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Mixed state in antiferromagnetic superconductors
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The free energy of the mixed state in antiferromagnetic superconductors was derived. The
spin magnetic moment induced by the magnetic field of vortices changes drastically at the transi-

tion boundary between the antiferromagnetic state and the forced-ferromagnetic state. This ef-
fect causes a kink in the curves of the upper and lower critical fields versus temperature at the
boundary. When the Neel temperature is very low compared with the superconducting transi-

tion temperature, the effect becomes strong enough to cause a dip in the curve of the upper
critical field versus temperature. Even in this case the flux density at the upper critical field

monotonically decreases with increasing temperature as in usual nonmagnetic superconductors.
The present theory well explains the temperature dependence of. the upper critical field observed
in DyMo6SS. The magnetization curves were obtained for various cases of parameters.

I. INTRODUCTION

Since the discovery of the coexistence of magnetic
and superconducting orders in the rare-earth ternary
compounds, much work both experimental and
theoretical has been done. ' ' The antiferromagnetic
orders of rare-earth spins coexist with superconduc-
tivity in DyMo6S8, TbMo6S8, and etc. ' On the oth-
er hand, the onset of ferromagnetic order destroys
superconductivity in ErRh4Bq (Refs. 15—17) and
HoMo6S8. "" In a small range of temperature above
the ferromagnetic transition temperature of ErR.h4B4

(Refs. 3 and 17) and HoMo6Ss, ' " a periodic spin
structure with a large wavelength was observed by
neutron-diffraction experiments. The temperature
dependence of the upper critical field H, 2 in those
magnetic superconductors is anomalous near the
magnetic phase transition temperature. In antifer-
romagnets DyMo6S8 and TbMo6SS, the curve of H, 2

versus temperature has a dip just below the Neel
temperature T~ and a maximum near this tempera-
ture. 6

If there exists the strong exchange-type interaction
between conduction electrons and rare-earth ions in
these compounds, the fluctuation of rare-earth spins
acts as a breaker of the Cooper pairs. This pair-
breaking effect causes the decrease of the supercon-
ducting transition temperature T, and the upper criti-
cal field. The spin polarization of conduction
electrons induced by the rare-earth magnetization
through this interaction may also effect a decrease of
H, 2.' " However, the experimental results show
that the decrease of T, due to the magnetic rare-earth
ions is not so large in most of these compounds. '

The spin-orbit interaction acting on conduction elec-
trons is strong" and suppresses the effect of the spin
polarization, of conduction electrons. ' ' The band-
structure calculation shows that the exchange-type in-
teraction is extr'emely weak in these ternary com-
pounds, especially in the Chevrel compounds
RMo6S8, "where R represents a rare-earth metal.
Therefore, the effect of the exchange-type interaction
mentioned above may be renormalized into parame-
ters in these compounds. In this circumstance, the
electromagnetic interaction between the persistent
current and the rare-earth magnetic moments be-
comes important. Various unusual phenomena
have been predicted from this interaction and some
of them have been experimentally confirmed. "~'

In antiferromagnets as well as in ferromagnets the
electromagnetic interaction becomes important, since
the large magnetization of rare-earth ions is induced
by the internal magnetic field in the vortices. ' "' It
has been shown in a previous paper that the H, 2-

versus-temperature curve shows a peak in the anti-
ferromagnetic superconductor equal. to that in the
ferromagnetic superconductor. In this paper we re-
stricted ourselves to the paramagnetic state above T~,
and H, 2 was weak enough to neglect the saturation
effect of the rare-earth magnetic moments. When
the antiferromagnetic components of spins appear
belo~ Tg, the ferromagnetic component induced by
the applied field is suppressed. If the applied field
is very strong, the system changes to the forced-
ferromagnetic state. These properties lead to
behaviors characteristic in antiferromagnetic super-
conductors.

We extend the previous theory to the one appli-
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cable for antiferromagnetic state by taking account of
the saturation effect, and calculate the upper and
lo~er critical fields H, 2 and H, i as well as the mag-
netization curves. In our calculation for the antifer-

- romagnetic state, we confine ourselves to the case in
which an external magnetic field is applied in the
directions parallel and perpendicular to the rare-earth
spin axis. Our result is summarized as follows. The
H, 2 curve shows a dip or a cusp at the temperature at
which the antiferromagnetic order occurs. This or-
dering temperature is lower than the Neel tempera-
ture at zero field owing to the effect of the internal
magnetic field in the vortices. The upper critical field
when an external magnetic field is applied parallel to
the spin axis increases with decreasing temperature
faster than the critical field when the field is applied
perpendicular to the spin axis. Even when the H, 2-

versus-temperature curve shows a dip, the flux densi-
ty at H, 2 decreases almost monotonically with in-
creasing temperature. The magnetization curve
shows an anomaly at the transition point from the
antiferromagnetic state to the forced-ferromagnetic
state.

This paper is structured as follows. In Sec. II, the
formulation for the Gibbs free energy for the mag-
netic superconductor is given, and in Sec. III, the ex-
pression for the free energy of antiferromagnetic su-
perconductor is given. Finally, in Secs. IV and V nu-
merical results for H, ~, H, 2, and the magnetization
are presented and compared with experiments.

—
—,
' XXyp(R„—R)) p, (R„) p(R(),

n I
(2.1)

where Eo is the energy of the system of supercon-
ducting electrons, the second term is the interaction
energy between the microscopic magnetic field b(x)
and the magnetic moment p, (R„) located at the site
R„, and the third term is the exchange energy
between the localized spins. yp(R„—R~) denotes the
exchange constant. The free energy can be obtained
from (2.1) as

F= Fp ks T glnZ(A(R„))

+ —,
'

X Xyp(K„—Ki) p, (R„) p. (K()
n 1

(2.2)

In (2.2) the magnetic moment p, (R„) satisfies the
equations,

gp, sJA(R„)
~ R. =gusJBJ

8

(2.3)

model the superconducting electrons interact with the
localized spins only through the electromagnetic in-
teraction. The localized spins are coupled through
the antiferromagnetic exchange interaction. The en-
ergy of the system can be written as

E =Ep Xb(R+) ' p, (R+)

II. FORMULATION A (K„)= b (R„)+ Xyp(R„—Ri) p (R()
1

(2.4)

Let us consider a model which consists of super-
conducting electrons and localized spins. In this

where BJ(x) is the Brillouin function, and Z(A(R„)')
is the partition function defined by

r

2J+1 gpsJA(K )
2J AT

gp, sJA(R„)
2J AT

(2.5)

fhe quantity Fp in (2.2) is the free energy of the electron system and has been obtained in the previous paper.
In the mixed state, Eo is expressed as

Fp= — + W„„,+ d x ——j (x) a(x) ——'7f(x)K t'
3 b(x) 1-. -- Ac-

8m 8m 2c e
(2.6)

In (2.6) the first and second terms represent the superconducting condensation energy and the core energy of
vortices, respectively. The persistent current j (x) is expressed as

j(x)=— J d3y c(x —y) a(y) ——0f(y )
4mZL2 ( T) e

(2.7)
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9' x Vf(x) =vre3XS (x —g;) (2.8)

where h.L(T) and c(x) are the London penetration
depth and the boson characteristic function, respec-
tively, and a(x) is the vector potential related with
the microscopic magnetic field b(x) by b(x) = V
x a ( x ). The function f( x ) is equal to half the
phase of the superconducting order parameter, and is
written for the vortices located at g; 's as m(x) = Xs(x —R, ) p, (R„), (2.1

N

@ being the unit flux hc/2e.
Equations (2.3), (2.4), and (2.10) determine

p, (R„) and b(x) in the mixed state. Let us intro-
duce the internal magnetic field h(x) defined by

we obtain

—'7 b(x) +
2

d y c(x —y) b(y)
XL2(T) "

=4m+ x 9 xm(x) +$ Xc(x —g;)e3
(2.10)

1)

where e3 is the unit vector in the direction of the
vortices. Substituting (2.7) and (2.8) into the
Maxwell equation

h(x) = b(x) -4nm(x) .

The field h(x) satisfies the equation

j (x)= 0 xh(x)
4m

(2.12)

(2.13)

g xb(x) = ~ j(x)+4~0 xm(x), (2.9)
C

Then the free energy can be expressed in terms of
h(x) as

+ W„„,+ J~ d x ge3 h(g;)5 (x —(;)+—h(x) m(x)

—ksT XlnZ(A(R„)) +-, X X p (R„)y(R„—RI) p (Rl)
n I

(2.14)

Here y(R„—RI) is the spin-spin interaction which includes the dipole interaction. The component of y(R„—Rl)
is given by

r

d'k
ygj(R/g R~) = yp(R„—Rl) 8;, +4rr

& 5;, — exp[i k (R„—RI) ]~ (2~)' " k2 (2.15)

This interaction is the spin-spin interaction in the
normal state.

In a given external field the relevant thermo-
dynamic potential is the Gibbs free energy. The
Gibbs free energy for the mixed state is obtained
from Fby using the Legendre transformation

The upper and lower critical fields H, 2 and H, ] can be
calculated by the method in Ref. 46.

III. GIBBS FREE ENERGY AND
UPPER CRITICAL FIELD

7l
mix =F

44m
(2.16)

4m 9F
dn

(2.17)

With use of the relation, the Gibbs free energy is
written as

G;„=F—n-BF
Bn

(2.18)

where n@ is the flux density and His the external
magnetic field. The free energy (2.14) is the func-
tion of the vortex density n. Using the condition
BG;„/Bn =0, we have the relation between n and H,

In this section we calculate the expression of the
Gibbs free energy and obtain the upper and lower
critical fields. By solving (2.3) and (2.10) we obtain
b(x) and m(x) for the mixed state of antiferromag-
netic superconductors. The solution depends on the
direction of the vortices relative to the spin axis. In
the following we confine ourselves to the case in
which the applied field is either perpendicular or
parallel to the easy axis of the sublattice magnetiza-
tion.

First we assume that an external magnetic field is
applied in the direction perpendicular to the easy axis.
%hen the field is weak and the temperature is lower
than TN, the sublattice magnetization is tilted from
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the easy axis. As the field i'ncreases, the tilted an-
gle increases and at a critical field the transition from
the antiferromagnetic state to the forced-
ferromagnetic state occurs. The critical field for this
transition is shown schematically by the dot-dashed
curve in Fig. 1(a). The antiferromagnetic state is
denoted by A and the ferromagnetic state by F.

In the region A, we can put iM, (R„) and h(R„) in

the form

H, ng
a

C
Cf

p (K.) = [pp+Pi(R. ) ]ei

+[@,o e "+P3(R„)]e3, (3.1) TN Tc T TN Tc T

h(R„) =[hp+h~(R„)le~

+[h & e "+h3(R„)le3 (3.2)

FIG. 1. Schematic diagrams of the critical flux density.
The boundary between the antiferromagnetic and the
forced-ferromagnetic state is indicated by the dot-dashed
curve. (a) Hj easy axis and (b) Hll easy axis. The curves a,
b, and c show typical temperature dependence of the critica1
flux density. The curves a~ and a~ are the H, 2 curves for
the same parameters as those for the curve a, and so on.

Here e~ and e3 are the unit vectors perpendicular
and parallel to the easy axis, respectively, p,o and p, Q

are the uniform and antiferromagnetic components of
the spin magnetic moment, respectively, and ho and

h Q
are those of the internal magnetic field. The

quantities with tilde represent the deviations from the
average values pp and p, &, etc. Substituting (3.1)
and (3.2) into (2.3), (2.4), and (2.10) and expanding
the equation up to first order of the deviations, we

. can get the following relations which determine the
average values and the Fourier components of the
deviations with wave numbers corresponding to the
reciprocal vectors of the flux line lattice:

X (k) = I'(Q) -I'(k)

mp'(r(Q) -r(k -Q))
m

&
+ o o m'(I'(Q) —I'( k —Q))

Co JQ

T —cr(Q)~jo

(3.7)

The magnetic susceptibility Xq( k ) is calculated as

m =h /[r(Q) —r(O)] (3.3)
Q 3J ~r gPBJAZ

J+1 k T

(3.S)

m = (mp +m'- )' '
Q

=Ng psJBJ(gps JAJksT)

h K
) I, '(T)c»n@

rC'+[I+4~X,(K)]X (T)c»

m(K) x,(=K)h(K),

(3.4)

(3.5)

(3.6)

The function ck is the Fourier transform of the boson
characteristic function, and C is the Curie constant
N(g ps)'J(J+ I)/3ks. In (3.5) and (3.6) we abbre-
viated suffix 1 of h~(K) and m~(K)and n, eglected
h3(K) and m3(K) since they are very small. The
boundary between the regions A and E is determined
by the condition of an infinitesimal m Q. Therefore,
from (2.12), (3.3), and (3.4), the flux density at this
boundary is given by

with mp=Npp and m& =Np, &. Here r(k) is the

transverse component of the Fourier transform of
the exchange constant

y(k) =
&

d3r y( r ) exp( i k r )—
mp- Ng ps JBJ(gps JAf/ks T) (3.1o)

nq@= [I'(Q) —r(O) +4m]m (3.9)

We can obtain the relations for the average values
and the deviations of the magnetization and the
internal field in the forced-ferromagnetic state in a
similar way. The results are given as follows:

The molecular field in (3.4) is given by Aq= I'o m. with Ay= hp+I'(0)mp and mo =0. The magnetic
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susceptibility is written as

xf(k) =
T —CI'(k) a

3J, gygJAf
2J+1 AT

(3.11)

(3.12)
(3.13)

ed schematically by the dot-dashed curve. The criti-
cal field at T =0 becomes half the value in the field
perpendicular to the easy axis.

In the region A' the local magnetization and the lo-

cal magnetic field are written in the form

p, (R„)=[pp+p, oe "+P(K„)]e3,
By replacing Xi(K) in (3.5) and (3.6) by xf(K), the
deviations h(K) and m(K) in this case are obtained.

Next we consider the case in which the magnetic
field is applied parallel to the easy axis. The magnet-
ic moments on the two sublattices have the same
magnitude but are in the opposite direction to each
other in the absence of vortices. In the presence of
vortices the magnitude of the magnetic moment
varies from site to site. When the flux density in-

creases further over a certain critical value, the anti-
ferromagnetic components disappear. In Fig. 1(b)
the boundary between the antiferromagnetic region
A

'
and the forced-ferromagnetic region F' is illustrat-

h(R„) = [hp+ho e "+h(R„)]e3 (3.14)

(3.15)

r

gP BJAI1(—)
mp —m- =Ngp gJBJ

k, T
(3.16)

with Aii(+) = hp+ I'(0) mp + I (Q) m o . The magnet-

ic susceptibility is given by

We can obtain the relations for mp and m
Q by fol-

lowing the similar procedure to obtain (3.3) and (3.4)
r

g ps JAp(+)
mp+ m —= Ng p, q JBJ

Q AT

C {Tnj(+)—Cr( k +Q) [aJ'(+) —nj( —) ]]
xp(k) =

[T—c~,(+)r(k)1[T—c~,(+)r(k+Q)] —c' 3(—)r(k)r(k+Q)
(3.17)

r r

+ =1 3J gpBJAII(+) + gpBJAII( )- (3.18)

(3.19)

The deviations h (K) and m (K) have forms similar

to (3.5) and (3.6).
In the region F', the solution is determined from

the same equations as those used in the region F;
(3.10)—(3.12). The flux density, niirtr at the boun-

dary between the regions A
' and F' is calculated by

taking the limit of m o =0 in (3.15) and (3.16). The

equation to determine n]] is
r

C 3J ~, gvaJAf
T J+1 ksT

+ —,
' r(0) m +—' I'(Q) m b

, Nks T InZ—(A(rr))
v 1

(3.20)

with

the results (3.3)—(3.1S) as

2

+ II ~ore+ hp+ X h(K) +
&

hpmp
n rtr n$
8w 877 K ~p

with Af = niirh+ [I'(0) —4n ] mp, where mp is calculat-
ed from (3.10).

In the above discussion we assumed strong aniso-
tropy. However when the anisotropy is weak the
spin-flop transition occurs at a critical field below the
field at the 3'-F' boundary. At the spin-flop tran-
sition the sublattice magnetization rotates suddenly,
and take a configuration almost perpendicular to the

magnetic field. The magnetization and the suscepti-
bility in the spin-flopped state are almost equal to
those in the antiferromagnetic state A as long as the .

anisotropy energy is small. In this paper we neglect
the spin-flop transition for simplicity.

The free energy F is obtained from (2.14) by using

r

Ai for the state A

A(+) = Ap(+) for the state A'

Af for the states F and F'
~

The core energy 8'„„is given by
r

W„„,= n Ei Ep X b (g;)—
I(wp)

'I

=n Ei —Eq nrtr+ g b(K) —b(x =0)
K %p

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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where El is the normal core energy for an isolated
vortex,

E =it'c'/328'A. '( T) (3.26)

and E2 is a parameter determined from the thermo-
dynamical conditions.

Using (2.I7) and (2.18), we have the expressions
for the thermodynamical field Hand the Gibbs free
energy Gm;„

t

H=ho+ ""' +—1+n $ h(K)
Bn 2 Bn

(3.27)
1

H2 hp

8m 8m n

""' =1+2 I'deBf'
Xt. (T) " BE

(3.43)

where fr=[exp(E/k sT) +1] ' and E = [$'
+ 5( T)']' ', 5( T) being the energy gap. The
exchange constant I'(k) is approximated by
I'(k) = I'(0) = T /C for small

~
k~ and I'(k)

= I'(Q) = T~/C for small
~
k —Q~. The temper-

atures T and T~ are, respectively, the paramag-
netic Curie temperature and the Neel temperature.
The parameters used in our calculations are

Here VN(0) is the BCS coupling constant, and t is
the normalized temperature t = T/T, . The tempera-
ture dependence of the London penetration depth is
obtained from the relation

h(K) +G
877 $n K ~p

(3.28)
VN(0), J, tg= TN/T„ t~ = T~/T,

c =4m C/Tjy, u=NgtisJ/[g/) g, (0)] (3.44)

H
Gnormal + Gm

8m

The equations to determine n, and E2 are

B~--+ ~ 1+. ' X h(K) =0,
Qn 8% Bn K ~p

(3.30)

(3.31)

H + 1 —n IV„„, — X h(K) =0
8m Bn

""' 8~ 8n K ~p

(3.32)
The upper critical field H, 2 is expressed by the rela-
tion

H, 2
= n, y 41rmo(n, )— (3.33)

G = 2I'(0)m02+ 21'(Q)m&

——Nk T X lnZ(A(v)) (3.29)
v +

If ho included in A(v) in (3.29) is replaced by H, the
Gibbs free energy for the normal state is expressed as

The results of numerical calculations are given in
Secs. IV—VI.

IV. NUMERICAL RESULTS FOR CRITICAL FIELDS

In this section we present the calculated results of
H, ~ and H, 2 and compare them with experiments.
As seen from (2.10) and (2.12), the flux density in
the magnetic superconductor is given by-

n Q = ho+4m mo, which indicates that the induced-
spin magnetic moment mp contributes to the magnet-
ic induction ho= nQ. For an external field near H, 2

and for a'large Kg, the inhomogeneous components
Of the magnetic field, the magnetic induction and the
spin magnetization h(x), b(x), and m(x) are very
small. If we can neglect those in (3.27) and (3.28)
we obtain a relation n, $ -H, q( T), where H, 2 ( T) is
the fictitious upper critical field when the sample has
no spin magnetization. Combining this relation with
(3.33), the upper critical field can be estimated ap-
proximately from the relation

In our numerical calculation we used the following
form for the boson characteristic function:

H„(T) -H,', (T) 4~m, , — (4.1)

where mp is the spin magnetization at H, 2.

The spatial dependence of the magnetic field of
vortex is affected by the spin magnetization as seen
from (3.5), and the inversion of the field direction
occurs in some portion of the vortex near the Neel
temperature. Through this effect, the magnetic su-
perconductor has a tendency to become a type-I or a
type-II-1 superconductor. 46, 5p

First we consider the case of H perpendicular to
the easy axis of spins. %hen the superconducting
transition temperature T, is higher than the Neel
temperature T~, there are the following two cases.
The curve of n, $ crosses the A -F boundary as shown
by the curves b and c in Fig. 1(a), and the curve of
n, $ does not cross the A -F boundary as shown by

ck = exp ( v[ k/K ( t) ]~]—
k = AL, (T)k

K ( t) = Ks [ A I ( T) /k I (0 ) ]/y ( t)

y(t) =1+at"(1—t)

v = —0.4257 VN(0) +0.559

—0.7857 VN(0) +2.207

a =—0.0536 VN(0) +0.3719

n =0.3714 VN(0) +3.846

m = —0.0414 VN(0) +0.556

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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the curve a in Fig. 1(a). The latter corresponds to
the case for large Kg.

Let us consider the case of the curve b in Fig. 1(a).
In the region A, H, 2 is estimated from (3.3) and
(4.1) as

H,2(T) —H02 (T) (I +4m/[r(q) -I'(o) ]]-'

The field H, 2( T) increases gradually as T decreases,
since H, 2 ( T) increases. The induced-spin magnetic
moment mp under a fixed magnetic field is constant
independent of T in the region A. On the other hand
in the region F, it becomes large as T decreases
under a fixed mangetic field. Reflecting this feature,
H,2(T) is depressed more from H, 2 (T) as Tde-
creases in the region F. When the decrease of

H, 2( T) from H, 2 ( T) overcomes the increase of
H, 2 ( T), H, 2( T) decreases as T decreases in the re-
gion F, and then show a dip at the temperature of the
antiferrornagnetic order setting in. The H, 2-versus- T
curve of this type is expected in the case of T~ much
lower than T„since when Tdecreases near T~,
H, 2 ( T) scarcely changes, but the induced-spin mag-
netic moment rapidly increases.

We introduce a parameter defined by
eo = ( T~ T )/Tjy. ' The calculated result of H, 2( T)
for the case of Kg =2.5 and t~=0.15 and for various
values of ep are shown in Fig. 2. At a temperature
where the curve of n, $ crosses the A Fboun-dary the
H,2-versus-T curve shows a dip. As seen from the
expression H,2( T) —H, 2 (1+c/6p) ' in the region A,
H,2( T) is strongly depressed when eo decreases. It is

0 05
FIG. 2. H, 2 and H, ~ for t~=0.15, K&=2.5, c=2, and

u =0.1. a and a~ are H, 2 and H, ~
for the nonmagnetic su-

perconductor, respectively. b, c, d, e, and f are H, 2 for
op=2, 1.5, 1, 0.5, and 0.1, respectively, and c~ and f~ are

H, ~ for cp=1.5 and 0.1, respectively, in Hs easy axis. d, is
the critical flux density n, $ for ~p =1 in Hj easy axis. b' is

H, 2 for ~'p =2 in Hll easy axis.

FIG. 3. H, 2 and H, ) for tt/=0. 5, ~g=2.5, c=2, and
u =0.1. a and a~ are Hp2 and H, ~ for nonmagnetic super-
conductor, respectively. b, c, d, e, f, and g are H, 2 for
6p =2, 1.5, 1, 0.5, 0.25, and 0.1, resPectively, and g~ is H, rI

for Kp=0. 1 in Hz easy axis. d' is H, 2 for Kp=1 in Hll easy
axis.
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seen from the curves d and d, in Fig. 2 that even if
H,2( T) is strongly depressed, the critical flux density
n, @= H, 2( T) +4mmo is approximately equal to
H 2 ( T). The lower critical field H, t defined by the
limit of n =0 is given by H't(T) =

2 h(0) +4nEt/@.
For large ~g this expression is written as
H t ( T) In[vs/(I +4m X) + I ]/In(ns+1). When the
transition at H, ~ is of first order, the observed
H t( T) is slightly lower than the value defined above.
The field H t( T) shown by the dashed curves in Fig.
2 reveals a mild kink very near TN.

In Fig. 3, we show the calculated results of H, 2 for
the case of t~ =0.5. There appears a dip or a kink
when c/es is very large.

Figure 4 shows the fields H, ~ and H, 2 for several
values of ~s. Cur~es b and c denote H,2( T) when
n, $ curves do not cross the A -F boundary. In this
case the K,2 curve has no kink. However the curve
decreases near absolute zero when n, @ is very near
the A -E boundary as seen from the curve c.

When TN is higher than T„we expect two possible
cases. In a case that the n, @ curve crosses the A E-

boundary the H, 2 curve show a kink. On the other-
hand, when the n, Q curve is entirely inside the re-
gion A, the H, 2 curve has no kink.
- Next we consider the case of H parallel to the easy
axis. In the antiferromagnetic region A' in Fig. 1(b),
under a fixed magnetic field mp decreases as T de-
creases and vanishes at T =0. Thus H, 2 increases
and reaches H's2 ( T) at T =0 as long as n, @ is smaller
than the critical field for the A '-F' boundary. Figure
1(b) shows typical types of H, 2 curves. Curve a cor-
responds to the case that the n, @ curve does not
cross the boundary, curve c to the case that the n, qh

curve crosses the boundary once, and curve b to the
case that the n, @ curve crosses the boundary twice.
The dot-dashed curve d' in Fig. 4 corresponds to the
second case, and curve b' in Fig. 2 to the third case.

In Fig. 5, we show the experimental values of H, 2

for DyMo6S8 by solid circles and the calculated
values by the solid curve. For the calculation we
chose the parameters as shown in the figure captions
and assumed the case of H perpendicular to the easy
axis. The calculated value of the spin magnetization
mp at H, 2 is shown by the dashed curve.

Recent neutron scattering experiments at T =0.19
K shows that the ferromagnetic component of spins
increases with increasing H and that some amount of
antiferromagnetic ordering survives even at K,2.'"
Measurements of the dc susceptibility in the
paramagnetic normal state indicate that T is positive
in DyMo6SS." These experimental data are consistent

2J

H,z(max)

0.5

O.5

FIG. 4. H, 2 and H, j for t~ =0.15, c =2.0, and u =0.1 for
various values of K~. The fields are normalized by a factor

K~ ~ a is H, 2 for Kg =1.5. b, c, d, and e are H, 2 for (fp= 1,
K, =4), («= 1, K, =3.5), («= 1.5, K, = 1.5), and

(Ep =0.25, Kg = 1.5), respectively, and ei is H, ) for

(Ep =0.25, Kg = 1.5) in Hj easy axis. d' is H, 2 for (« = 1.5,
Kg = 1.5) in Hll easy axis.

FIG. 5. H, 2 for DyMo6S8. The field H, 2 and mp are nor-
malized by the maximum value of H,2, H, 2(max). The
solid circles are the experimental data of H, 2 by Ishikawa
et al. , and the solid curve is the calculated value of H, 2.

The dashed curve is the calculated value of mp at H, 2. The
parameters Kg =2, u =0.1, and c =2.4 are used. t~ is

chosen to be 0.07 from experimental data in Ref. 51, and t~
is chosen to be 0.23. H, 2(max) is calculated to be
0.416[//5. (L0) Iwhich is 1.5 kOe in the experiments.



3838 SAKAI, TACHIKI, KOYAMA, MATSUMOTO, AND UMEZAWA 24 .

with choice of the parameters used in Fig. 5. In the
case of GdMo6Ss (Ref. 10) and TbMo6Ss, 6 the exper-.
imental upper critical fields show a rapid increase
with decreasing temperature after they pass a dip
which appears at a temperature slightly below T~.'
The H, 2 behavior is similar to that of the curves d'

and f in Fig. 3. Recently in Er(Rh„Rui „)4B4and
Ho(Rh„Rui „)4Bq the H, 2 behavior similar to the
curves c and d in Fig. 2 were observed. '

V. MAGNETIZATION

The magnetization' in the superconducting phase is
calculated from the expression M = (4m) '(n $ —H).
The magnetization increases with 0above H, ~ and
becomes positive in high fields, since the paramag-
netic contribution from the spin magnetization
exceeds the diamagnetic contribution.

In Fig. 6, we show the magnetization curve when
we use the same parameters as those for the curve d
in Fig. 4. At H, 2 indicated by the solid circles on the
curves the slope of M decreases slightly because the
diamagnetic contribution vanishes there. In the field
perpendicular to the easy axis, the magnetization
curves are of the type-II-1 superconductor at low

temperatures. Since the spin magnetic susceptibility
does not depend on T in the antiferromagnetic re-
gion, M seems to be almost temperature independent
for T ( T~ except very near T~. On the other hand
in the field parallel to the easy axis the spin magneti-
zation decreases as T is lowered, and therefore M de-
creases with decreasing temperature and tends to
magnetization for the nonmagnetic superconductor as

FIG, 7, Magnetization curves for t~=0.15, ~&=4, c =2,
u =0.1, and op =1.5. See the caption of Fig. 6.

2.
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FIG. 6. Magnetization curves for tN =0.15, Kg =1.5,
c =2, u =0.1, and ~p=1.5. The solid circles on the curves
denote H, 2. The solid curves are magnetization in Hx easy
axis, and the dot-dashed curves in Hil easy axis. Mand H
are given in units of $/Xr (0). The temperatures are indi-

cated-in the figures.

i

FIG. 8. Spatial variation of b(r) for~t =0.15, x~ =4
c =2, u =0.1, op=1.5, and t =0.14 in Hi easy axis. For
these parameters H, ~

=0.135 and H, 2 =3.551. b(r) and H
are normalized by units of @/XL(0). d is the nearest-
neighbor distance of the vortex lattice. Solid curves shows
b(r) along the line to a second-neighbor point and the
dashed curves shows b(r) along the line to a nearesT-"
neighbor point. The dot-dashed curve shows the component
of spin (1„)perpendicular to the external field for H =0.6,
where the magnitude of spin () J ( ) is 2.6.
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temperature goes to absolute zero.
Figure 7 shows the magnetization curves for the

case that H, 2 is larger than the critical field for the
antiferromagnetic to the forced-ferromagnetic transi-
tion. In the field perpendicular to the easy axis and
at absolute zero, M increases with H up to the A -I'

transition. Above the transition M is almost saturat-
ed. For finite temperatures the critical field for the
2 -E transition decreases from the field at absolute
zero. In the field parallel to the easy axis, M at abso-
lute zero is equal to that of the nonmagnetic super-
conductor for H weaker than the critical field of the
A'-I" boundary. At the field Msuddenly jumps to
the magnetization in the region I".

The local magnetic induction, b( r ) is shown in
Fig. 8. When His very near H, t, b( r ) strongly
varies in space. However as H increases a little from
H, t, b( r ) becomes immediately homogeneous.
Periodic variations of b( r ) and the sublattice mag-
netization under a field very near H, i may be detect-
ed by neutron-diffraction experiments.

However if there exist the strong exchange-type in-
teraction, the pair-breaking effect through this in-
teraction causes the decrease of the superconducting
condensation energy, and thus the decrease of the
critical flux density. "" The gap formation at the
Fermi surface due to the antiferromagnetic spin or-
dering through this interaction, ' as well as the spin
polarization of conduction electrons induced by the
spin magnetization through this interaction, may also
cause the decrease of the critical flux density. The
decrease of the critical flux density will show an
abrupt change at the temperature of the antifer-
romagnetic order setting in.

A part of the decrease of H, 2 due to the magnetic
ions in the rhodium boride compounds may be as-
cribed to the effect of the exchange-type interac-
tion, 5 since 4mmo for ErRh4B4 is considerably small-
er than the upper critical field of a nonmagnetic su-
perconductor LuRh4B4.
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