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Earlier work on a model isotropic compressible ferromagnet is extended. Two different tech-
niques are used. First, the one-particle-irreducible renormalization-group generator is applied to
the n-component system to obtain the free energy and magnetic equation of state. The result,
formally correct to O(e), e=4 —d, is exact in the spherical limit » = oo and for a vanishing ef-
fective rigid-system coupling constant. It includes correctly the Goldstone singularities for n # 1

and is uniformly valid in the thermodynamic space, even in the presence of first-order transi-
tions. Second, a renormalization-group matching technique is used for n =1 to carry the results

to O(€).

1. INTRODUCTION

There have been several renormalization-group
studies of the effects of the coupling between elastic
and magnetic degrees of freedom in a ferromagnet.!?
The elastic modes are eliminated from the partition
function to yield an effective spin Hamiltonian; in the
isotropic case, the resulting Hamiltonian for a »-
component spin ¢ (x) in d dimensions can be written

H=fd“x

T [fan 3. (1.1
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In Eq. (1.1) Q is the volume of the systems,
t ~(T—T,), i is the magnetic field, u is an effec-
tive rigid-system coupling system constant, and v is
the remnant of the elastic-spin coupling. For the
compressible magnet itself, v is negative, but Eq.
(1.1) defines a ferromagnetic model of interest for
positive v as well. If v is negative, this system may
exhibit a first-order phase transition.!:2

The underlying mechanism of this first-order tran-
sition and, in fact, all the qualitative features of Eq.
(1.1) can be exhibited by giving the exact solution of
the compressible model in terms of the v =0 rigid
case. This provides an excellent example of renor-
malization by hidden variables (Fisher renormaliza-
tion®). Write
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with a>=—v/3. Then the partition function for the

compressible system is
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where H, is the Hamiltonian of the rigid system [Eq.
(1.1) with v=0]. This can be evaluated exactly. In-
troducing the Gibbs free energy of the compressible
system by Z. =exp(—QG.), the functional integral
over the spin variables gives

12

exp(—QGc)=fd¢ %

[ »
Xexpl—Q G (t+ay) +7

] , (1.4)

where G, is the Gibbs potential of the rigid system.
In the thermodynamic limit, {0 — oo, the ¢ integral
may be evaluated by the method of steepest descent
yielding

GC=GI ’+—;_‘1’]—%le s (153)
_3G v
Y= Y [f+3¢', ) (1.5b)

where ¢ has been rescaled ¢ — —a . The compressi-
ble magnet is thus a simple example of a system with
a hidden variable () subject to a constraint.* This
form of constraint can change a transition from
second order to first,>* as well as (for positive «, the
specific-heat exponent) changing the expoments.
Equation (1.5) also shows that the compressible sys-
tem involves only quantities which appear in the rigid
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system and that, therefore, a solution method which
applies for v =0 should be directly extendable to
v#0.

Global solutions of the renormalization-group
equations for Eq. (1.1) were given for the disordered
phase by the present author and collaborators®™® and
the equation of state was calculated in an expansion
around the disordered state as examples of the use of
differential renormalization-group techniques. How-
ever, a fully exponentiated expression including the
effects of the transverse or Goldstone singularities
was given only for the rigid v=0 case. More recent-
ly, Bruno and Sak®!! have reexamined the model.
Using the approach introduced by Nelson and Rud-
nick,'? they rederived the disordered-phase suscepti-
bility? given in Ref. 6; applying Rudnick’s method!?
they have studied'® the Ising (n =1) first-order
phase transition of the compressible Hamiltonian Eq.
(1.1); finally, they have given a partial description of
the free energy and equation of state.!!

The simple renormalization-group matching tech-
nique of Ref. 12, while very effective for a wide
variety of problems, is not well suited for treating the
Goldstone singularities present in the n-component
system (n #1). In this approach, renormalization-
group equations which are simplified and approxi-
mate forms of the full equations are solved and the
renormalized parameters used in a presumably more
rapidly convergent perturbation theory. In the or-
dered phase of an isotropic n-component system,
however, there are two length scales, corresponding
to the transverse and longitudinal susceptibilities, and
these cannot easily be represented by a single
matched value of the renormalized couplings. The
generator methods described in Ref. 8, on the other
hand, are able to incorporate the transverse modes to
give the correct singularities. This may be done in
such a way that the n = oo, or spherical, limit is
recovered exactly. An alternative method is to care-
fully analyze and resum those diagrams responsible
for the Goldstone singularities as has been done by
Schifer and Horner.'* Even for the single-
component case, the procedures used by Bruno and
Sak break down near the first-order transition (neces-
sitating a reanalysis of the problem) and do not
describe the entire phase diagram. This is again a
consequence of the approximations used; as will be
shown in this work, the original solution methods
developed in Refs. 5—8 are valid at the first-order
transition and beyond.

In Sec. II, the rigid (v=0) n-component results of
Ref. 8 are extended to the compressible magnet
(v #0). Although formally correct only to O (e€),
e=4 —d, the result is exact for ¥ =0 and/or n = co.
Both the free energy 4 and the equation of state are
given in compact form so that a simple study of the
entire thermodynamic phase diagram is possible, in-
cluding the first-order transition for all values of ».

In Sec. 111, an alternate approach is applied to the
special case of n =1. The generator methods used in
Sec. 11, while in principle useful to arbitrary order,
are in practice limited to first order. On the other
hand, Bruce and Wallace'® have given an extension
and systematization of the matching technique of
Ref. 12 which can be applied to any desired order in
perturbation theory. A variant of the Bruce-Wallace
matching procedure has been recently used to calcu-
late the crossover thermodynamic functions for the
rigid system to O (€?).'® The calculation is illuminat-
ed by Eq. (1.5) which permits the compressible
renormalization-group equations to be determined
exactly in terms of the rigid-system equations. It is
then a simple task to extract the O (€?) results for
v#0.

In the Appendix, the perturbation series needed
for the explicit calculations of Sec. III are listed.

Bruno and Sak have provided an extensive back-
ground and mean-field description of the
compressible-magnet model'! and the methods to be

- used here are described in detail in Refs. 7, 8, 15,

and 16. For that reason, I will focus primarily on the
new results, referring the reader to the cited works.

II. GENERAL n-COMPONENT SYSTEM

To obtain the solution to lowest order for the
compressible Hamiltonian, Eq. (1.1), one begins with
the expression for the magnetic equation of state in
the one-particle-irreducible generator formulation.
To the order needed

h

A tim {01 exp(=200+ Lu (D) +u(1) o2

.1

It is the fact that the limit of infinite / [exp(—/)
gives the scale of fluctuations not yet incorporated
into the renormalized couplings] is taken which al-
lows the inclusion of both transverse and longitudinal
effects. Each of these ‘‘saturates’’ at a different
value of the parameter /. The renormalization-group
flow equations are

Q: — 2”“1 1 2 — + 2

Y, r{2 ulgi— +g72 3[81(n 1) +gflf .,
(2.2a)

%=eu——u2 =L 43g2| | (2.2b)
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In Egs. (2.2) g, and g, represent the transverse and
longitudinal propagators

gt =1 +-:—4(I)exp(21) , (2.3a)

g7l =1+k2(1) exp(2!) , (2.3b)

where h/M (1) is the partially renormalized expres-
sion for the equation of state [given inside the large
parentheses in Eq. (2.1)] and «?(/) is an effective

partially renormalized longitudinal (mass)?

k*=1t(1)exp(-21)

u(DeM? | v(1)~¢M?
2 6

+ (2.30)
The solution is straightforward, and, as expected, in-
volves only functions familiar from the v =0 case.

h dUM? | vT*XM?
o . 2.4
o TX + 5 + < (2.4)

In Eq. 2.4) [A=(n+2)/(n +8)]

T=YYyst | (2.5a)
u=Y , (2.5b)
X—-1=1 +_§_Jc s (25C)

__3n (-1 3 2(a-1)
= (n+8)u 1-24 +u(y2 i
(2.5d)

yil=1+ 448 1 oy-an gy (2.5¢)
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(2.5)

The (4#/M) in the function Y must be taken to have
its full complete physical value; the definition of the
effective longitudinal mass is

uY,M*  3p

KG%U £2(1 -y + 2= gy

(2.6)

This differs from the choice of Ref. 8 and from the
Schifer and Horner!* for v =0; it agrees for //M =0
and for n =1. However, this choice and no other
permits an exact integral of Eq. (2.4) to be made.

I (CORCER
€

Following Ref. 8, the Helmholtz free energy is

_ITAM? | wuMt | o TXM* 2
4= o T a 4! 7 XX
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In fact, only the first four terms are directly obtained
by the generator methods; the last two terms are gen-
erally O (e) smaller than the first and were neglected
in Ref. 8. Here, the existence of the possible first-
order transition requires more care. The choice of x?
made in Eq. (2.6) guarantees that Eq. (2.4) is the ex-
act derivative of the Helmholtz potential of Eq. (2.7).

The choice made in Eq. (2.6) was made entirely on
pragmatic grounds so that Eq. (2.4) would follow ex-
actly from Eq. (2.7). However, it essentially coin-
cides, as least for v =u*, with the definition intro-
duced recently by Lawrie'” who uses a formalism
designed to connect the (v=0)¢* theory to the non-
linear o model in order to extract the Goldstone
modes. His results coincide with Eq. (2.4) with Eq.
(2.6) defining an effective longitudinal scale.

Equations (2.4) and (2.7) are exact in the spherical
limit, » = oo, in which limit they reduce to

h o u+tv :

Lo+ | ,
] Y|t 5 (2.8a)
SltM2  utv .l 23 5

=y £ 42TV - -
4 y[ 2! 4! M 2 u+v(1 ")
\ an
' n
—— | R 2.
8(1 - </d) M] (2.86)
—€/2
}7—‘=1+§(u+v) — —1] . (2.8¢)

That is to say, the system reduces to a spherical
model with coupling constant (v +v). There is a
second exact limit: # =0 (v positive!). This leads to
Eq. (2.9) with u set equal to zero for all vdlues of n.
This is expected from Eq. (1.5) since the spherical
model is the Fisher-renormalization counterpart to
the Gaussian model.’

For general u, v, and n, the mechanism of the
Fisher renormalization and possible first-order transi-
tion resides in the behavior of the factor X. For v
positive, its asymptotic properties are governed by the
sign of the rigid-system specific-heat exponent a.
Note that the leading term of the specific heat C is
just X and that (2A—1) =—a/ev=(n—4)/(n +8).
If « is negative, then X has a finite maximum at the
critical point and the asymptotic behavior of the sys-
tem is unchanged. The v-dependent terms would ap-
pear as corrections to scaling with a weak specific-
heat character. On the other hand, if « is positive,
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then the divergence of the specific heat drives X to
zero and the well-known exponent renormalization
occurs. For example, the disordered-phase inverse
correlation length ¢! =k with

K2=1tYPX (2.92)

The singularity in X is such that X ~ Y3722 and, of
course, Y, ~ k¢ yielding

K2 = te(1-8)

(2.9v)

This shows that the new value of the thermal ex-
ponent 1/v is given by

1/v'=2—€e(1-4) , (2.10a)
in contrast to the rigid system
1/v=2—€A . (2.10b)

Note that two temperature eigenvalues are related by
Fisher renormalization if 1/v+1/v'=d.

If v is negative, the possibility of a first-order tran-
sition arises. If « is positive, the factor X would
inevitably diverge somewhere near the putative
second-order critical point. If « is negative, then X
again has a finite maximum

3n

Kmax =TT ulaler]

(2.11a)

and X will diverge at or before this maximum is
reached if

n+8
n

a
— U
€V

lv| =

(2.11v)

Thus, the explicit forms of the solutions given here
exhibit precisely those properties deducible from the
fixed-point structure reviewed in Table I. The rigid-
system fixed point is stable only if « is negative. In
that case, its domain of attraction consists of all posi-
tive v and those negative v lying above the separatrix
joining the Gaussian and Fisher-renormalized fixed
points. Those lying below this separatrix, that is,
those satisying Eq. (2.11b), will “‘run away,” indicat-

ing a first-order transition. For positive « the
Fisher-renormalized fixed point is the stablest and
lies in the positive u, positive v quadrant. The entire
range of negative v thus is outside the domain of at-
traction and runs away.

It will now be assumed that v lies in the region im-
plicated in a first-order transition. The argument fol-
lows different lines for » 1 and n=1. The n #1
case will be considered first.

The Goldstone singularities suppress the v term
relative to the u term in the equation of state so
that an ordered state with # =0 is described by

(k*=uY,M?*/3)
2

—typ =y
)

KZ

K n Yz—lx/ev -1
2

n+8

v
u

afev

+ Y{“’“]] :

(2.12)

The point ¢t =0 is reached for a finite value of « at
which X~!=0. This ordered phase can persist to
t >0 with X~! < 0. Eventually the free energy of the
disordered state is lower and a first-order transition
occurs.

The Goldstone modes suppress all but the fourth
and sixth terms in the ordered state:

d
» 1 (k)
A_=—=t XK. ————FH .
> X S T_c/d (2.13a)
while in the disordered phase
(k)
1 n +
A+=—7t2X+JC+—'§1—_—;/7 , (2.13b)

where (+) subscripts denote values in the disordered
and ordered states, and

1Y (k) Xe=uk . (2.13¢)

From general considerations'® the value of ¢ at the
transition is O(v), X='is O(v) withX + — 0 (1/€)
and «_still O(1). Thus A_is O(1) and «}/k%

TABLE I. The four fixed points of the compressible ferromagnet Hamiltonian Eq. (1.1) to
O (e). The fixed-point values of # and v are ¥ and v*. The eigenvalues associated with u, v, and

tare Ay, \,, and \,(=1/v), respectively.

Fixed point u v Ay, Ay . A,
Gaussian 0 0 € € 2
Spherical 0 3e/n € —€ 2—¢
Rigid 3e/(n +8) 0 —€ alv 2—€A
Fisher

renormalized 3e¢/(n +8) 3/n)alv —e —a/v 2—e(1—A)




392 J. F. NICOLL 24

—~0(e). If X, were also O(1) then A, would be
O (€) and equating 44 and A_ would be equivalent
to setting A_=0+0(e).

To self-consistently check that, in fact, X4 is O (1)
it is useful to include the leading term in A 4 to give
the first-order condition:

=—1A(X_X- - X)) -5 (k)L (214a)

After some manipulation

__1_[1 2_;521 Y{A(K+)]

=—I;—|—Y22A(K_)K:‘ ,

YD)
(2.14b)
KAV (k4) l4—n[Y2(K+)/Y2(K_)]—"/"’]z_li'yzxj '
KLY74 (k) 4—n 6
(2.14¢)

For n =1 the v term is not suppressed so that the or-
dered phase is characterized by

u¥oM? | vYPMX

—tYAX = 2.15

tYy 6 6 ( a)

or
2
—tY4 -5 3, (2.15b)
3=Xx" + ¥ y22A—1
u
Y—a/tv -1
—1+2|L D +yree| (2150

duplicating Eq. (2.12). Now all the terms in the free
energy contribute to 4_. Combining terms, Eq.
(2.14) is recovered with n =1 and — 3_ replacing
—-Xx-N

From Eq. (2.14) it appears that «3/«2 is O (u).
For example setting u = u™

/v

kM 14— n(k/k)e

4—n

»

_u (2.16)
6

kv

if the (k4/k_)~*" factor is neglected (k4/k_)""
=¢€/2(n +8). One then needs to consider

_—__E_._._ pu—
l4”n[2(n+8) /(4 n)

An € expansion would give

e B _ n €
]/(4—")—1+4_naln2(n+8)

-1+

—a

4—n

€
2(n +8)

n € €

2.17)

n+8 71n2(n +8)

The elne factor is of intermediate size. It seems sim-
plest to leave Eq. (2.16) as it stands, recognizing that
(k4+/k-)""* does not have an expansion in powers of
e. Thus, the factor [4 —n (k4/k_)"%1/(4 = n) will
be treated as O (1) without further specification. In
any event «4/«% is O(u) and in the present case, this
factor can be dropped from Eq. (2.14b) that is, to
this order,

1 _ vl

1%l y2a —€
A 3 Y34 (k_)kZ€ . (2.18)

Note that the factor which drives the transition in
both the n # 1 and n =1 cases has the form of the
rigid-system specific heat (at least its leading part)
and that the rigid specific-heat amplitude ratio is n/4.

Any other thermodynamic function of interest can
be obtained from 4 and 4 /M or their derivatives. A
few examples will be given in Sec. III for the Ising-
like n =1 case.

Although the use of implicitly defined functions is
avoided by the seemingly more direct methods of
Refs. 12 and 13, in fact, it is precisely the implicit na-
ture of the expressions which permits them to be
valid at and below the first-order transition and to in-
clude the Goldstone mode singularities properly. The
approximations which appear to simplify the solution
of the renormalization-group equations fail in the re-
gions of interest.

A constrast may also be made by considering how
the two approaches treat the mean-field stability line,
marking the onset of the first-order transition. For
the compressible magnet, it is described by v +v =0.
In the procedure introduced by Rudnick,'? approxi-
mate renormalization-group equations are solved un-
til the-parameters flow to the stability line; at that
point the flow is stopped and a perturbative analysis
of the system is applied. In the present work, on the
other hand, the flows have well-defined asymptotic
properties and can be integrated out to their limits.

If the behavior of the ‘‘renormalized couplings’’ is
then considered the stability boundary.is crossed at

t =0 and, in fact, the renormalized couplings lie on
the far side for the positive  states (fsmall). For ex-
ample, if the n # 1 case is considered one may define
a ‘‘renormalized’’ pair of couplings by

(u+v)g=X"u +vyyia-b | (2.19)

One factor of Y has been removed to prevent this ex-
pression from vanishing identically in the ordered
state. The factor of X~ has been added to show the
relationship to Eq. (2.12). The remaining factor of ¥
drives the ‘‘renormalized’’ v to zero in the ordered
state, leaving only the term uX~'. This goes to zero
at + =0, thereby reaching the stability line and, in
fact, is negative in the positive 1, ordered-phase
domain. For n =1 there are no Goldstone effects
and one may choose to consider the renormalized
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couplings as
(u+v)pg=u+vXY;s\3 | (2.20)

Again, at t =0, the stability boundary is reached and
then for positive ¢, it is crossed. In fact, even after
the first-order transition has occurred, Eq. (2.20) is
still negative and, in fact, is more negative on the
disordered side than it is on the ordered. This fol-
lows from the fact that XY;'7 is an increasing func-
tion of k™! and that «% < «2.

This crossing of the mean-field stability line, while
initially surprising, in fact, is a perfectly natural, sen-
sible occurrence. It is easy to check, for example,
that the curvature of the free energy is positive at ei-
ther of the two minima, and remains positive for the
ordered phase even at temperatures above the first-
order transition, if the free-energy expression is used
to describe that metastable state. For temperatures
and/or magnetization far removed from the first-
order transition point the renormalized couplings re-
turn to u +v; that is, away from the transition the Y
functions and X tend to unity and the mean-field pic-
ture prevails. Thus, if the original Hamiltonian
parameters satisfy ¥ +v > 0, then the crossing of the
stability line by the ‘‘renormalized’’ parameters has
no disruptive significance.

As utilized by Bruno and Sak, the methods of
Refs. 12 and 13 cannot describe the entire # =0 axis;
the solutions break down above some tyin (#min < 0)
and below fa (fmax > 0). As shown here, this may
be attributed entirely to the methods employed.
Furthermore, the methods used to probe the first-
order transition itself by integrating to the stability
line and applying perturbation theory'® must inevi-
tably give rise to a sequence of logarithms which are
not easily recognized as the expansion of power-law
singular terms such as given in Eq. (2.14).

The present approach, in sharp contrast, is capable
of describing with a single expression the entire range
of thermodynamic variables, even in the presence of
Goldstone singularities. It achieves this by consider-
ing the asymptotic behavior of the renormalization-
group trajectories and by being implicit in nature.
The implicit character, which uses physically mean-
ingful quantities in the formulation, will remain self-
consistently valid even at first-order transitions. Un-
fortunately both the Nelson-Rudnick approach!?!?
and the differential generator methods are hard to
extend to higher order in perturbation theory. In
Sec. III, a modification!’ of the matching method
which is more systematic is used to carry the Ising-
like case to O (€2).

HI. n=1CASE: O(€?)

A powerful method for studying crossover equa-
tions of state has recently been described by Bruce

and Wallace!® (for applications, cf. Ref. 16 and Theu-
mann'?). Renormalization-group equations of a
field-theoretic nature (as distinguished from those
obtained from a differential generator or equivalent
approach) are exploited in a systematization of the
matching technique.!> These renormalization-group
flow equations differ from generator equations in that
the propagator factors are absent in the former. For
example, the lowest-order field-theoretic flow equa-
tions for the compressible magnet are identical to Eq.
(2.2) with g, =g,=1. The absence of the propagator
factors has several immediate consequences. First,
there is now no distinction between transverse and
longitudinal contributions. It, therefore, seems diffi-
cult to separate the corresponding singularities. At
present, the method is directly applicable for Ising-
like systems or the disordered phase of non-Ising sys-
tems. Second, the lack of propagators prevents any
saturation of fluctuation effects. This necessitates a

" matching approach. Third, and in compensation, the

nonlinear equations are far more easily solved
without propagator factors. This is what allows
O (€2) calculations to be simply made. As will be
shown below, the full thermodynamic phase diagram,
including the first-order transition, may be obtained
showing that the failure of the methods employed in
Refs. 9—11 is not due to matching, per se, but rather
has to do with the nature of the approximations em-
ployed. ,

For the purposes of this section the Hamiltonian
will be defined as

= J (18 3 TER+ L)
+T},}%U$2d"xr—fﬁ-$d”x . GD

In Eq. (3.1), A is a lattice cutoff effectively limiting
the momentum integrals to |k| < A. There are, of
course, many ways of imposing such a cutoff which
lead to differences in the calculated quantities which
can be, to the order needed, removed by simple
changes of scale.!® This adjustable scale will be
chosen to agree with the sharp cutoff implicitly used
in the generator approach of Sec. II. The renormali-
zation-group equations follow!® from the existence of
a renormalized theory in the A — oo limit. This im-
plies a specific connection between the dependence of
the free energy on ¢, u, v, and A. Equation (1.5) can
be written as (by Legendre transform)

A=A |t + ”;“ lp]— ”é\t v, (3.2a)
_ 04, vA*©
y= Y 1+ q;] ) (3.2b)
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The renormalization-group operator ® is of the form
®R =Ad,+B,(u)d, + 8,0, +¥,(u, v)1d,

)
2

May . 3.3)

Applying this operator to Eq. (3.2) and requiring that
® annihilate all singular terms shows that 8,(«) and
n(u) are, as indicated, independent of v and that

=vy,(u) + B(w)v/3 , (3.4a)
,6,,.=—ev+B(u)v2/3 +2y,()v (3.4b)

where y,(u#) =2 —1/v at the fixed point B(u*) =
and B (u) appears in the kernel of the renormahzatlon-
group equation
AA = — B(;)t2
These relationships hold to all orders in € and « and
for all n. [The expressions for these quantities to
0 (€?) are given in Ref. 15 and the Appendix.] They
simply embody the Fisher-renormalization relation
Eq. (3.2) in differential form.

The flow equations relate systems with different
values of A; setting A =exp(—/) and (and specializ-
ington=1)

A—G

g; 172 N (353)
du _ _ 3.5b)
o = A _ (
dv __ 3.5
5 B, . (3.5¢)
The solutions are simple
t()=1TX , (3.6a)
u(l)exp(—el) =ulU , (3.6b)
v(D) exp(—el) =vT?X (3.6¢)
X“=1+—§—J€ , (3.6d)
/
‘T=exp[—j; 72[u(1)]dll , (3.6e)
1 .

x=f BT exple dl . (3.60)

Defining A4 and Ah as the fluctuation contributions
to the Helmholtz free energy and equation of state,
then!S:16

4 =T + L (Da2)? + 22X (DM?)?
"';CX +A4(D) © (3.72)
% D{TH +u U o)+ LX - Xome + A”(1)

(3.7b)

!

with D Eexpj; nlu(1)1dl. These expressions hold
to all orders in perturbation theory and for all values
of I. The most convenient choice of a match point is
I =1* such that Ak (/*) =0. This provides a parallel
expression to that of Sec. Il and simplifies the
description of the coexistence surface.

To O (€*) the renormalization factors are!'* !

D= Y_"/"’exp[—(p-ﬁ)n/m] , (3.8a)
T=Y2WexplD((p—iu)l , (3.8b)
U= Yo | (3.8¢)
B exp2D,(1 —u)
€U
N y—a/wv__l yl—a/wv_l
alve 1—a/wv
(1—u) (3.8d)

where Y=(1—p)/(1—@), u=u/u*, u(D)=u"p,
m, v, @, w are the rigid-system critical-point ex-
ponents, and D, is given by

*
D= —"—=Zu", (3.8¢)
€
(1+1e) . (3.80)
All the / dependence is embodied in

Y‘/“‘%=exp(~el) . (3.8g)

At the Ak (/*) =0 match point

Y(/w£=exp(—5[*) =K‘exp- iL . (393)
» 2
where
2 a2 2
e 17X + u‘ll(f";M ) 4 ””gDM . (3.9b)
* r ¥ ‘
e . Ny RS VI YY)

with f =4+ 72—8Xx (A~1.17) or f~4.5.2 In Eq.
(3.9¢0)

2
g = LDV (3.10a)
K
2
w~1+§;‘fmxk. (3.10b)
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There are four basic variables in this problem: ¢, M,
u, and v. These are thus four global nonlinear scal-
ing fields. Alternately one can consider a single scal-
ing field, «, and three global renormalization-group
invariants p, ¢, and w. Although these are invariants
of the renormalization-group flow, they do depend
upon the values of tand M. For example, ¢ =3 on
the coexistence surface and w =2/3 on the ‘“‘renor-
malized’’ stability line, reached at t =0.

At the Ah =0 match point the free energy A is

_ 17X

4 2!

DM? +if4-'}i(:DM2)2

) D 22_123(:/‘/
+4!7‘X( M?) -

K4 up . u'pg .
BT A f’l-

3.1D

Note that this reduces to the result of Sec. II if the
two-loop contributions are dropped. It is also instruc-
tive to observe that if the specific heat at constant
field, C,, match point were used instead of the Ah
match point, then for v=h =0, C, =X (¢t >0), and
$Cp=% + (3/u)T?/U(t <0). With the present
match point, they represent the leading behavior of
the rigid-system specific heat as do the corresponding
expressions for general n given in Sec. II.
The description of the first-order transition (for
v < 0) proceeds as in Sec. II. At h/M =0,
K =uW(DM?)/3

2
—:=r=L‘-21 , (3.12a)
2
a=1+§:1c+—3-l;7(;—1 (3.12b)

As before, t =0 marks the crossing of stability line
(3 =0) and the ordered phase persists with 3 nega-
tive. The free energy in the ordered phase is

3 («2)2X_3_ P
A_= 3 L 5 X_3._
(k)4 u*p

_ 1+—— A =f)—u*2p_(3-
8(1—-%6) W f uzp( f)]

(3.13a)

while in the disordered phase

(K+)d

8(1 —¢€/4)

7
A+=——2-X+.‘K‘,+ -

1+""*(1—f)' .
Wi
(3.13b)

The location of the first-order transition and the
k%/k2 ratio are determined by

2 ¥
K3 lv] _(1-3u"p)
-3l AVl ) T2 P
3_|11+2 K2_T+] 3 72(k-) T
(3.14a)
2
ks T ulU._
o L= (Jc+—3c-)]

_ (1-3u"p.) uu_(k)*
(1—¢/4) 6 ’

(3.14b)

where w =% +0(e), To examine the structure set
*
u=u

1/v
_ L2 I P L P ¢ 10 )
-1 +2 K-] ]_ e (P
(3.15a)

_K_+ /v 4 Ky —afv 4
K- 1+e_ : / 1+€—1

_ (=3 u*

S 6 - G150

The differences in the values of L,L +, do not matter
at this order. Note again that 4/(1 +¢€) is the rigid-
system amplitude ratio to this order. For complete-
ness a few of the other thermodynamic quantities at
the A (1*) =0 match points are listed:

94 DM? T2 u'p

92 _x|122 g+ L (fr- )

5 x[ : e+ TEZLL (g 1)], (3.16)
2 22, —€ * * *

BA ) =xk+ KT LU Py 4 XM (phy + L2 (3.16b)
ar2 7 2w 4 2
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924 UW a0, VTXDM? | Pu”pgw? u*p  utpw (f+1) u'p w

34 (—r)—o{Tx + Lom + + |- dL upwy ASFD —¢¥

oag? =12 ) 2 2 w 2 > w2
(3.16¢)

1 94 9 h ‘ u*pw up | u*pq, u*pw

1 o4 190 " _qrxfi+ 1+ 42 5P rhnyy 3.1

YRTEYY T, DTX 3 (f+1) (3.16d)

It is simple to check that I'; remains positive in the
ordered phase even though the Landau-Ginzburg
terms vanish at t =0 and are negative for t > 0. In
fact, 3 would have to be roughly twice as negative as
its value at the first-order transition before I', would
vanish, signaling the end of the metastable state.

I have shown that systems with first-order transi-
tions can be handled by the same methods which ap-
ply to the usual second-order transition. For both
the generator approach of Sec. II and the Bruce-
Wallace matching procedure of Sec. III the validity of
the result throughout the thermodynamic space is
achieved by focusing on physical variables and exact
nonlinear scaling ideas. The most direct comparison
is between the matching used by Bruce and Sak and
the Bruce-Wallace approach used here. The former
fails to cover the entire ¢ axis because it attempts to
utilize an explicit expression in terms of ¢ rather than
an implicit expression in terms of k2. Now, in the
disordered phase x> ~ ([1 + 0 (e)] and it might seem
that this replacement would be a valid and useful
one, say, in the Y functions: «¢—~ 12, However, the
instant this is done, the physics of the problem is
ruined since «? is not zero at t =0. Of course, before
t =0 is reached the first-order transition intervenes
but one could follow the disordered state into a meta-
stable region. For u =u*

1+ 3.17

I=K1+/"

3 alv

v K:a/v_l ]

The (metastable) disordered state reaches t+ =0 at a
finite k3. On the other hand if the lowest-order ex-
pression /¥ =t is inserted the equation becomes
nonsensical at the equivalent . Thus, the matched
results of Bruno and Sak would be extended in validi-
ty simply by leaving the results implicit. A similar
analyis applies to. the ordered phase. Here k% =0
everywhere since it is essentially the inverse suscepti-
bility.

In physical terms the generator approach and the
exact spherical limit suggest that the effective masses
should represent the full rather than bare quantities.
This is what is implemented by the implicit relation-

ships obtained in the two-loop matching used here.
On a technical level, the use of physical ‘‘renormal-
ized’’ quantities permits exact nonlinear scaling. The
match point «’s are exact global nonlinear scaling
fields'® and the present approach preserves all the
formal scaling properties of an exact solution. Re-
placing «? with ¢, as above, violates the global scaling
properties. This points out the danger of merely
guaranteeing the sensibility of a match point scheme
to O (€); although perturbation theory and the € ex-
pansion are limitations, the best results are achieved
by respecting the global renormalization-group prop-
erties. Thus, for example, the n = oo and v =0 limits
of the compressible magnet model are easily obtained
exactly, but are recovered from matching only if the
implicit form is respected.

At the first-order transition it is easy to see that
crossing the mean-field stability line is not the obsta-
cle that it has been considered previously. The
theory is sensible as long as the free-energy minima
have positive curvature which is easily confirmed
from Eq. (3.16). In fact, the perturbation theory it-
self is on even safer ground since it involves only
u +v/3 and k2=h/M +uM?/3 or their renormalized
counterparts and these remain of the same order at
the stability line. In general,'® one expects that if the
bare Hamiltonian satisfies the stability criterion
(here, u +v > 0) that the perturbation theory will be
meaningful since the values of terms such as «? will
be determined self-consistently from an implicit
equation of state.
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APPENDIX: PERTURBATION SERIES

The free energy is calculated to two-loop order with
a propagator pX+p*/A?+«k?, kr=1t+uM?/2 +vM?/6,
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and then a scale factor (B, of Ref. 16) is removed to conform to the scale of the sharp cutoff of Sec. II.

(k/A)e
1—¢€/4

+1 UM gy gy (A1)

8

AA = —-I—-(KZ)ZA'—‘[ -1
2e

2
u +% (K2)2A—‘[£

2

where L =Ink?/A? and f =4+ 72 —8A, A~ 1.17, f ~4.5. It is useful to give explicit expressions for the

derivatives of A4

—€ 2 2
DA __ap- QAL Ly 2 |eam(L2 4 D)+ 200 (L = D= +2(L = D] (A2)
t € .
a4 _ 1| el | b et v3) (s e, UPM?
Y E”1 > 1|A +~———————4 (L*4+3L +1)Ac + pE L, . (A3)
1 , 04 Ah v, (k/A)¢ =1 (u+v/3)? ,
— AL =2l |y + =
YRRFYY] i u 3 K . + A «2L(L +1)
v | uM?A" 2 u?k? 2
+ u+? —8——[(L~1) —f+2(L-1D1+ 2 [(L-1)2-r1, (A4)
2 —€
AY’ A Ah v 1 € (u +v/3) WMt
202 AT, =20 4 Y 2r€) 1 £ - AU TY/IT 2 o Mm A
Yo VI MA[ 6Hl 5 1]+ 2 ~(L2+3L +1) + ™e L
2
+i’—(—u2+v¢)M2A‘[(L——l)2—f+2(L—l)] , (AS)
1 924 v 1 € ll k - (u+v/3) ,,, u*M? A«
—_ = ===l -1|4+—=—=2 + B CELIN
M 51 9M “+3[ e“l 2]/\ : g LA AT L
2
+“7[(L—1)2~f+2(L—1)1 (A6)
These imply (n=1)
B=—eu+3u2—-'37—u3 , n=%u2 , 2————1—E)'Z(u)=u—uz+lu2 , B(u)=1 . (A7)
v(u) 6

The match points for each of the various quantities are determined by the corresponding series equal to zero.
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