dots represent the point group 42m of the high-

.temperature phase, open dots represent additional elements
produced by the lower mm2 symmetry, and squares indicate
elements whose nonlinearities are important for the consider-
ations of Eqs. (2.4) and (2.5). The line indices are indicat-

ed between (a) and (b).

Here, the C 's are elastic stiffnesses at constant T and
P, and Brugger's definition of the higher-order elastic
constants has been used Note that GE above does
not contain all third- and fourth-order terms in all
strains. It just contains all quadratic terms in the
strains, and only those third- and fourth-order terms
that give quadratic contributions in strain fluctuations
under the application of a static electric field E, or of
a static stress a6. An easy way to see that Eq. (2.4)
is complete in the above sense is to consider the elas-
tic-constant tensor of the distorted phase (obtained
by application of a static o6 to the parent phase) as
shown in Fig. 2(a). This tensor is then rotated to the
coordinate system of the parent phase [Fig. 2(b)].
Those elements that appear in addition to the usual
ones of the parent point group (42m) are proportion-
al to e6 and are included in Eq. (2.4).

(4) Gps contains the mixed polarization and strain
terms, that is, piezoelectricity and electrostriction, to
fourth order in P and e6. One has

GPE = h36Pe6 —86P 86 —56Pe6 81P 81 51P e2

~3P e3+ 2 ~16Pele6+ 2 ~16Pe2e6+ 2 ~36Pe3e6
1 1 1

GrE =—(~~(e~ + e2) + a3e31&T

where the following definitions are used

al —=

all�(

Cl1 + C12) + a33C13

A3 2&11C13 + A33C33

b, T—= T —T,

(2.6)

(2.7a)

(2.7b)

(2.7c)

Here, a&J is the thermal expansion tensor at constant
P. The effect of thermal expansion being altogether
small, no nonlinear term has been included in Eq.
(2.6). Note that Eq. (2.7c) is consistent with our
choice of the parent phase at T = T, .

This completes the Landau expansion which will al-

low us to calculate both macroscopic and microscopic
responses. In spite of the vast knowledge accumulat-
ed on KDP, several coefficients appearing in Eqs.
(2.4) and (2.5) have never been measured. As will

be shown below, this does not prevent the compar-
ison of theory and experiment, as these coefficients
will occur in final results in combinations which have
actually been established experimentally.

III. MACROSCOPIC RESPONSE AND
THE PHASE DIAGRAM

The equilibrium state is obtained by elimination of
all strains from Eq. (2.1) using

BG =0 (i =1 to 6)
Be&

(3.1)

Here, h36 is the usual piezoelectric coefficient, and
the subscripts (36) will be dropped for notational
simplicity. The other coefficients are denoted by 5
and b, with the polarization subscript 3 omitted for
the same reason. There seems to be no standard no-
tation for these coefficients. Their existence derives
from a consideration of the third column of the
piezoelectric tensor in Fig. 2(b). The omission of
terms in P1 and P2 amounts to neglecting the tensor
coefficients in the first and second columns of the
piezoelectric tensor of Fig. 2(b). These only play a
role for waves with appreciable e4 and e5 com-
ponents.

(5) Finally, GrE accounts for thermal expansion. It
is written
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(3 .2)

After elimination of the e&'s the expression
BG/Bg =0 becomes the equation of state connecting
the order parameter to the external force. Here, it is
assumed that, as in the case of KDP, the order
parameter is not a strain. Otherwise the relation
BG/Bg =0 would already be one (or several) of the
equations (3.I) . The derivative in rl of BG /Bri is the
inverse of the macroscopic susceptibility. In practice,
the equations (3.1) are nonlinear and clumsy to
solve. Furthermore, the coefficients a;„of the ex-
pansion

e, = Xa,„v)"

are generally accessible to experiment. Hence, it is

preferable to consider Eq. (3.2) as experimentally es-
tablished, and to introduce these equations in Eq.
(3.1) to derive relations between the experimentally
known a&„'s and the coefficients that apppear in G. If
convenient, these relations can also be introduced in
BG / Bn =0 in order to express the equation of state,
inasmuch as possible, in terms of measured quanti-
ties.

Let us see how this works out for KDP. As we
will also discuss the effect of hydrostatic pressure, we
take o-1 = o2 = o~ = —p where p is the pressure. The
symmetry of the low-temperature phase imposes
ei = eq and e4 = e5 =0. Then Eq. (3.1) reduces to the
three independent equations

( Ctt + Ctp) et + Cthe) + T Ct66e6 —&tP +
q

ht6Pe6 —atE T +p = 01 2 2 1

2 C1qe1 + Cqqeq +
2 Cq66e6 —SqP +

2 hq6Pe6 —azb, T +p =02 2

1 3 3 r 2 1
C66e6 +2 C 166e 1 e6 + C366e3e6 +

6 C6666e6 —hP —56P —3 56Pe6 + 6 16Pe 1 +
2 6&6Pe& + 566P e6 = Q

(3.3a)

(3.3b)

(3.3c)

These equations were obtained from BG/Be& =0, BG/Beq =0, in which eq has been replaced by e&. Similarly,
from BG/BP =0, one obtains

E = a ( T —T, )P +BP —he6 —3 86P e6 86e6 —45t Pet —2—BqPeq + LLt6ete6 +
~

b q6eqe6 + d66Pe6 (3.4)

e1 = 61 + 0 P + (3.5a)

The symmetry of the low-temperature phase, and
also the symmetry of Eq. (3.3), give for the expan-
sion (3.2) in the present case

Finally, Eqs. (3.5) are introduced in Eq. (3.4), and
Eqs. (3.6) can be used to eliminate some of the un-
known coefficients. We chose to eliminate from the
result the coefficients 51, Sq, and m. The resulting
equation of state is of the form

e~ = eq +pP~ +

e6 = bP + mP' +

(3.5b)

(3.5c)

E = AP +B P~ + CP' +

where

(3.7)

Here, ~1 and eq are independent of P and are propor-
tional to the source terms e 15 T —p and n~ 5 T —p in
Eqs. (3.3a) and (3.3b), respectively.

Let us first discuss the case p =0 and neglect ther-
mal expansion contributions [set 6 T =0 in Eq. (3.3)
and e&

= eq =0 in Eq. (3.5)]. Introducing Eq. (3.5) in

Eqs. (3.3a) and (3.3b), and observing that the result
should be an identity to order P2, one obtains

A —=a(T —T, ) —bh =a(T —T, )

with

and

T, —T, = h~/aC66

BM -=B +2 ~66b2 +
6 C6666b4 -456h3 -4 56b

(3.8a)

(3.8b)

Bt - (Cjt + C12)a + C13p +
q

Ct66b +
~ h&6b

(3.6a)

Sp = 2Ctgn + CggP + , Cg66b +Th&6b—1 2 1 (3.6b)

h = C66b (3.6c)

86 +3 b~56 = C66m +2 Ct66ub + Cq46Pb + b t6a

+ T~536p + F66 b +
6 C6666b . (3.6d)

Similarly, with Eq. (3.3c), to order P and P, one ob-
tains

—4 [ ( C)t + C)g) a +2Ctgap + T~ C33p'] . (3.8c)

Here, A and BM are the macroscopic "free" Landau
parameters determined by polarization measure-
ments. '8 Equation (3.8c) demonstrates that elastic
terms can have a major contribution to BM. Indeed,
the constants a and p are known from accurate x-ray
measurements. ' Using the well-established values of
the- elastic constants, "the expression within the
square bracket in Eq. (3.8c) has the value
1 .53 x 1Q

" esu. Four times that value is thus much
larger than —BM which is of the order of 1 .8 x 10
esu. s's Unfortunately, the right-hand side (RHS) of
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( Cl1 + C12) e1 + C13e3 p ~

2C]3e] + C33~3 = —p

(3.9a)

(3.9b)

With the reference configuration of the parent phase
fixed at zero pressure, the parameters appearing in 6
are of course pressure independent. The effect of
pressure is described by taking proper account of the
higher-order terms, for example, of the higher-order
stiffnesses in GE Howev. er, n, P, b, and m are now

pressure dependent and can be expanded in the form

Eq. (3.8c) cannot be evaluated fully as the constants
666, C6666, 86 and 86 are not known. It should be
noted, however, that it is well possible for the clam-
ped Landau coefficient 8 to be positive, which would
mean that the transition would be continuous in the
absence of elastic couplings. Our lack of knowledge
of all constants in Eq. (3.8c), fortunately, does not
prevent a comparison of the macroscopic 8~ with the
microscopic B„(Sec.V} as it is the same combina-
tion of unknown constants that enters both expres-
sions.

Let us not consider the effect of hydrostatic pres-
sure. With p ~0, one has ~] and ~3 proportional to
p, and their value is determined by Eqs. (3.3a) and
(3.3b) setting P'=ep=0. One finds

6] = Oc', ]]5T, 63 = &335T (3.14)

This produces a temperature dependence of b, a, P,
etc. The effect can be treated similarly to that of
pressure in Eqs. (3.10) and (3.11), but now with
6] = A]] and ~3 A33 Identifying terms of order one
in hT and P in Eqs. (3.4) and (3.7), one obtains a
modification of the Curie constant

Using the known constants""" (a is taken equal to
3.9 && 10 ' esu), one obtains dT, /dp = —5.4 K/kbar.
This compares well with the experimental literature
values, " ' as well as with our own recent determina-
tion. 34 Note that Eq. (3.13) simply expresses the
pressure derivative of the Curie temperature in terms
of the Curie constant and the volume electrostriction
as already pointed out in Ref. 34. A determination
of dBM/dp would require an expansion of the free en-
ergy complete to sixth order in P. Indeed, terms
such as P4e] would have to be included. Unfor-
tunately, we do not have sufficient information on
the various constants involved to predict in this way
the tricritical point around 2.5 kbar. "

Let us now turn to the effect of thermal expansion
at zero pressure. With p =P = e& =0, Eqs. (3.3a) and
(3.3b), together with Eq. (2.7), give

b =bo+b]p+ (3.10)

The parameters ap, Pp, bp, mp are given by Eqs. (3.6)
previously derived for p =0. To obtain b], for exam-
ple, one considers the terms of order one in both p
and P in Eq. (3.3c). One finds.

Cppb1+ (2C1ppbp+ A)s) e1+ (C366bp+-434) e3 0

(3.11)

with

A =a'(T T,)—
a' —a =—4a11[(C11+C,3) o. + C, p]

—2a33(2C13a+ C33p)

(3.15a)

(3.15b)

Replacing b1 by its value from Eq. (3.11), using Eqs.
(3.6a) and (3.6b), and omitting now the subscript
zero on a, P, b, one finally obtains

dT
a ' =4[(C1,+C13)a+C13iS]e1

dp

+2(2C13a+ C33l3) e3 (3.13a)

where e1 and e3 are obtained from Eq. (3.9),

where ~] and ~3 are the first derivatives of e] and c3
in p, respectively. Identifying Eqs. (3.4) and (3.7)
also to first order in p and P, one finds

adT /dp = hb1+ (481 —/31pbp) ej + (283 3 ~36bp) &3

(3.12)

Using known values of the expansion coefficients of
KDP,"one calculates a' —a = —0.54 x10 'esu,
which is more than 10% of the measured value of a'
(3.9 x 10 3 esu). This effect comes from having
fixed the reference configuration at T = T, . In the
following discussion of the spectra, the reference
cottfiguration will be taken at the measurement tempera
ture 'r. Then the coefficients of G all depend on T.
With hT in Eq. (2.6) equal to the fluctuation about
T, one then obtains a'= a in Eq. (3.15), and the only
effect of GrE is on the spectral shapes (Sec. VI).

Finally, let us discuss briefly the phase diagram and
the exponents associated with the macroscopic free
energy,

C13 C33
3

(C11+C13) 33
—2C13

2C13 —(C11+C1&)

(C11+C13)C33 2C13

(3.13b)

(3.13c}

G = Gp+ —a ( T —T, )P3+ B3tP4+ CPp ——EP—1 1 4 1

(3.16)

where 8~ & 0. For this discussion, it is convenient
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to use reduced variables

C2
(3.17a)

C3/2
(3.17b)

1/2

P (3.17c)

(3.17d)

which give

g =go+ (t —t ) r —— r+— r —er—4
2 4 6 (3.18)

In this notation, the equation of state (3.7) becomes

e = (t —t, ) r —r3+r5 (3.19)

j
t"2 1(t —t, ) r dr = T(t„—t, ) (r22 —r&~)

1
(3.20)

Hence, t„ is given by a Maxwell construction as
shown in Fig. 3(a). The stability limits of either the
high-temperature phase, or of the low-temperature
phase, which we call the spinodal of the down transi-
tion (I) and the spinodal of the up transition (t),
respectively, occur when the minimum of Eq. (3.18)

For given t and e, the real root of Eq. (3.19) that
gives the smallest g value corresponds to the stable
phase. A point (t,e) for which two roots give the
smallest g value belongs to the thermodynamic tran-
sition line. For Ie I smaller than the critical value e„,
the curve (t —t, ) vs r2 is as shown in Fig. 3(a). If r~

and r2 are two roots for which g(r~) =g(r2) at the
same value t„of t, it follows from Eqs. (3.18) and
(3.19) that

et 4 (1-2r')'
(t t )3 27 (1 —5 2)3

together with

t —t, =3r2 —Sr4 .l

(3.21a)

(3.21b)

The critical point occurs where all three temperatures

t~, t„, and tt coincide. The condition for this is
B'g/Br'=0, which gives

r = —, , t« —t, =—,e«=(2.33/55)'t (3.22)

is also an inflection point: B'g/Br2=0. This condi-
tion, combined with Eq. (3.19), gives d(t —t, )/
d(r') =0, so that the extrema of t in Fig. 3(a) corre-
spond to the spinodal points as shown. The numeri-
cal determination of the temperatures t&, t„, tt is,
hdwever, easier by considering the curve g(t) at
fixed e. For that curve, dg/dt = r'/2 so that, consider-
ing Fig. 3(a), it follows that the shape includes two
cusps corresponding to the spinodal points as sho~n
in Fig. 3(b). The intercept of the two branches in
Fig. 3(b) is of course the thermodynamic transition
point.

, The full phase diagram is as shown in Fig. 4. The
positions of the end points are easily calculated. "
For e =0, g(t„) —go=0 with r = r~ and r = r2, so
that r, =0 and r2 = (

2
) 't . It results that t„—t, = —,

12 3

As with e =0, r~ =0, one also finds t~ —t, =0. Using
B2g/Br2=0 and e =0 it also follows that rl = I/J2
with tl —t, = 4. For small e, using Bg/Br
= B2g/B2r =0, one finds el=+(2/3 J3) (t& —t, )3t' so
that the down spinodal is cusped at e =0. The exact
shape of the down spinodal is best represented by
plotting e'/(t —t, )' versus the reduced temperature,
as shown in Fig. 5 . That curve is implicitly given by
the relation

t- t~ ji g iI

I I

I

I I

I I

I I
I i
I

f'2 f' 2

I

I

I I

I I

I I

I
I I

f'2 f2
2

FIG. 3. (a) Temperature vs polarization squared. The two hatched areas are equal, illustrating the Maxwell construction. (b)
The free energy vs temperature, illustrating the spinodal cusps and the intercept at the thermodynamic transition temperature.
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1.0

With Bg/Bm =0, the equation of state becomes

6+ fag% = 7 7T +2m —5fcr7i' + 8 (3.25)

For a=0, the leading term on the RHS is 2m' giving

(3.26a)

CI

~ 05
For v =0, one finds, similarly,

w = (—s)'~'
2

(3.26b)
Cl
LIJ

CI
LLI

0.2 0.4
REDUCED TEMPERATURE (t-t )

FIG. 4. Phase diagram in an e, t plane. Only the e ~0
side is shown.

7'=t tgf

e=—e„—e

(3.23a)

(3.23b)

(3.23c)

One finds

The free energy can be expanded about that point us-
ing

~Gp ——aP2
aT 2

The heat of transition is then

(3.27)

It follows that with e =e„(a=0) the specific-heat
divergence is in 7, and with 7 =0, the susceptibili-
ty divergence is in e ' ', as already pointed out in
Ref. 8.

It should also be pointed out that the definition of
the stability limit used above (B2g/Br2 =0), com-
bined with the strain elimination following Eq. (3.1),
is identical to Cowley's definition det~ C&~ =0, where
the C»'s are here the isothermal elastic constants at
fixed orienting field. This is shown in detail in Ap-
pendix A.

Finally, let us remark that the heat of transition is
related to the Landau coefficients a, B~, and C.
With E =0, using Eq. (3.16), one obtains

9 3g=gp —
p

+
2p

T+KfCf
ThS =-aTP2 = —a T«s (3.28)

—( 6 + rc~r) 7l' + r5' + 0l rcirr +1 2 1 4 5 1

0.1 8

(3.24)

where P„ is the polarization jump at the transition,
which by the above considerations is given by
Pt', =3(8~~/4C. Using the value 4.8 && 10' ergs/mole
for the heat of transition of. KDP,"one finds ThS
=8.56 x 106 ergs/cm'. With a =3.9 x 10 ' esu and
B~=—1.8 &&10 "esu, it follows that C=3.7 x10 '

esu in good agreement with direct determinations. '

In particular, the ratio BM/C = —4.38 &&10' obtained
here is in very good agreement with the recent polari-
zation determination of Western et al. '

0.16
IV. QUANTITIES MEASURED IN

LIGHT SCATTERING

0.14
1.0

FIG. 5. Curve giving the field value vs temperature for
the spinodal of the high-temperature phase. The scaled field
Es is defined in Eq. (5.17). T~ is the temperature of the
critical point.

The acoustic modes becoming soft at elastic transi-
tions are commonly observed either with ultrasound
or with Brillouin scattering. In the latter case, and
for transparent materials, the wavelength of the ob-
served modes is usually smaller than both the sample
volume and the illuminated volume. Hence, one in-
vestigates a microscopic response of well-defined finite
q vector, which is calculated by solving the appropri-
ate wave-propagation equations. For kT )& Aao,

where co is the frequency shift of interest, the scat-
tered intensity is proportional to thermal occupation.
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The expressions below will be restricted to that classical case. It is the fluctuations Se of the dielectric constant
that give rise to light scattering. In the plane-wave approximation, the spectrum is proportional to the space-time
Fourier transform of the correlation function. '

I(cu) cL m;njmt, nt Jr dt d r e'"' ' ' ' (Sej( r + r ', t + t') Sett( r ', t') ) —= m, njmt, nt (Se05&gt) (4.1)

Here, m and ~ are the polarization vectors of the in-

cident and scattered waves, respectively, and an ab-
breviated notation is introduced for the Fourier
transform. It is assumed that m and ~ are along prin-

cipal directions of vibration associated with the corre-
sponding wave normals for the incident, k&, and scat-
tered, k„waves, respectively. The proportionality
factor in Eq. (4.1), other effects of sample
birefringence, of sample, surface, and of the finite il-

luminated volume have been extensively discussed in

the literature. They will not be considered explicitly
here in order not to obscure the discussion of the
main effect which is fluctuation quenching by the ap-
plication of the ordering force.

The fluctuations Se are related to fluctuations in q,
e, and T by tensorial equations of the type

tJS6J a JQSgf +pJqISeg/+
~

ST
, g, 8

(4.2)

Here, for notational convenience, we depart from the
ususal conventions that relate the Pockel's coeffi-
cients to the inverse rather than to the direct dielec-
tric constant. For completeness, the direct coupling
to temperature fluctuations is indicated. The effect of
rotations, which only plays an important role in

strongly birefringent materials, "' is neglected. Under
the applied ordering field, the tensors a and g will, in

general, depend on the induced value of q, and they
will also contain new elements. For example, in the
case of KDP, the structure of pJI,I is just that of CJI,I
in Fig. 2(b), and a,jt, corresponds to htjg in the same
figure. Using Eq. (4.2) in Eq. (4.1), the spectrum is

expressed in terms of correlation functions of the
type (SgSq).- „, (SqSe)- „, and (SeSe)- . By the

fluctuation-dissipation therorem, these are related to
the generalized susceptibility X. ' For example,

(sgsq) - „= Imx„„(q, co), (4.3)kT

with the sum rule

Jl des (SgSq) -„„=kT ReX„„(q, co =0), (4.4)

Taking first the long-time limit (4.5a), the response
becomes isothermal, ~hereas taking first the large
sample limit (4.5b), it is adiabatic. Clearly, from Eq.
(4.4), the integral of the scattered spectrum is at fin-
ite q and it is thus proportional to the isothermal sus-
ceptibility.

The scattering geometry will be labeled using the
standard notation

k, (m, ri )k, (4.6)

By this, we mean that the momentum exchange
q =—k; —k, has the exact direction of k; —k, . This
also means that k; and k, are only approximately in
the (usually simple) directions of the two unit vectors
k& and k„respectively. The exact directions of k;
and k, needed to achieve this result depend on their
length difference caused by birefringence. For what
follows, they do not need to be further specified. Ex-
perimentally, this becomes relevant as one ap-
proaches the elastic instability sufficiently closely.
For instance, in the type-I transition of KDP, the
critical scattering becomes concentrated in very nar-
row cones with q parallel to x and y (as shown in
Sec. V). For observation of the soft shear mode, one
can take an ordinary incident beam and look at the
extraodinary scattered light ( VH geometry) or vice
versa (HVgeometry). With KDP near its TCP, tak-
ing spectra with a 1-6Hz free-spectral-range spherical
Fabry Perot, we observed considerable spectral
broadening upon going from VH geometry with q
well lined up, to HV geometry. The amount of
collection-aperture realignment necessary to recover
the narrow spectrum exactly corresponded to the
change in the length of k; and k, that could be calcu-
lated using the known KDP birefringence.

In the case of KDP, one is particularly interested in
the following three scattering geometries '.

(1) (i —x)/v2 [y, (z —x)/v2 ](r" +x)/W2:
depolarized scattering from shear modes propagating
parallel to x. Here x and y" correspond to the a axes
of the body-centered tetragonal cell, and z is parallel
to the c axis. For this geometry,

which allows calculation of the integrated scattered
intensity. With respect to this sum rule, one should
recall the two different limits '

= 1
561jm nj = (5623 SC) )2

v'2
(4.7)

lim lim x(q, cu) =—xr,
q ~Q ol~0

lim lim x(q, cu)
—= x,

Ctl~Q q ~Q

(4.5a)

(4.5b)

For modes propagating along x, only three strain
components exist: Se~ = iq Su;, Se6 = iq Su2,
Se5 = iq Su3, where the Su s are the fluctuating dis-
placements of wave vector (q, 0, 0). Using Fig. 2(b),
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one has

8612
Se,2= p«Se, +p665e6+a638P3+ ST, (4.8a)

~&23 p45~e5 + &41~Pl + ~42~P2 (4.81)

Note that the coefficients p6~, Bet2/BT, p45, and a42
are all proportional to the ordering field (or better to
the static value of P3). Fluctuations SP~ along x are
strongly suppressed due to the divP term in the free
energy of ferroelectrics. Hence, in the absence of ap.-

plied field, one measures in this geometry the corre-
lation of

scattering along x. Here,

1
Segm;n~ =

2
(Se22 —Set))

Se22 is given by Eq. (4.11), and Se]& is

~&11 p11~e1 +p16~e6 +~13~P3 ~

Hence,

1Se pm~ ni=
2

( p]2 p]])Set

(4.12)

(4.13)

(4.14)

and in this manner one can obtain the pure (Se~Se~)
correlation, also in presence of the ordering field.
The only disadvantage is that this geometry will re-
quire a different crystal cut from the previous two.

1
Seam;ni =— ( p665e6+ a638P3)

42
(4.9)

V. STATIC MICROSCOPIC SUSCEPTIBILITIES

861JNlillg = 8622 ~

Using Fig. 2(b), one has

5622 p125e1 +p16~e6 + &135P3

(4.10)

(4.11)

Again, p16 and a13 are proportional to the static value
of P3. In the absence of ordering field, one measures
in this geometry the correlation of Se1 with itself,
which is noncritical. In principle, with a small order-
ing field, a critical contribution mixes in with a coef-
ficient proportional to P3. In practice, the measure-
ment might be difficult for two reasons: (i) As this
geometry corresponds to polarized scattering, it is
more prone to be perturbed by defect scattering and
stray light. (ii) As depolarized scattering in the same
direction is critical and strong, appreciable leakage of
the depolarized component into the polarized com-
ponent might be hard to prevent. To avoid the first
difficulty, one can select the depolarized geometry

~ —x z+x i —x z+x
J2 J2 Z2 Z2

In the presence of the ordering field, it turns out that
all the additional terms mentioned above remain
negligible in comparison with the main effect which is
a quenching of the correlation function (SP35P3).
This will be discussed in some detail in the following
sections.

(2) (i —x)/&2(yy)(z+x)/J2: polarized
scattering from modes along x. For

Se, =iq;Su; (i =1 to 3)

Se&+3 = Iq&buk +iqkhu~

(i Wj&k=l to 3)

(S.la)

(5.lb)

The approach will be to express the free energy in
presence of the ordering force in terms of both the
macroscopically induced variables and the Fourier
components of their fluctuations. For the strain fluc-
tuations, one uses Eq. (5.1), and instead of the
stress-times-strain term in Eq. (2.4), one introduces
the force SF(q) conjugated to the displacement
Su(q), giving a term

As seen above, the term "microscopic" refers to
modes of nonzero wave vector q. The static
response observed in scattering experiments is the
isothermal response, as discussed below Eq. (4.5).
Hence, in the present section, the fluctuations of in-
terest will be restricted to 5T =0. As shown in Eq.
(4.4), the static microscopic response is proportional
to the integral of the spectrum. Thus, in the present
section, we calculate how the integral of the spectrum
varies with the application of the ordering force.

The essential difference between microscopic and
macroscopic responses arises from the fact that, for
finite q, the six strains e; (i =1 to 6) are not in-

dependent variables but are related to the three dis-
placements u, (i =1 to 3) by equations which, for the
spatial Fourier transforms of the fluctuations, take
the form

for which

1
Sesm~nj =

2 (Se33 Set])
—XSP(q) Su(-q) (5.2)

1 1

p
( p31 p1 I)Se 1 +

2 ( p36 p16) Se6

+ —,(a33 —a)3) SP3
1

(3) (y" —x)/&2[(x+y)/J2, (y —x)/J2 ]
(x +y)/~&: alternate geometry for depolarized

in the free energy. The static responses are obtained
by writing the equilibrium conditions on the free en-
ergy. Limiting oneself to energy contributions qua-
dratic in the fluctuations, a set of linear equations re-
lating the forces to the fluctuating variables of in-
terest results. The corresponding matrix is the in-
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q
—= q(l nt, n) (S.3)

For the isothermal response, one only needs to con-
sider the contributions (2.3), (2.4), and (2.5) to the
free energy. Taking spatial Fourier transforms, one
obtains

G = X—X '(q)SP(q)SP( —q) —BE(q)SP(—q)

(5.4a)

verse of the generalized susceptibility. It remains to
invert it to complete the solution of the proposed
problem.

Let us see how this program works in the particular
case of KDP with the free energy of Sec. II. As we
will be interested not only in what happens to the
soft mode propagating in the [100) direction, but
m'ore generally in the soft scattering cone, we allow q
to be in a general direction and define the three
cosine directors I, m, and n:

where

Xp'(q) = a ( T —T, ) +3BP'+

+EQA„SP„(q)SP„(—q)
q'SP ( q ) SP (—q )

(5.4b)

The q dependent terms above follow from considera-
tion of the electrostatic energy of a dipole distribution
and from spatial dispersion. The nonanalytic electro-
static part is a straightforward generalization of the
well-known term Eq,2/q2 which occurs when SP
points in the z direction. 4" A simple electrostatic cal-
culation gives E =4m. 44 It is necessary to generalize
this term to other 5P directions, as discussed below,
as soon as q departs from the (xy) plane, although
this is not often done. 44 4' It is then also necessary to
generalize Eq. (5.4a) to other SP components in a
straightforward way.

Using Eq. (2.4), one obtains

GE = X[—Ct~Set +
2 CttSe2 + C,25etSe2+ —CssBes + C,sSe|Ses + C~sBe28es+ —,C665e6 + —C448e4

q

+
2 C445es —BFiBu; + aP C&668e6 + bPCt66(Be&Se6+SegBe6) +

2 Cs66pP Se6
2 2 2 1

+ bPC3665esBe6+ bPC4s68e48es+ 4
b P C66668e6 J

Here, we use the abbreviated notation Set(q) Be~(—q) = Be~2, etc. , and the static values of e~, e2, es, e6 have
been replaced by their expressions (3.5). Finally, using Eq. (2.5), one obtains

GpE = X[—hSPSe6+(616a+ —As6p+2b66b —386 —3b 86)P SPSe6+(
2 666b —2nB& —|38s —3b56)P SP

q

+(
2 466 —3b56)P Se6 +(

2
4,6b —2 )SPtPB( eB~+Se2) +(

2 bs6b —25s)PSPSes

+ Aq6PSe6(—Se& + Be2) + ds6PSe-&Ses]
1 1

(5.6)

The stabililty equations are obtained by equating to zero the derivative of G = Gp+ Gs+ GpE in BP(—q),
Sut( —q), Sus( —q), and Sus( —q). To this effect, one uses the relations (5.1) in the above expressions. The
resulting equations are conveniently presented in matrix form

5E 5P
5Fi 5ui

= x-'
5F2 5u2

5F3 5u3

where X ' is the inverse susceptibility matrix. It has the following structure:

(5.7a)

Xp' iqVj
—iqV) q m))
—iqV2 q m~2

—iqV3 q m~3

iq V2

m~2
2

q m22
2

m23
2

iq V3

q m~3
2

m23
2

m33
2

(5.7b)
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with

Xp = Xp + (ISeeb —68eb —4aS) —2PSs)P

V& =—I(
2 6)eb —28t)P —mh +m(ab, e+ —'pbse+2bgee —38e —3b28e) p2

V2—= Ih +—l(alrL)e+ —pbse+2bbee —38e —3b Se)P +m( Is)e—b —28))P

Vs —= n (
2

Is,seb —28s) P

(5.8a)

(5.8b)

(5.8c)

(5.8d)

mqt—= I C~~+Im(2C)eeb+b)e)P+m Cee +m (2C&eea+CseeP+ , Cee—eeb +Dec 6bSe—)P +n C«, (5.8e)

m~2: I (C~eeb +
2

k~e)P + Im(C~2+ Cee) + lm (2C~eea+ CseeP +
2 Ceeeeb + bee 6bSe)P

+ m2(C~eeb + Is, ,e)P—+ n2C4sebP (5.8f)

m]3 In ( C~s + C44) + mn ( 2 arse + C3 ebe+ C4seb )P

m22 = I'Cee+ I (2C~eea + CseeI3+, C««b'+ 5ee 6b 8,')—P'+ Im (2C&eeb + b &e) P + m'C» + n'C44

1
m2s ———

In ( 2 use + Cseeb + C4seb )P + mn ( C~3 + C44)

m33 = ( I + m ) C44 + 2 ImC4sebP + n C33

(5.8g)

(5.8h)

(5.8i)

(5.8j)

The full analytic inversion of Eq. (5.7b) would be a
sizable task, and would not be too helpful in the
sense that many of the above parameters are not
known. It is wise to proceed by steps to obtain suc-
cessively:

A. An expression for the scattering intensity for
I =1, m =n =0, with P =0.

B. The similar expression with P &0.
C. An estimate of the shape of the scattering cone

with P =0.
D. An estimate of the motion of the scattering

cone about I =1, m =n =0, under small applied
field.

A. Critical scattering

Note that the imaginary terms in Eq. (5.9) result
from spatial Fourier transformation and should not
be removed by the operation "Re" in Eq. (4.4) that
applies to the time Fourieg transforms, They are
related to the linear q dependence of

(SP(q)Su2( —q)) = iqh

q'(Xp'Cee —h')

= —'(SP(q) Se,(—q) )
q

(5.10)

whereas the latter correlation function is not linearly
dependent on q and, hence, is real.

Using Eq. (5.4b) with P =0 and q 0, Eq. (5.9) is
written

to
The first point is very simple, as Eq. (5.8) reduces

Xo =Xp, ~2= —h, m11=C—1 —1

m22 = C66, m33 C44,

1(q)akT " 1+(1+Y)' '
66

where one has defined

Y = &esCeelhpee—,

(5.11)

(5.12)

r T

Xp —iqh a 63
l(q) ~ kT(aes Iqpee)

iqh q C66 —iqp66
(5.9)

with all other elements equal to zero. Hence, only
SP and See are coupled. From Eqs. (4.1), (4.4), and
(4.9), the integrated intensity in the scattering
geometry

r

Z —X Z —X 2+X
J2, '

E2 J2

is given by

and where the definition of T, —T, in Eq. (3.8b) has
been used. Equation (5.11) emphasizes that the
scattering consists of a normal piezo-optic contribu-
tion, which is the only one seen in the high-
temperature limit, and a critical part proportional to
( T —T, ) '. Both the strain wave and the polariza-
tion wave contribute to the critical part. However, if
Y is large, which is the case for ir'DP (Y =6.5), 2e

the critical scattering is mainly related to polarization
fluctuations. In fact, for KDP, one finds that -75%
of the scattering is due to polarization fluctuations,
-23% is due to polarization-strain cross correlation,
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and only —2% is due to pure strain fluctuations. One should also note that the "normal" contribution becomes
negligible compared. to the "critical" one as soon as T is close enough to T„e.g. , 0 & T —T, ( T, —T, .

8. Fluctuation quenching

With P W 0 and I = 1, one still has V3 = m~3 = m23 =0 so that Su3 remains decoupled. For the same scattering
geometry as above, Eq. (5.9) now reads

XD' iq V&

1(q) kT(a63 iqp6& iqp66) iq V&
—q2C»

—iq V2 q m&2

iq V2

q m~2
2

q m22
2

—iqp6&

Iqp 66

xp
'

= kT(a63 p6] p66) V,

V2

' —1 t

V) V2 'a 63

C11 m 12 161 ~

m~2 m22 p66

(5.13)

The approximation in Eq. (5.13) consists in keeping only the Se» contribution of Eq. (4.8a), although p45 and a4,
in Eq. (4.8b) are now both proportional to P. Close to the transition, this is fully justified by the fact that Eq.
(5.13) is the only contribution exhibiting critical increases. The second equality in Eq. (5.13) shows how q drops
out with the convenient definitions (5.7b).

The evaluation of Eq. (5.13) using Eqs. (5.8) and (3.6) is lengthy but straightforward. 'The result can be written,
to order P',

T, —T, 38m
1(q) —l(q, P =0) ~ —kT (1+Y)2 ' ' P2

a(T —T, ) C66 (T —T)' a
(5.14)

Here L is a constant that can be expressed in terms
of the various coefficients entering Eqs. (2.4) and
(2.5) together with the linear dependence of p6& on P.
8 is also such a constant, however, its relation to
B~ in Eq. (3,8c) is remarkably simple:

B~ B~= 3[(C,1+C12)~ +2C13 P+
2 33P ]8 1

[(C„+Ct2) a+ C)3P] . (5.15)2

Note that it involves only well-known constants. For
T close to T„ the second term in Eq. (5.14) becomes
more important than the first one in view of the dif-
ferent T —T, power dependence. For T —T, suffi-
ciently small, keeping only the most critical parts in

1(q,P =0) and in Eq. (5.14), one obtains

I(q) '=I '(q, P=0) 1+3B +P2

a T Tg

E, is the scaled variable in terms of which intensity
results at many E and T 's can be expressed. The ex-
perimental verification of this scaling supports the
contention that the term proportional to L in Eq.
(5.4) is sufficiently small compared to the term pro-
portional to 8 in the measured region. The experi-
mental value of B (0.72 x 10 "esu)s is also in good
agreement with the most reliable B~ measurements
(—1.3. . . —1.9 x 10 "esu)'s and the theoretical
difference calculated using Eq. (5.15) B —B~ =2.48

10 " esu.
The effect of the ordering field is to quench micro-

scopic fluctuations. To be specific, quenching means
that the microscopic fluctuations are smaller than ex-
pected on the basis of the macroscopic susceptibility
X~ which, using Eq. (3.7), can be expressed in a
form similar to (5.16):

X~' = X~'(P =0)(I +3B~E,2+ ) . (5.18)

=I '(q, P =0)(1+3B E2+ )

where
E2 =E2/a3( T —T, )3—

(5.16)

(5.17)

Indeed, the right-hand side of Eq. (5.15) is a quadrat-
ic form in (u, P) which is positive definite in view of
the requirements on the elastic constants imposed by
crystal stability. It can be written

B~ —BM = [(C„+C~2)(C() —C)2) ~ +2C,3(C]] C]2) Rp+ (C'j]C33 C]3)p ]
3C))

The determinant ~ of the quadratic form within brackets is

(5.19a)

5 = (Ct) —Ctg) C))[(C)t+ C$2) C33 2C}3] (5.19b)
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4 is positive definite since each one of, its factors is. For the last factor, this is easily seen by considering the sta-
bility of the elastic-constant tensor when the coordinates are rotated by 45' around z. This demonstrates that the
only circumstance in which quenching would not occur is a =P =0, i.e., if there were no electrostriction at all.

C. Scattering cone

It should be noticed that Eq. (5.16) could also have been obtained with the approximation I(q) ~ (SP,SP, ),
as actually done in Ref. 8. The reason this works is that the above correlation contains all important critical con-
.tributions. As the calculation of that correlation is more straightforward [just one element of the inverse of Eq.
(5.7b) is needed], use of that simplification will be made for the following considerations. Note that, from Eqs.
(4.4) and (5.7b), one can conveniently write

(SP,SP, )
-' =

m~~ m~2

Xo —( V~ V2 V3) m„ m„
1

m~3 m23

m(3 V(

m23 V2

m33 V3

(5.20)

(SP,SP, ) '=(kT) ' x '— 1+ tan-h'. C44, e
66 66

(5.21)

Now, consider again the case P =0 and the scattering
geometry (i —x ) / J2 '( y, (z —«) / J2) (i +x ) / J2,
but allow for slight deviations from exact alignment.
Birefringence effects will be neglected, and we shall
only consider what effect a deviati'on of q from the
exact x direction has on the correlation (5.20). To be
specific, we maintain the incident wave-vector direc-
tion, and scan the scattering cone as shown in Fig. 6.
The incident wave vector kI points in the z —x direc-
tion, and the reference position of the scattered wave
vector k, points in the z+x direction. The wave

~Q .

vector k, is displaced from k, by an internal angle 8
in the (x,i) plane and by an internal angle q& perpen-
dicular to that plane. We consider the two cases
(8WO, p=0) and (8=0, q &0) separately, whereas
the general case is better handled numerically.

With p=0, one has I =cos(8/2), m =0,
n =sin(8/2), and Eq. (5.20) reduces to

—SE3cos——SE] sin —SP8 . 8
2 2

(5.22)

where X33 a(T —T, ) as in Eq. (5.4b), whereas
X~~' =4m/a» when et~ && 1. The parentheses in Eq.
(5.22) contains just the field conjugated to SP, i.e.,
the projection of SE on SP. Neglecting spatial disper-
sion in Eq. (5.4b), and for 8 small, one finally writes
in Eq. (5.21)

X~
' = a ( T —T,) + ( Xg)' —

X33 ) sin'—8

I

The nonanalytic term in Xp must be handled careful-
ly. It couples fluctuations along z (noted here SP3)
with fluctuations along x (SP~). This term is so
strong that, considering the quite large polarizability
in the x direction (e» =80 for KDP), the fluctua-
tions SP leading to the lowest free energy will be ap-
proximately those for which the term is zero. Using
Eq. (5.4b), this means SP3 = [cos(8/2) ]SP and
SP~ = [sin(8/2) ]SP. To lowest order, the polarization
contribution to the free energy for such a fluctuation
is simply

Gp = X33 cos —SP +—X~ ~ sin —SP-1 2 t) 2 & —1 2 ~ 2
2 2 2 2

X

=a(T —T,) + sin'—4~ . , g (5.23)

S

ks

The second form of writing Eq. (5.23) takes into ac-
count the fact that X~~ )& X33 ~ In other words, the
effect of the SPi fluctuation component is approxi-
rnately to reduce the nonanalytic term from 4mq, '/q'
to 4vrq, 2/e~~qz, which is a sizable effect. Combining
Eqs. (5.23) and (5.21), one can write for small 8,

FIG. 6. Definition of the angles 0 and y of the scattering
~Q

cone. x, y, z are the tetragonal axes, k;, k, and k, are
described in the text.

I(8=0) I+ 8 n' + 1(T T) 44

I(8) T —T, eg)a 4 ' ' C6

(5.24)
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For KDP, the first term within the brackets equals
10.1 K, whereas the second term equals 2.3 K. At 50
mK, from T, the half-width at half-height of I(8) is
then 3.6' internal angle, or 5.5' external angle. This
corresponds fairly well to our experimental observa-
tions, and confirms the need for the e~&' factor in the
nonanalytic term' . without it the theoretical width
would be much too narrow compared to experiment.

With 8=0, one has I =cos2(p/2),
m =&2[sin(p/2)] cos(y/2), and n = —sin2(p/2).
Now, the nonanalytic term is proportional to p4 and
turns out to be negligible compared to the elastic
terms. To order g', one obtains

=1+ 8' ' ' C' -C'
I(y) T —T, 2CttC66

(5.26)

For KDP, the coefficients of p2/( T —T, ) equals 26
K. -Hence, the half-width at 50 mK above T, is 2.5'
internal angle, or 3.8' external angle. Again, this is
in good agreement with our observations.

This analysis shows that the critical scattering, close
to T„concentrates in a rather narrow cone. The ef-
fect becomes even more striking under hydrostatic
pressure as it is then possible to approach T, very
closely. For a general q, it is more expedient to ob-
tain I(8, q) numerically using Eq. (5.20) with

t=-1 +cos t(cos8 —sin8)
(2 —4 cos p sin 8) '~' (5.27a)

(SPBP ) '

a(T —T, ) +a(T, —T, )
11 66

(s.2s)
This gives the intensity ratio

ing Eq. (5.14), one obtains

1(p) = I(0)(1 +SpE+ )

~here

(5.28a)

2J2(Ct) —C(,) [(C)) + C)2) u+ Ci3p] b

C, ia'(T —T, )'

(5.2sb)

For the measurement of this effect, it is convenient
to consider the following ratio

I (fy ) (fP ) S E (5 29)
21 '(q, E =0)

The terms in the numerator are easily obtained ex-
perimentally by switching adiabatically the sign of the
applied electric field. It should be noted that the an-
gle y in the above Eq. (5.28) is referenced to the ori-
ginal tetragonal direction of the crystal. Depending
on the clamping condition, this reference direction
might itself move due to the static xy shear. The an-
gle measured in the laboratory frame, for a crystal
resting on a (010) plane, will be

pl. = p+ 2 e6 = q& + bE/2a ( T —T, )
1

However, this effect cancels out by taking the differ-
ence in the numerator of Eq. (5.29). Hence, the ra-
tio can also be written R~ =SEqL. Furthermore, the
difference between p and q L becomes negligible
compared to the angular shift of the softest direction
as T, is approached, since the former is proportional
to (T —T, ) ', while the latter to (T —T, ) 2. For
KDP, one calculates S =0.30/(T —T, ) 2, where the
units are esu, radians, and degrees kelvin. This gives
S =26.5 esu/rad for T —T, =106 mK in excellent
agreement with observation. 8

sin f'
(1 —2 cospsin8) '~' (S.27b)

VI. DYNAMIC MICROSCOPIC SUSCEPTIBILITIES

—1 + cos p(cos8+ sin8)
(2 —4 cos %sin8) '~' (5.27c)

D. Motion of the softest direction

The fact that the [100] direction in the crystal does
not remain truly soft under the application of the or-
dering force also means that the softest crystal direc-
tion does not generally remain parallel to [100]. For
KDP, motion of the softest direction in g is dom-
inant as it is proportional to P, ~hereas, by sym-
metry, motion along 8 is proportional to P only.

Restricting the calculation to small P and g, one
takes I = 1, m = P/v2, and n =0 in Eq. (5.13), where
now C~~ is replaced by m~~. Keeping only the most
divergent term in the spirit of the discussion follow-

Under the ordering force, the transition is nonsym-
metry breaking, as discussed in previous sections.
Hence, a bilinear coupling between order-parameter
fluctuations and temperature fluctuations is sym-
metry allowed. Consequently, the heat-diffusion
dynamics is reflected on the order-parameter correla-
tion function in the form of a thermal central peak.
This means that it is essential to consider tempera-
ture fluctuations ST in order to obtain the dynamic
response, even though their effect drops out from
the integrated spectrum. In distinction with the pre-
vious section, the dynamics cannot be derived from
the free energy alone, and additional phenomenologi-
cal or microscopic considerations are needed to obtain
the equations of motion.

Let us see how this works out for KDP. For sim-
. plicity, we now restrict the analysis to I =1, m = n =0
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XaPSP(q) ST(—q) (6.1)
q

Equations (5.5) and (5.6) are unchanged, but the
contributions of F« in Eq. (2.2), and Grs in Eq.
(2.6), should also be added to G. They are

1 pCpePo= —X— ' ST(q) ST(—q)
—. 2 T

(6.2)

in Eq. (5.3). The coupling between SP and ST is im-
rnediately evident in the first term on the RHS of Eq.
(2.3). In Fourier-transform notation this leads to an
additional term on the RHS of Eq. (5.4a) which is

tion, this amounts to the substitution

SF ~SF+ pa) Su (6.5)

SFr —= SW/iauT (6.6)

where SW(q, +) is an applied power source. SFr is
the appropriate force conjugated to ST that leads to
correct fluctuation-dissipation relations as shown in

Appendix B. The entropy fluctuations are obtained
from SS = —SG/SST using Eqs. (6.1) to (6.3)

in Eq. (5.7a). Finally the heat dynamics is described
in terms of the entropy fluctuation SS, thermal con-
ductivity A, and an external force SFT given by

Gre = —X [a~(Se& + Se2) + a38e3] 5 T (6.3) SS = —aPSP+ ' ST+iqa1Su1pCp,
T

(6.7)

The equations of motion are now written using
phenomenological considerations similar to those of
Ref. 28. Polarization dynamics in the form of a De-
bye relaxation is introduced in Eq. (5.4a) by writing

a(T —T,)
Xp' =

2

' (6«2 —i pre) +3BP2+ . (6.4a)
~c

T SS = '7—( A '7 T) + 8 W
dt

(6.8a)

which in Fourier-transformed notation, and com-
bined with Eq. (6.7) gives

The heat-conductivity equation including the external
power source is

Here a ( T —T,)/co2 is. just a proportionality constant,
as co, follows a Curie law

SFT=aPSP —iqo, 1Su1+, — ' ST .q2A pCpe
I 69T T

(6.8b)

«) 2 = co ( T —T,)/( T, —T, ) (6.4b)

where cu is the value of co, at T = T, . Although a
more elaborate frequency dependence is necessary to
account for Raman results, the Debye approximation

. is sufficient in the frequency range of interest, where
co (( cv & y. This has been confirmed by quantita-
tive measurements at E =0.24 Dynamics is intro-
duced in the elastic equations by taking into account
inertia. No further friction is needed as the main
source of damping is already in Eq. (6.4a). Inertia
reduces the effect of the external force from SF to
SP pd'S—u/dr' In th. e time-Fourier transform nota-

Xo' iq V1 iq V2

SF1 —iqV1 q M11. q M12

SF2 —iqV2 q M12 q M22

SFT aP —iq a1 0

aP '
Sp

iq n1 Su1

0 Su2

M33 S T

(6.9)

where X«' is given by Eq. (5.8a), with Xp' given by

Eq. (6.4), and

Here, A stands for the component A11 of the
thermal-conductivity tensor.

Introducing the above modifications in Eq. (5.7),
and taking systematic account of ST, one obtains the
set of equations

V) (-6)eb —28t) P1

Vq = —h + (ab)6+ 2
Pb36+2b bee —386 —3b 56)P

M&] ~ Ct] p&l /g

M12 = ( C&eeb +
2 h&6) P1

M22—= Cee —puP/q + (2C&eea+ C366p+ , Ceeeeb'+ ~66 —6b5—6)P1

q2A pCp, e

I GJT T

(6.10a)

(6.10b)

(6.10c)

(6.10d)

(6.10e)

(6.10f)

The equation for Su3 is not written explicitly as for q parallel to x it decouples from Eq. (6.9) as it did for the
statics in Eq. (5.13). It should be noted that the phenomenological dynamics was introduced only in the diagonal

terms in Eq. (6.9), assuming that local piezoelectric and thermal responses are fast compared to the ferroelectric
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response in the frequency range of interest to the
Brillouin experiment.

One recognizes in M33 the thermal response whose
width will depend on

The validity of Eq. (6.14) does not depend on the
Curie-law assumptions of Eqs. (6.4b) and (6.13c),
but just on the Debye assumption (6.4a) which at
P =0 can be written

Dq =—v2 — -1 (6.11a) x, '=a(T, —T,)(g —i(or) (6.15)

~here the thermal diffusion constant is

D —= A/pC,

With that notation

(6.11b)
The expression (6.14) was found to give statistically
perfect fits to observed spectra, with Q following the
Curie law (6.13c), and with r constant. 24 The in-

tegration of Eq. (6.14) gives

l OJ7'th
LYLY 33

pCp& 1 I coTtg
(6.11c) r

I( ) kTPee I
(1+Y)'

C66 Q —1
(6.16)

A. Critical scattering
which is exactly Eq. (5.11).

1(q, N) ~ Im(a63 p66)
kT Xp'

t—h
063

Cd—h C66 —p 2 ,166

Defining the relaxation time

(6.12)

With P =0, one has V~ = M~2 =0, and both ST and
Sut decouple from SP in Eq. (6.9). The scattering in

the usual depolarized geometry is found in the same
spirit as in Eq. (5.9), but now using Eq. (4.3) instead
of the sum rule (4.4):

B. Coupling to temperature fluctuations

M)) M)2 —n)

Xpp = Xo —( V~ V2 aP) Mt2 M22 0

0 M33

Vi

V2

ap

For P ~0, let us consider only the main contribu-
tion to spectral changes, in the spirit of the discussion
preceding Eq. (5.20). If we call Xpp the upper left-
hand corner of the inverse of the matrix in Eq. (6.9),
we can write

2
7 —= y/O)

the bare-phonon frequency ~, by

~« =—q'C66/p ~

(6.13a)

(6.13b)

(6.17)

First make the approximation o.~
=0. Then Eq.

(6.17) can be written

and the reduced distance to the clamped Curie tem-

perature

T T

M)) M)2 V) 2P2
xiP=XO'-(Vl V2) M M V12 22, , 2,

g =(T —&,)/(T. —&,), (6.13c) (6.18)

the intensity is finally written in the convenient form

2

i( )
kT 166

66

(1+Y —Yo)'/a),')'
(g I g ~2/~2) 2 + ~2r2(I ~2/~2) 2

(6.14)

The elements M~~ and M22 both contain co' in accor-
dance with Eqs. (6.10c) and (6.10e). However,
C~~ ))C66, and co,' && co, where ~ is the frequency
of interest when observing the soft mode near T, . It
follows that a reasonable approximation of Eq. (6.18)
is obtained by maintaining the co2 terms for the con-
stant (P =0) contribution and neglecting it for the P'
corrections, which are smail anyway. Then one finds

( I «)'/ru') x—pp —- a ( T —T ) [ ( g —I —g o)'/co,') —i a) r ( I —co'/co') ] + (3B P' M'a'P') (1 ru'/co') — (6—19)

The P-independent terms in Eq. (6.19) are immediately recognized as those that lead to the denominator in Eq.
(6.14). Using Eq. (6.11c), the parentheses containing P in Eq. (6.19) is written

Q2(3B P' —M a'3P3t') =3B P'+S'—
I QJ'7th

(6.20a)
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where we defined

82—= a2P2T/pCp, (6.20b)

It follows that Eq. (6.14) remains a good approxima-
tion to the spectrum provided one uses for Q and r

. the following expressions

$2
Q = Q'"'. (?. ?;)—

8 1

a (?' ?' ) 1 + ~2r2

T —y-+ 8
a ( T —Tc ) 1 + ol

(6.21a)

(6.21b)

where Q; is the co =0 limit (isothermal) of Eqs.
(6.21a)

Q; = Qo+38 P2/a (?;—?', ) (6.21c)

and Qo is the P =0 value as given in Eq. (6.13c) or
Eq. (6.15). One should note that the integration of
Eq. (6.14) gives the isothermal response

c

I? p 1+ (1+Y)
C66 Q;„—1,

(6.22)

which is just Eq. (5.11) combined with Eq. (5.16).
For a~ W 0, the inverse matrix in Eq. (6.17) is ap-

proximated by

H))

1

2 — g 2p2 T 40']
Q2 1 — [(C)t+ C)2) cc+2C)3iglpC„aC))

(6.24)

For KDP, all parameters entering Eq. (6.24) are, in

principle, known. In particular, the thermal-
expansion correction within curly brackets can be cal-
culated using Eq. (2.7a) and the values of Refs. 32
and 37. One finds that the curly bracket is equal to
0.904, meaning that thermal expansion reduces the
adiabatic correction to the susceptibility by about 10%.

1

H)p H22 H12M33' cc, , (6.23)

H] $1lf33 A] H]23%33 ' cx] &33
0

where H is the inverse of the (2 x 2) M matrix in Eq.
(6.18). Using Eqs. (6.10) and (3.6a), one finds that
the coefficient of P /M33 in Eq. (6.18) is modified.
This leads to a modified definition of 8, with Eq.
(6.20b) replaced by

abatic values

Q =—Q~+N
2

y/~
where

N —= 82/a (?', —?', )

(6.25a)

(6.25b)

(6.25c)

1

( ) k?, P66 I+ (1+Y)
C66 Q

(6.26)

The difference between I;„(q) in Eq. (6.22) and
I (q) in Eq. (6.26) is the strength of the thermal
central peak

k& P66 (1+Y)2N

C66 (Q;,.—1)(Q —1)
(6.27)

Neglecting the "noncritical" contribution in Eq.
(6.26), i.e., the term 1 within the large parenthese,
one finds the ratio of central-peak to adiabatic
Brillouin-peak intensities

R = cp N =0904 a TE2I
Q iso . p Cp.e

(6.28)

The last expression takes account of the value
derived for KDP in Eq. (6.24) and of the definition
of E, in Eq. (5.17).

The above spectral decomposition assumes that the
thermal response is slower than the critical response.
To obtain the width of the thermal central peak, one
first notes that for light scattering, Dq2 && co,
=q+C / 66pFor KDP, equality of these two frequen-
cies is only obtained for X =2rr/q =40 A, which is
the domain of neutron scattering. Hence, in the
low-frequency limit, cu'/co,' in expressions such as
Eqs. (6.14) or (6.19) can be neglected with respect to
1. The width I of the central peak is then given by
the lowest root —i I of the- expression

The corresponding spectrum, 1„(q,m), is given by
Eq. (6.14) where Q and r are replaced by Q and r,
respectively. This is the adiabatic spectrum which
can also be obtained by equating Eq. (6.7) to zero
and introducing the corresponding value of 5T in the
first three equations (6.9). This spectrum is just like
the critical spectrum obtained at P =0, but with a
downward shift of the critical temperature. For KDP,
this shift is mainly due to the adiabatic correction, as
N in Eq. (6.25a) is much larger than Q;„—Qo which
is the fluctuation-quenching contribution. The adia-
batic spectrum integrates to

C. Adiabatic response and the thermal central peak Q;~ —1 —i cur —i coN r,„/(I —i rur, h) (6.29)

Consider the spectrum (6.14), where Q and r are
given by Eq. (6.21), and 82 by Eq. (6.24). For
~v,h && 1, the terms with 1+& 1th in the denomina-
tor in Eq. (6.21) can be neglected, leading to the adi-

c t

I=,h 1—-1 N + ~ ~ ~

Q —1 —
r/hach

(6.30)

which is derived from Eq. (6.19). This gives, to or-
der P2
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under the condition

0- —»r/ ~» (6.31)

This condition is precisely that the thermal response
is slower than the overdaNped critical one. For KDP
at 1 bar, v =0.84 cm, whereas v,h=220 cm. ' It
follows that Eq. (6.31) is always satisfied as
Q„—1=T/ F,h m'eans T —T, =20 mK which is

beyond the stability limit found experimentally. 24 If
one neglects the term r/T, h in Eq. (6.30), the expres-
sion can be rewritten

r = r;„'(I+8,+ ), (6.32)

VII. CONCLUDING REMARKS

In elastic solids, the critical microscopic fluctua-
tions associated with a symmetry-breaking transition
are generally quenched under the application of the
ordering force. This is due to the fact that the force
already breaks the symmetry, so that the order
parameter couples linearly to density, and pure mi-
croscopic density fluctuations cannot occur in elastic
solids due to the elastic compatibility equations. In
the present paper, the above considerations have
been applied to the particular case of the type-I tran-
sition in KDP, obtaining the following key results:

(i) In an expansion to lowest order in the ordering
force, the macroscopic Landau parameter 8~ is al-

ways smaller than the microscopic Landau parameter
8, i.e., 8 —8~ )0 as shown in Eq. (5.19). This
demonstrates that the microscopic response (5.16) is
quenched compared' to the macroscopic response
(5.18).

(ii) Under E, the softest direction moves in the
(001) plane away from the original soft direction
[100]. The sign of this motion depends on the sign
of E. This is related to the fact that at type-0 insta-
bility the softest elastic direction is not necessarily a
direction of high symmetry.

(iii) Under E, temperature fluctuations are also
linearly coupled to polarization fluctuations. A ther-
mal central peak results whose relative strength is
given by Eq. (6.28).

(iv) The width of the induced thermal central peak
is the thermal diffusion width renormalized by the
coupling to the polarization fluctuations, as shown in
Eq. (6.30) or (6.32).

Given the large number of parameters entering
Eqs. (2.4) and (2.5), it is truly remarkable that the
above results, in particular Eqs. (5.15), (5.28), and
(6.24), could be expressed in terms of the lowest-
order elastic constants and the lowest-order coeffi-

with Rt given by Eq. (6.28). This emphasizes the
narrowing of the thermal central peak by the coupling
to the phonon branch.
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APPENDIX A: EQUIVALENCE OF TWO STABILITY-
LIMIT CONDITIONS

Consider a free energy

6 = Gp(g, e, ) —rtf —e, a.; (Al)

where f is the force conjugated to rt In Sec. II.I, the
strains were eliminated from 6 using, at cr, =0,

BGO

Be&
(A2)

The solutions e;(g) of these equations are reintro-
duced in 6 to obtain a free energy depending on q
alone. Its first derivative in q is the equation of state

dG, (~,e, (~)) BG,
dg Bq

(A3)

cients a&„of Eq. (3.2) only. This suggests underlying
symmetry reasons which might generalize beyond the
particular case of KDP, but which have not been es-
tablished so far. On the other hand, useful analytic
expressions beyond the expansions to the lowest non-
trivial order in E could not be obtained. In particu-
lar, the Landau coefficient C in Eq. (3.16) was simply
introduced phenomenologically, and expressions for
the quenching in the region of the critical point have
not been derived. The reason for this is simple: at
the critical point, it is only macroscopic responses
that diverge, whereas all microscopic responses
remain finite. However, as the critical polarization is
of sizable value, expansions in P of the microscopic
responses in that region might have to be carried to
arbitrary order, and are thus not useful. In particu-
lar, it does not seem possible to determine by micro-
scopic measurements either the exact position of the
critical point, or the values of the macroscopic Lan-
dau coefficient C.

Finally, one should note that in real crystals, the
symmetry can be locally broken by defects. Such a
mechanism was invoked to explain the occurrence of
quasistatic central peaks. Symmetry-breaking de-
fects will also produce a linear coupling between or-
der parameter and density. Consideration of elastic
terms might thus become important in these systems
sufficiently close to their transition.



24 STATICS AND DYNAMICS OF FLUCTUATION QUENCHING IN

The system becomes unstable when the derivative of
Eq. (A3) vanishes. This condition is

82Gp 92Gp d2+
Bg9ei dq

(A4)

Let us demonstrate that Eq. (A4) is identical to the
stability-limit condition det(Cv) =0, where here the
Ce's are the isothermal elastic constants at fixed f.'
To obtain the C»'s, consider how the equilibrium
values e&(g) are modified to e, +Sei by application of
small stresses Sa~. Under constant f, the stresses
also modify q to q+Sq. Rewriting the equilibrium
conditions (A2) ar]d (A3) for the perturbed system,
one obtains

8 Gp 8 Gp
Sej+ Sq = S(ri

Bei8ej Being

$2G $2G
Sq+ Se) =0

Q'g2 g eJQ'g

(ASa)

(Asb)

where repeated indices are summed on. Introducing
Sg from the second equation into the first one, and
observing that C»Sej = So.i, one obtains

82Go 2 Go O'Go

8 8 J 8;87) 8 8'g

Q2G
(A6)

We assume that the uncoupled system is stable so
that both (O'G0/Se;Se&) and (O'GD/Sg') do not van-
ish. Note that C» is of the form

-1
CJ = as —v;v& = ai (S J

—a k ukuj)

= a(„(S~g —V~v&) (A7)

or,

Here, aij is nonsingular, a» is the inverse matrix of
a&, and v&, Vj are vectors as shown. From Eq. (A7),
the condition det(C&) =0 is simply

det(Sg —V)vj) =0 (Aga)

It is not difficult to see that in all generality the value
of this determinant is simply (1 —Vjvi), so that Eq.
(A8a) can be rewritten

VI&i Qik vkvi=1-1

APPENDIX B: DYNAMIC CORRELATIONS
INVOLVING ST

Correlation functions involving temperature fluc--
tuations are comparatively rarely observed experi-
mentally. This might explain that their calculation
following a fluctuation-dissipation approach does not
seem to be much documented in the literature. The
alternate approach, which is the one usually used in
this case, in particular for the description of light-
scattering results, goes as follows:

(i) Obtain the equal-time correlation functions
from thermodynamics, for example following Sec,
111 of Ref. 42.

(ii) Set up dynamical equations and Laplace
transform them taking due account of the initial
values.

(iii) Multiply the resulting equations by the initial
values and ensemble average.

In this manner, a set of equations for the Laplace
transforms of the dynamic correlation functions is
obtained. They are expressed in terms of the known
static correlation. In the present Appendix, it is
shown how identical results can be obtained by the
shorter route offered by the fluctuation-dissipation
theorem.

Following the approach of Callen and Greene, 4'

one finds rather readily which is the external force
conjugated to energy fluctuations SE. The quantity
Y(ao)/i &AT in their notation [Eq. (3.6) in Ref. 48]
corresponds to —X(co) in the present notation, where
account is taken of the different sign of the imaginary
exponent in the Fourier-transform definition. The
fluctuations in their Xp, that is SE, which in their de-
finitions are conjugated to the external force
—ST/T2, are in the present definitions conjugated to
the force ST/T. Here, instead of taking SE as
response to the force ST/T, we take the temperature
as response to an external energy source. This intro-
duces an additional minus sign just as when one in-
terchanges independent and dependent variables in a
thermodynamic potential. It results that the force
conjugated to 5 T is SFr = —SE/T. Introducing an
external power source S8', one has SE = —i USE
= S8'or

8 Gp 8 Gp 8 Gp'"
ee,ag ee,ag

(A9) SE SNSF,=—
T i QJT

(Bl)

To see that Eqs. (A4) and (A9) are identical condi-
tions, it suffices to take the total derivative in q of
Eq. (A2) to obtain

8 Gp deJ (Alo)

Introducing the value of de;/dq from Eq. (A10) into
Eq. (A4), one recovers Eq. (A9) which completes the
proof.

as indicated in Eq. (6.6).
It is instructive to discuss somewhat further the

implications of Eq. (BI). For simplicity, consider the
case where temperature fluctuations are decoupled
from the other variables of the problem. One im-

mediately has

where C is the appropriate heat capacity per unit
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weight and

TSS = —q2AST+5 8' (82b)

The sum rule on Eq. (84) is

(8T(0)ST(0) ) ~
= kT Re[X(co 0) —X(ru ~)]

kT
pC (85)

where A is the thermal conductivity. This gives
straightforwardly

5 T = ger = X(cu) 5Fr
pC 1 —I'o)v

where r =—pC/Aq'. The fluctuation-dissipation
theorem then gives

(gy, g2, )
kT Imx= kT' r/m

pC ]+co v
(84)

The modificatio~' of the Kramers-Kronig relation in
Eq. (85) should be noted. It arises from the fact that
X(co ~) is different from zero, and is explained in
Ref. 42, in the footnote following Eqs. (122.15) and
(122.16).

The simplicity with which the results (84) and (BS)
have been derived should be stressed. If one had
followed the route indicated at the beginning of this
Appendix, one would have first had to derive Eq.
(85), then one would have had to take the Laplace
transforms of Eq. (82). The work saving becomes
very evident if one considers a complicated situation
with many couplings such as in Eq. (6.9) above.
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