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Some properties of a one-dimensional Ising chain with an inverse-square interaction
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We report some new results obtained for the thermodynamic properties and correlation func-
tions of the one-dimensional Ising model with an inverse-square interaction between the spins.
Using the Anderson and Yuval renormalization-group equations, we evaluate the correlation
function and magnetic susceptibility for T & T, . Monte Carlo data for the magnetization,

specific heat, and spin-spin correlation function have also been obtained.

The one-dimensional Ising chain with a ferromag-
netic inverse-square interaction has been the subject
of a wide variety of analysis. ' ' Here we report some
results of an analytic evaluation of correlation func-
tions and the susceptibility for T & T„based on the
renormalization-group equations of Anderson and
Yuval and Kosterlitz, ' and some results obtained
from a Monte Carlo investigation of the system. The
Monte Carlo calculations which are reliable at low

temperatures. complement the renormalization-group
results which are correct just below T, giving a full
description of the ordered phase. %e find from our

. analytic work that for T & T„ the order-parameter
correlation function G (r) = (s (r) s (0) ) —(s ) de-

cays as the power law 4(~tl)' 'r '~'~' where12 -4 t

t = ( T —T, )/T, . As T T, from below this goes
over to (ln r) ' giving rise to an unusual behavior in
the susceptibility. It is infinite in the range

& t & 0 and becomes finite again for t & ——.
16 16 '

Above T, the correlation length g has the form e J' '

for t close to zero and crosses over to a Gaussian
behavior for t && 1. The susceptibility scales as the
correlation length.

The Monte Carlo study shows, in agreement with
the work of Anderson and Yuval, ' that a transition
with a finite discontinuity in the magnetization takes
place very close to the transition temperature
T, =—0.79 (see Fig. l). At this point the susceptibility
of an infinite system does indeed diverge. The accu-
racy of our Monte Carlo work is not sufficient to ver-
ify that the susceptibility remains infinite over the
range —

—, ~ t ~0. However, it definitely shows

that the susceptibility is finite for t & —0.16 and for
t & 0.05, where T, has been taken to be 0.79. The
Monte Carlo correlation functions (Fig. 2) fall off
very slowly for T ~ T, and are in qualitative agree-
ment with a r decay for T & T,. The analysis of
the specific heat shows a peak at a temperature above
T,. It is not possible, based on our present Monte
Carlo data, to make an unequivocal statement about
whether the peak height becomes infinite in the ther-
modynamic limit. However, it should be noted that

I.Q I

4 ~
I

0.6-

OA-

0.2—

2.0 l.6
t/T (K ')

FIG. 1. Magnetization as a function of inverse tempera-
ture for a system of 256 spins. The solid dots are the mag-
netization in the presence of a local magnetic field perturba-
tion described in the text and the open triangles are the
magnitude of the magnetization in the absence of this field.
The error bars give the rms fluctuation of block averages.

the scaling analysis does not predict any divergence in
the specific heat. Consideration of the crossover
between the essential singularity in the free energy
near T, and the molecular-field behavior for T ) 2 T,
leads to the prediction of a finite peak in the specific
heat at a temperature above T,.

The Hamiltonian for the Ising chain with an r ' in-
teraction is

pH =- St Sj 1

2 T /)J (r( rj)'
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Q = (1/T) —1, the chemical potential field, y = e ~ ',

and the magnetic field h,
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It should be noted that to the lowest order in y'
the exact form of Eq. (4) would have a factor
(1 +$) multiplying the right-hand side. For the
present purposes Q (( 1 and hence we feel justified
in replacing this factor by unity. Equations (4) to (6)
are a correct description of the system for small y. It
is obvious from Eq. (5) that for $ & 0 ( T ( 1) the.y
iterates to zero, and hence in the regime 1 » @ & 0
these equations describe the system adequately. On
the other hand, if we are above the transition T & 1,
y grows under iteration and reliable conclusions can-
not be drawn. In this work we will not use these
equations in this range.

A first integral of Eqs. (4) and (5) is easily seen to
be

y2 $2i

FIG. 2. Monte Carlo correlation function (s,sj) vs ~i
—j ~

at different values of the temperature.

T«r= $ — = =1.645. . .
n 1

(2)

Now, as expected, the fluctuations prevent the sys-
tem from ordering at T~. However, as the tempera-
ture drops below T~, the spins tend to line up and
the dominant excitations are kinks at which a spin re-
versal occurs. The leading terms in the action for a
chain with n kinks can be written as

I

(3)

Here the kinks are labeled sequentially by j and k.
The logarithmic terms represent the interaction
between kinks at sites j and k and the chemical po-
tential p, is associated with the local energy to form a
kink in the absence of h.

In the temperature range where Eq. (3) is appropri-
ate, Anderson and Yuval2 scaled the lattice spacing
a a(1+dl) and obtained the following renormal-
ization-group equations for the temperature field

Here T is measured in units of the exchange energy
J, ~r; —

rj~ is the distance between the ith and jth
spins, sl = +1 and a is the lattice spacing. %'ith the
magnetic field h =0, mean-field theory gives a transi-
tion temperature

where C is a constant. This constant has been
evaluated by Anderson and Yuval' and shown to be
approximately equal to t. For T (.T„where the
number of kinks is small, the flow always terminate
on the y =0 axis and one obtains a line of critical
points ending at T= T,. For T & T„yiterates to
larger and larger values and the local RG equations
based on a dilute "kink gas" must be mapped onto
an appropriate high-temperature description.

We illustrate the use of Eqs. (4)—(6) in computing
various thermodynamic quantities by calculating the
correlation function G(r) at T = T,. The prescription
for expressing the required correlation function with
increased lattice spacing is

1 '1

(s ( r) s (0) ) = e 2'exp 2
~ y„(I') dl' (s ( r /e') s (0) )

(8)
Here r is measured in units of the lattice spacing and
y«(l) =1 —2y'(I) is the I-dependent magnetic eigen-
value. Scaling, so that l =lnr, we have

(s(r/e')s(0)) = (s(l)s(0)) = 1

and

Wn

(s(r) s(0) ) =exp —4 J ry2(l') dl'

f y(I)
=exp 4 Jy(0)

where Eq. (5) has been used in the last step. Using
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Eq. (7), the last equation can be easily integrated. To
complete the calculation we need the function y (I).
For 7'= T„Eq. (7) yields $=2y and hence Eq. (5)
can be integrated to give y(l) = (2!) '. Consequently

($ (r) S (0) ) S 2e(1tlnr) (10)

which correctly reduces to Eq. (11) as t 0. Equa-

tion (12) implies the temperature-dependent ex-

ponent

~ = I+4~It I

At T = T„ this yields q =1, a result which has been
conjectured to be exact by Fisher, Ma, and Nickel. 5

It follows from Eq. (12) that the correlation drops off
increasingly rapidly as T decreases below T, in con-

trast to the 2D XF model. This is consistent with the
existence of long-range order for the present problem

and the interpretation of G(r) as the healing of a dis-

turbance in this order. An interesting consequence
shows up in the susceptibility X, which can be ex-

pressed as

» oo in' oo

x= G(r) d» = J 4( ~ t) )1/2
r

(14)

For ——
I6 ( t & 0 this clearly diverges. It is finite for

t (—
—,6

and proportional to I/(4~~t l
—I). As

t ——form below the behavior is (t +—) '.
16 16

Turning now to T & T„we note that Eqs. (4) —(6)
are no longer valid except perhaps in the immediate

vicinity of T,. To extract more information one has

to resort to the Gaussian approximation which will be

valid at high temperature. In the Gaussian approxi-
mation the specific heat is strongly divergent. In the

vicinity of T„on the other hand, we know from An-

derson and Yuval, that the specific heat is severely

suppressed by the fluctuations. Consequently, we

have a picture in which for T && T, that the specific
heat is rising rapidly as T decreases and close to T,, is

becoming very small again. This suggests the ex-
istence of a peak in the crossover function for the

G (r) S 2(e(lnr) I )
'

S 2/lnr

where s —e " ~. This is an interesting limiting

result in that the importance of the logarithmic term,
which signifies marginality, is paramount. Without

it, we would not obtain a physically meaningful corre-
lation function. This is distinct from the Kosterlitz-
Thouless transition' in the 2D (two-dimensional) XE'

model where the logarithmic correction at T = T,
merely modifies the r ' falloff.

For T ( T„but close to it similar considerations

yield

specific heat with the crossover occurring from the
Anderson-Yuval behavior to a Gaussian behavior.
The susceptibility is finite for T & T, and scales as
the correlation length.

The Metropolis Monte-Carlo procedure~ was used
to simulate the system. Here 3000 passes were used
to equilibrate the system and another 12000 passes
were used to calculate the averages. The averaging
has been performed over both heating and cooling
runs. At least six independent runs were taken with
different initial conditions and no systematic errors
attributable to hysteresis were found. Since the
Monte-Carlo calculation involves a finite number N
of spins with periodic boundary conditions, the action
of Eq. (1) becomes (within an additive constant)

(rr'/N') (s,st —1)
2 T;)) sin'[(2r/N ) (t —l ) ]

Calculations were performed for N =16, 32, 64, 128,
and 256.

The magnetization for 256 spins is shown in Fig. 1.
The error bars represent the rms fluctuations. These
errors are negligible for P & 1.4. For N =256 and
zero magnetic field at P =1.6, m (0) =0.9819 with a
rms fluctuation of +0.0003. It is also worth noting
that the heating and cooling runs agree to within a
tenth of a percent. The picture of Anderson and Yu-
val is borne out very well. Close to P =1.30 there is

a sharp drop in the magnetization. According to An-
derson and Yuval the magnetization would have a
finite jump at P =1.27 corresponding to T, =0.79.

In order to probe the transition region we ran the
simulations with a local magnetic field perturbation in

which one spin was always held in the "up" direc-
tion. We see from Fig. 1 that the magnetization
m(it) is identical to m(0) for P & 1.30, but for

P —1.30 the local magnetic field perturbation causes
a large change in the magnetization and hence indi-

cates the existence of a critical region. The additional
prediction of an infinite slope in the magnetization
curve at the transition temperature cannot be verified

by these techniques.
The Monte Carlo correlation function (s;st) at

various temperatures is shown in Fig. 2. For P ~1.3
the function approaches a constant at large distances
due to the long-range order in the system. At P =1.2
and 1.1 the data are consistent with an r 2 falloff.
The susceptibility data have not been shown due to
the limited accuracy in the vicinity of the transition
point. It was found that at P =1.30 the susceptibility
scales with the system size and hence would be infin-

ite in the thermodynamic limit. It was found to be
finite for P ~1.5 and for P ~1.2. The N
behavior in the remaining region was not particularly
transparent. We have seen above that the recursion
relations lead to a divergent susceptibility in a finite
temperature range 'in this region. Although our
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Monte Carlo cannot verify this exactly, the data are
not inconsistent with this assertion.

%e turn now to the most interesting feature of the
Monte Carlo simulation, the specific heat. %e have
calculated it from the fluctuation in the internal ener-

gy (u') —(u)' and also from the temperature
derivative of the computed internal energy (u ). In
our simulations we have made sure that the two
methods yield practically the same answer, a fact that
assures us of the reliability of our simulations. The
plots for different values of N are shown in Fig. 3.
The interesting point is that at P = 1.10, which is a
temperature slightly higher than the transition tem-
perature, the specific heat increases with the size of
the system. The height of the peak at P =1.10 is

shown as a function of the system size in the inset.
The accuracy of the data is quite high at this tem-
perature and the conservative error bars represent the
difference between heating and cooling runs. The
variation of the specific-heat peak with the sample
size shown in the inset of Fig. 3 does not follow the
finite-size scaling behavior associated with a second-
order transition. However, we cannot reliably distin-
guish between a specific-heat peak saturation or
divergence within the sample sizes we have studied.
This Monte Carlo finding is in contrast to the 2D XY
model studies' where the peak was found to saturate
rapidly with the system size.

In conclusion, we have on the basis of the
Anderson- Yuval recursion relations, predicted the
temperature-dependent exponent q = 1 +44 t, for—
T & T„and shown that this leads to a finite suscepti-
bility for T ( 15T,/16. Our Monte Carlo studies
supporting the Anderson prediction for the magneti-
zation and our assertion of a finite low-temperature
susceptibility have been presented. The investigation
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of the specific heat by Monte Carlo techniques has
shown the existence of a maximum at a temperature
above T,. Further study is required to establish
whether the maximum is finite or an actual diver-
gence. Arguments based on a crossover from
Anderson-Yuval to Gaussian behavior have been
given to predict a finite maximum at a temperature
above T,.
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FIG. 3. Specific heat vs temperature for different lattice
sizes N. The error bars represent the differences between
heating and cooling runs. The insert shows the variation of
the maximum of the specific heat with the system size.
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