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A recursion formula for the Magnus expansion is presented which can be used to deduce
higher-order terms and to investigate their properties. The application of this formula is il-

lustrated with several examples which were motivated by NMR spectroscopy.

I. INTRODUCTION

The Magnus expansion' was originally iritroduced

simply as a series solution to the equation dY/dT
=AYof the form Y(t) = expQ, where A(t), Y(t),
and Q(t) are all linear operators of the real variable
t. Although the subject of his paper was essentially

mathematical, presenting a continuous form of the
Baker-Campbell-Hausdorf formula, Magnus prob-.

ably recognized some of the possibilites for practical
application of his expansion, since he noted that if
iA were Hermitian, Y would remain Hermitian even

when the series expansion was truncated after an ar-
bitrary number of terms.

It was Evans and Haeberlen and Waugh who
first applied the Magnus expansion to NMR, where
A (t) was then assumed to be a time-dependent
Hamiltonian satisfying periodic and cyclic proper-
ties. Since-that time, the Magnus expansion has
been instrumental in the development of improved
techniques in NMR spectroscopy. By applying an

appropriately designed rf perturbation to a nuclear

spin system a strong, periodic time dependence can
be imposed on the internal Hamiltonian in the in-

teraction reference frame. The Magnus expansion
then allows this time-varying Hamiltonian to be re-

placed by an eA'ective, "average" Hamiltonian
which is valid for all multiples of the periodic time.
Since the nature of the rf perturbation is under the

control of the experimentalist, the net result of this

procedure is the replacement of the internal Hamil-
tonian with an averaged term tailored to suit the re-

. quirements of the particular experiment.
Improved NMR techniques have been developed

in this way which clearly benefit from the elimina-

tion of unwanted terms up to fourth order in a
Magnus expansion. One of the limitations of the
Magnus expansion, however, is that the explicit for-
mula for all terms except the first 3 are so compli-
cated and cumbersome that they are nearly useless

in practice. In fact, to our knowledge explicit for-
mulas have only been published for the first four
terms.

In this paper we present a recursion formula
which facilitates the establishment of theorems for
terms of arbitrary order in the Magnus expansion.
In the next section the derivation of the Magnus ex-

pansion is briefly reviewed in order to clarify the
origin of the recursion formula, which we call the
Magnus expansion ". generator. " This formula is in-

troduced in Sec. III, and its use is. illustrated in Sec.
IV by application in providing five theorems. The
first three theorems are not new, but are included to
show how the Magnus expansion generator can fa-

cilitate their proofs. The last two, however, are
new, and deal with cases which may be of interest
in a variety of areas.

The choice of the theorems proven in Sec. III,
and indeed the overall slant of the presentation
given in this paper, was motivated by our experience
in NMR spectroscopy, but it is our hope that the
basic results presented will be much more generally

applicable.

II. MAGNUS EXPANSION

I

In this section we briefly review the derivation of
the Magnus expansion using notation similar to that
of Haeberlen.

We wish to find a solution of the operator dif-

ferential equation

dU(t)
dt

iA (t)U(t), U(0—) = I

in the form of an exponential,

U(t) = expt itA (t)I—
In particular, we wish to find A (t, ) at a particular
time t, . We begin by dividing t, into n intervals
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each of length r, t0 = 0 & t i & t2 & t„= t„and
define P' (t), a stepwise time-dependent approxima-
tion to P (t), by

The terms in Eq. (8) can be regrouped to give

U (t, ) =1+
( I 4 i+ ~2+'' +~, I

(t) =—A j ——4 (tj), tj.

clearly,

lim A (t) = A (t)
n ~ oo

(3)

(4)
+ 0 ~ ~

+2m,m(+ ")

I

and similarly, for the solution U (t) of the differen-

tial equation
I

iM —(t)U (t), U (0) = 1
dt where

=1 —it, g h „"(t,),
j=o

we have

lim U (t, ) = U(t, ) (6)
h „—= —

j P, + P'2+. + P'„J
—(o)

But U (t, ) is given by

N

U (t, ) = g expI iA— (7) etc.

h „=— I Pl+( + 4 i+ ' ' ' 2A 2A i + ' '
2t.

where the exponentials in the product are ordered
with larger values ofj to the left. By making n suf-

ficiently large, we can ensure that A jv. « 1 for all

j, so that the exponentials in Eq. (7) can be expand-
ed into monotonically converging series:

(8)

It can be shown with a little algebra that
I

lim h „'~'(t, ) = h 'J'(t, )

where the reduced average Hamiltonian term h 'J' is

given by a multiple integral of our original function
4 (t) (Ref. 4):

(12)

Taking the limit n ~ ao, we have we obtain

U(t, ) =1 —it, g h"'(t, ) .
j=o

(13)

U(t, ) = expI it, A (t, ) I— (14)

But we would like to have U(t, ) in terms of an ex-
ponential operator, Assuming that 4 ' ' and h ' ' are both of order

j + 1 in the two expansions for U(t, ) we obtain by
comparing Eqs. (13) and (16)

h (o) (o)

where the full average average Hamiltonian, ~(t, }, is
given by a converging series of terms h

(1) ~ (1) ~ (~(0))2
—it,

2
(17)

(15) h ' '= X' ' (X"'X' '+ X' 'X'")

[For simplicity, we will usually write 4 'j' instead
of M'J'(t, ).] Expanding the exponential in Eq. (14),.
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etc., and, in general, j + 1. Since H1 is simply 4 ' ', it is clear that

(.) J+) ( it,—}

where the mixed term Hk is defined as the sum of
all ordered products of k terms of the full average
Hamiltonian for which the product is of order

j = 1,2, . . .

From Eq. (19) and the definition of h 'J'(t, ) given in

Eq. (12), one finds that'

and

(2) —1 cf dt3 f dt2 f dt)([ ~(t3),[~(t2) ~(t))] I+ I ~(t)},[~(t2}~(t3}]I)
C

Note that the notation has been defined in such a
way that the terms h ' ', Hk, and A ' ' are all as-
sumed to be of order j + 1 in

~
~A

~
~t, . Thus

4 ' ' is first order, h "' is second order, etc.

III. GENERATOR

As was stated in the Introduction, the explicit for-
mulas for the terms 4 ' ' of the full average Hamil-
tonian are -exceedingly cumbersome for j ) 4.
However, we showed in the last section, Eq. (19),
that A 'J' is given by the reduced average Hamil-
tonian term, h 'J', for which we do have a simple
formula valid for all j, plus a sum over mixed terms

Hk. In this section we derive a recursion formula
for Hk. the Magnus expansion generator.

The mixed ter'm Hk was defined in the last sec-
tion as the sum of all ordered products of k terms
from the full average Hamiltonian for which the

product is of order j + 1. As was stated previously,

(21)

j—k+1
Ht, = g H)Hk

1=0
(22)

For k & 2, each ordered product of k terms in Hk
can be divided into a single term, A ' ', and a prod-
uct of k —1 terms which is of order j —l, where

0 ( l (j —k + 1. In fact, for each 0 ( I (j—k + 1, Hk will contain the product of A ' ' = H1
and all possible ordered products of k —1 terms for
which the product is of order j —/. This can be
written

Equation (22) is already the special form of the
Magnus expansion generator which we have found
most useful. However, it is worthwhile to proceed a
few steps further. For k & 3 each product of k in

Hk can be divided into a product of two terms of
total order l + 1, 1 ( l (.j —k + 2, and a prod-
uct of k —2 terms of total order j —l. Since Hk
must contain all such combinations, we have

j—k+2
Hk —— Q H2Hk 2, k &2

1=1
(23)

Continuing this line of reasoning, we find in general
that

j—k+m
Ht', = g H Ht', , k&m &1 . (24)

1=m —1

Equation (24) is the Magnus expansion generator in

its general form.
%e have found the triangle shown in Fig. 1 help-

ful for visualizing the properties of the mixed terms

Ht, . In each square of the triangle all possible sums
of k integers whose total is j + 1 are listed with the
integers arranged in all possible orders. Each in-

teger i represents the full average Hamiltonian term
", so that a sum of integers in the triangle in-

dicates multiplication of the corresponding average
Hamiltonian terms; The mixed term Hk is then

given by the sum of all the, products of terms indi-
cated in the (j + l,k ) square of the triangle. For
example, in the j + 1 = 4, k = 2 square we find
the following set of sums: I 1 + 3,3 + 1,2 + 2 I.
This tells us that H2 is given by

3 ~(0)~(2) + ~(2) cy (0) + ~())~()) (25)
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By combining the Magnus expansion generator in
its special form, Eq. (22), with Eq. (19) we obtain an
expression for A 'J' in terms of h ' ' and lower-order
mixed terms

+
~~
II 3 2+1

A (I)HJ
k —I

j = 1,2, . . . , (29)

1 +3
3+1
2+2

1+4
4+1
2+3
3+2

1+1+2
1+2+1
2+1+1

1+1+3
1+3+13+1+1
2+2+ 1
2+1+2
1+2+2

1+1+1+2
1+1+2+1

1+2+1+1
2+1+1+1

where Eq. (21) has also been used.
It would of course be possible to derive other re-

cursion formulas for HkJ in terms of products of
three or more lower-order terms, but we have not
yet found any need for such a formula, and so we
will not pursue the possiblity in this paper.

2 3 4
Number of Terms k

FIG. 1. HI, triangle. This triangle, shown here for

j + 1 & 5 and k & 5, is helpful, for visualizing properties
of the mixed average Hamiltonian Hk and of the
Magnus-expansion-generator recursion formula. Each
square contains all possible sums of k integers which to-
tal j + 1, arranged in all possible orders. Each integer i
represents the full average Hamiltonian term X
and a sum of integers indicates the product of the corre-
sponding average Hamiltonian terms. The mixed term

Hk is then given by the sum of all products of k average
Hamiltonian terms indicated in the (j + 1,k) square of
the triangle.

The Magnus expansion generator [Eq. (24)] can
be verified by inspection of Fig. 1 for j + 1 & 5,
k & 5. For example, the sums in the j + 1 = 5,
k = 4 square of the triangle may be generated by
combining the sum 1 + 1 in the j + 1 = 2, k = 2
square with the two sums in the j + 1 = 3, k = 2
square to obtain 1 + 1 + 1 + 2 and 1 + 1 + 2 + 1

and then reversing the order of combination to ob-
tain 1 + 2+ 1 + 1 and 2 + 1 + 1 + 1. This pro-
cess corresponds to setting m = 2 in the generator
[Eq. (24)] to obtain

IV. APPLICATIONS OF THE MAGNUS
EXPANSION GENERATOR

In this section we present five theorems, primarily
for the purpose of demonstrating how the Magnus
expansion generator can be useful in verifying prop-
erties of the Magnus expansion. As stated in the In-
troduction, the first three theorems are, in fact,
well-known properties which have been proven else-

where either by diAerent arguments or, in some
cases, along the same lines as here but in less specif-
ic terms. The last two theorems are new, and were
motivated by our work in pulsed NMR spectros-
copy.

A. Vanishing low-order terms

~'j'= h'J' if'' '= 0, for all
l & ——1,j even.j

Theorem I: (Refs. 6 and 7). If4 ' ' = 0 for all
I & m, then X (j) = h'~) for all j & 2m + 2. This
can be restated

j —1
l &,j odd

H4 ——H2H2 +H2H24 1 2 2 1 (26)
(30)

The same mixed term can also be obtained by com-
bining squares with k = 1 and k = 3. This corre-
sponds to setting m = 1 in Eq. (24):

Our assumption and Eq. (21) tell us that

H) ——0, l &m (31)

H4 ——H)H3 +H)H34 0 3 1 2

The third possibility is to set m = 3 in Eq. (24},
which leads to

H4 ——H3H) +H3Hi4 2 1 3 0

(27}

(2g)
(32)

We see from the special form of the Magnus expan-
sion generator [Eq. (22)] that

I
M ~(k —1)~(l—k)

2
k=&
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(33)

Using Eq. (22} again we see that

For a nonzero result we need (k —1}and (1 —k )

both greater than m. This implies that

H2 ——0, I &2m+2

Eq. (19) the theorem is therefore proved, since we
have

Hk ——0, k)2, j(2m+2 (37)

The validity of this theorem can almost be seen by
inspection of Fig. 1.

1—18 =~A' 'H
3 ~ 2

k=1
(34)

B. Antisymmetric Hamilton&an
For a nonzero result we need (k —1) & m and

(i —k ) & 2m + 2, which implies that

H3 ——0, I (3m+4 (35)

and, in general,

H„=O, i &(m+2)n —2 (36)

Clearly, the lowest-order nonzero term, other than

H&
+ ——A ' + ', will be H2 + . According to

Theorem 2: (Ref. 6). IfH(t) is antisymm««c,
that is if'(t, —t) = P(—t), then ~"'(t, ) =O
for a/l j.

The theorem is easily demonstrated for j = 0 us-

ing the formula for P ' ' given by Eq. (20). Now
we shall assume that A 'J' = 0 for j & m, and show
that A ' +"= 0, thereby proving the theorem by
induction.

From theorem 1 we know that

m+1 I f~
+"= P +"= ' f '

dt +, f "
dt +," f 'dt, m(t +,) m("t, } ,

C

(38)

I (m+1) ~ (m+1) (39)

which completes the proof.

where the defmition of h ' ' given in Eq. (12) has

been used. If we now make the change of variables

t +2 —= t, —t +2 and use the fact that

A (t, —t~+z) = A(t +z), w—e find that

C. Symmetric Hamiltonian

Theorem 3: (Refs. 8 and 9). IfA (t) is sym

metric, that is if4 (t, —t) = 4 (t), then
X'I'(t, ) = 0for all odd j.

The Magnus expansion is only concerned with

A (t) as it is defined over the interval 0 & t & t, .
However, for convenience we may assume that

4 ( t ) = 8 (t, —t ). Th—en we can consider
4 'J'( t, ) and its componen—t parts h 'J'( t, ) and-
Hk( t, ). Accordin—g to the definition given in Eq.
(12),

(40)

I I

Making the substitution tt —— tt, and recalling that A—( tt ) = 4 (t, —tt ) = M(t—t ) since A (t) is sym-

metric, we obtain

t~
h"'( t, ) = ( —1)J+' — t, ," f dt, A (t, , )

~ M(t, ) = ( —1)jh'1'(t, ) .
0 J+ 0

(41)

Now we wish to prove a similar relationship for A I, . From the explicit formulas for 4 ' ' = H1 and

A "' = H &' in Eq. (20), it is easy to show that

II, ( t, ) =H, (t,), H,'( —t,—) = —H&(t, ) (42)
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Assume that HJ, ( t—, ) = ( —1)JHi(t, ) for j & m.
Then we can use the Magnus expansion generator in
its special form [Eq. (22)] to show that

and thus, by repeating the process,

Hk( t, ) —=(—1)J k+'Hk(t, ), j & m . (44)j—1

H'2( t, ) =—g H, ( —t, )H', (t, )
1=0

= ( —l)J 'HJ2(t, ), j & m
I

(43)
Inserting Eqs. (41) and (44) into the basic formula
for 4 J', Eq. (19), we obtain

k —1

k=2

= ( —1)' h'J'(t, ) —g '
( —1)k 'Hk(t, )-I!

= ( —1)JA '1'(t, ) (45)

The proof is now completed by realizing that,
since A ( t ) = A (t),—it must be true that the time
development operators are also equal

U( t, ) =—U(t, ),
and, therefore,

(46)

g X'~'( —t, ) = g X'J'(t, )
j=0 j=O

j=O
(47)

This can only be true if 4 'J' vanishes for all odd j.

D. Decoupling

OQ

j=0 k=o

where

J

(0)

A2(0)

etc., and

tlf ~(t)dt,
t, i

f, A (t)dt
F2

(49)

(SO)

If the interval t, is divided into two parts,
0 & t

& & t„ then the Magnus expansion can be car-
ried out over each subinterva1 as well as over the en-
tire interval t, . This results in

A term in the Magnus expansion. A 'J' is said to
decouple if

m'J' = —(t„mI" + t„m,"') . (sl)

It was shown previously for reduced average Ham-
iltonian terms that if h ' ' = 0 for all l & m, h 'J'

decouples for all j & 2m + 2. From theorem 1, it
should be clear that A 'J' decouples under the same
conditions, i.e., if A ' ' = 0 for all l & m.

Evans makes the following statement near the
end of his classic paper on average Hamiltonian
theory, speaking of multiple-pulse NMR experi-
ments: "suppose we have cycles (or subcycles) of
pulses, over each of which the zeroth Magnus term
vanishes identically, then it may be shown rigorous-

ly that the sum of the whole Magnus expansion
after an integer number of cycles (or subcycles) is

the algebraic sum of the Magnus expansions
evaluated for each cycle (or subcycle) considered
singly.

" In other words, he claims that
8 P' = 4 2

' ——0 is enough to ensure that 4 'J'

decouples for all j. Although Evan's statement is
certainly true for a series of identical intervals, or
"cycles," it does not hold for arbitrary subintervals,
or "subcycles. " In order to demonstrate this fact,
we prove the following theorem.

Theorem 4: If a time interual t, is diuided into
two subinteruals, 0 & t, & t„with t,i

——ti and

decouples if and only if A i' and PP," commute.

The formula for 4 ' ' is readily obtained from Eq.
(19):

X"'=P"+ 'H'+ —'H' — ' H' . (s2)
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Since'' '=0, we find by setting m = 0 in Eq.
(36} that H3 ——H4 ——0. From the special case of
the Magnus expansion generator given in Eq. {32),
we see that

so that

~(3) h (3) + ~ (~ (1))2
2

(54)

~(0)~(2) + ~(1)~(1)+ ~(2)~(0)
2

(~()))2

Because 4 I
'= 4 2

' ——0, formulas similar to Eq.
(54) apply to A '1

' and A 2
'. From the definition

of h 'J', Eq. (12), we see that

t4 t3 t2' f «4f dt, f dt2 f, dt)~(t4)~(t3)A(t2)P(t)}
C

t4 t3 t2

f dt4 f dt3 f dt2 f dt)A (t4)A (t3)A (t2}F(t))
C

r

t

t'ai

t3 t2

f dt4A (t4) f dt3 f dt2 f dt)A (t3)A (t2)A (t))+".
C

=t, [t, )h) it, 2h2 —)t, )t,2(h2 h) +h2 h) +h2'h) )] (55)

But since h 1
——h 2

——0, we have(0) (0)

h = 4. (tc)h 1 + tq2h 2
—lteltc2h 2 h I )

(3) —1 (3) (3) (1) (1)

Since A ' ' = 0, A "'= h '" and we find by an argument similar to that given above that

h "' = t, '(t„h, '+ t„h,' ') .

Inserting Eqs. (56) and (57) into Eq. (54), we obtain finally

{56)

= t, t, )h, + t, 2h 2
—it, )t,2h 2 h ) + (t, )h ) + t—,2h 2 )(3) —1 (3) (3) . (1) (1) i (1) (1) 2

C

r

—1 (3) &)
h (1) 2 h

(3) &2 (2) 2 &) &2
[

(1) (1)]

= tc t~)M) + t~2M2 + [M I ~M2 ]1 (3) (3) c1 c2 —. (1) (1)

2
(5g)

where, in the last step, Eq. (54) has been used for
A ~'and@ 2', andthefactthath'1' ——4 '1'and
h 2 ——~2 has been utilized.( ) (1)

E. Averaging by a time-independent
interaction

Theorem 5: If4 (t) = expI iP L, t IA,
X expI iA t.t j, where —A L and A s are both

time independent and A (t, ) = M(0) = 4 s, then

= expI iA Lt, I expI it, A (t, )—I—(60)

and if, after truncation, we have [A t. ,A ] = 0 we

can write

l

independent Hamiltonian consists of a large part,
A L, and a smaller part A ~, 'and the Magnus ex-

pansion is to be applied in the interaction represen-
tation in order to characterize the averaging effect of
A I on M~. The commutation relations of A L

and PP'J)(t, ) are important, since

U(t, ) = expI i (A I + M~)t, I—

[A,X 'J'(t, )] = [P 'J "(t, ),A ]

This theorem is of importance when a time-

(59) U(t, ) = expI i(A L +X )t, —
I

which represents the replacement of A q by A .

(61)
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We begin the proof of theorem 5 with a lemma.
Lemma I: If ~(t ) = exp t i MLt }4z expI i—A Lt }, 4 z and 4 z both time independent, then forj ) 1

[A L, ,h'j'(t, )] = h" "(t,)A s —~(t, )h" "(t, ) .

We begin by noting the following property of commutators:

[APCDE". ] [Ag]CDE" ~ + B[A,C]DE. . +BC[A+]E" +"
I

Using the definition of h 'j' given in Eq. (12), we find that

(63)

; jj+i
[Mh, ,h' '] = g f dt, +i f dti X [ M(hj+i) M(t, +, )[Mt. ,M(tt)]M(ht 1) —M(h, ) }

Changing the order of integration in each term of the sum, we obtain

&)jj+i t, tt+t 1+1 2

[4 h, ,h ] = g f dhj+i''' f dtt+i f dtt i' ' f ti
c I=i

1+1
X PP(t&+, )" A (tt+i) f dtt[P L, ,M(tt)] A (hh i)" 4 (ti) (65)

But

tgf dt[A z,A (t)] = f dt[A L exp(iA Lt)A zexpP ( —iPht) —exp(iP zt)A sA h. exp( iP ht)—]

i [A (ttt ) ——4 (tg )] (66}

Inserting Eq. (66) into Eq. (65), we then have

j+1 j+1 t 'I+2
[A L, ,h' ']= ' g f dt, +," f dt, +, f dt, ," f dt,

c l=1

X I Pi (hj+, )" 4 (tt+i)[A (tt+, ) —4 (th i)]A (ht i)" Pt'(h, ) } (67)

where we can define to —= 0 and tk+2 —= t, . Most of the terms in the summation cancel each other, leaving

only the first and last terms. Relabeling the indices leads to

j+I t t

[4 L, ,h
' '] = A (t, ) f dh, " f dh, P (t, )" Pi (t, }

i)j+i t t2

p J 0 & Jf dk fdh, P ("t .)".P'(h, )P'(0)
C

= h '&-"~, —~(t, )Pj-" (68)

For our theorem we have assumed that A (t, ) = 4 z, which leads to

[~L, h "']= [h " "~s]

Using Eq. (66) and the definition of A ' ' given in Eq. (20), we see that

(69)
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From Eq. (19) we find that of the Magnus expansion generator, Eq. (32), we see
that

[~,~'"]=[A,h"']+ [P;,A ] .
2

(71) II' =A '"A '"+A ' 'A' '
2 (74)

But the special case of the Magnus expansion gen-
erator, Eq. (32) tells'us that

a,' =(~"')' .

Equations (69)—(7Z) then lead to

[~„~'"]= [~'",~,] .

(72)

(73)

Having shown that the theorem is true for j = 1,
we now assume that it is true for j & m and prove
that it is also true for j = m + 1. Simultaneously,
we must also show that the theorem holds for HIJ

when j & 1 and k & j + 1. From the special case

= [Hq,P's] (75)
+

Now assume that the theorem holds for j & m

separately for A '~' and Hk for all k & j + 1.
Since HJ+i ——(A ' ')1+', we see that 4 I com-
mutes with HJJ+i. From Eq. (29) we have

Combining this with Eqs. (63), (70), and (73) gives

[A,H,' ] = 4 ' '[A,X "']+ [A,X ' "]X' '

= X "'[A '",A ] + [r '",A ]A

[(~(0))2H ]

m+2m —k+2 ( ir )k[~ X"+"]=[~ F"+"]—g g ' ([~ X'"]H--'+X.'"[~ a--, ']) .
IG=2 I= 0

(76)

Since both (l ) and (m —l ) & m over the entire summation, we can use our lemma and assumptions to obtain

m+2m —k+2 ( ir ) m+2m —k+1[~ ~(m+1)] [P (m) ~ ] y y ~ [~(l—1)~ ]Hm —I y y ~(l)[am —I—i ~
IG =2 I =1 k=2 l= 0

m +2 m —IG+1

[h
(m) ~ ] y y [~(l)am —I —i

IG=2 I= 0

[~(mi ~

This completes the proof.
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