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A three-dimensional solid with an equilibrium concentration of unbound dislocation loops
displays a resistance to torsion not present in isotropic liquids. There is residual bond-angle or-
der analogous to that found in the two-dimensional hexatic phase. A bulk phase with bond
orientational order may be observable in supercooled liquids. Such a phase would display an an-

gular modulation in monodomain x-ray-diffraction patterns, and ~ould give rise to an intrinsic
asymmetry in the limits of supercooling and superheating. Bond-angle order may also be
present in glasses, A dislocation-loop mechanism for the smectic-A —to —nematic transition im-

plies anisotropic scaling and fixes the ratio of the transverse and longitudinal correlation length
exponents.

I. INTRODUCTION

There is now considerable interest in the effect of
defects like dislocations and disclinations on melting
of two-dimensional solids. ' ' Kosterlitz and Thou-
less originally proposed that an unbinding of
charge-neutral dislocation pairs would drive a con-
tinuous melting transition into a liquid. More recent-
ly, however, it has been argued that a second,
disclination-unbinding transition is necessary to com-
plete the transition from solid to liquid. 4 Interposed
between the more familiar solid and liquid phases,
one finds a phase with persistent order in the orienta-
tions of bond angles, called a hexatic liquid crystal.
The residual sixfold anisotropy characterizing the
hexatic phase has nothing to do with the shapes of
the atoms, but is instead a vestige of the singled-out
crystallographic axes present in a triangular solid.
Both the hexatic-to-soIid and hexatic-to-liquid transi-
tions can be continuous, in contrast to the first-order
melting of bulk materials. It is as if the usual latent
heat of melting had been spread out over an entire
phase.

Although there is some support for dislocation-
mediated melting in recent computer simulations,
other investigators find no evidence of the hexatic
phase. " Tobochnik and Chester" find some evi-
dence for a first-order melting transition at high den-
sities and dislocation-mediated melting at low densi-
ties, in a simulation of a Lennard-Jones 6-12 poten-
tial. Experimental studies of melting of physiad-
sorbed rare-gas monolayers, "electrons trapped on
the surface of helium, '4 "soap-bubble" liquid-crystal
films, " rnonodispersed polystyrene spheres floating
on water, ' and lipid monolayer films" should ulti-
mately provide detailed tests of the theory.

Although the situation in two-dimensions is un-

resolved at present, the discovery of a bulk analog of
the hexatic phase has been reported by Moncton and
Pindak. " Shortly after the dislocation theory was
developed, Birgeneau and Litster' argued that stack-
ing layers of hexatic material would result in a novel
kind of smectic liquid crystal. This "stacked hexatic"
phase would have long-range bond-orientational or-
der, but short-range translational order in the smectic
planes. The in-plane x-ray structure factor of such a
material has the form20

S(q. T) = g c„(q,T) [cos(6ns-)Re(iii"(r))
n 0

+sin(6n s,-) Im(iii"( r ) ) j

where 8; is the angle the scattering vector q makes
with the x axis, and the coefficients c„(q,T) are weak
functions of temperature. The dominant temperature
dependence near a phase transition is given by ther-
mal averages of powers of the bond-orientational or-
der parameter.

y(r) &6i8(r)

Here, S( r ) is the angle a line joining a pair of neigh-
boring atoms makes with the x axis. The resulting
diffraction pattern is sho~n schematically in Fig. 1.
Moncton and Pindak observed a sixfold angular
modulation in the x-ray diffraction off the smectic
compound 650 BC consistent with Eq. (1.1). This
modulation is accompanied by a large, but finite
translational correlatiori length. "

Dislocations have long been proposed as a mechan-
ism for melting of three-dimensional crystalline solids
into isotropic liquids. Shockley, ' for example, has
argued that bulk melting may be viewed as a sudden
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FIG. 1. Schematic contours of constant scattering density
of the in-plane structure function of the "stacked hexatic"
phase of smectic liquid crystals. The pattern of six maxima
and six saddle points is indicative of short-range translation-
al order, but long-range bond-orientational order in the
smectic planes.

FIG. 2. Cluster of bonds surrounding a particle located at
position r. The bonds could be obtained by the &oronoi
construction, or simply by searching for, say, the first 13
nearest neighbors of a given atom.

p( r, &) of points pierced by these bonds on a small
sphere inscribed about r, we have

proliferation of a tangled array of dislocation loops in

the solid. He showed that a finite density of mobile
dislocation lines would result in a liquidlike viscosity.
Shockley's ideas have been elaborated by a variety of
subsequent workers whose efforts are reviewed by
Cotterhill. " The most recent investigation is by Ed-
wards and Warner, ' who use methods developed in

polymer physics to argue in favor of a dislocation-
driven first-order melting transition. One problem
with dislocation-mediated bulk melting is that current
theories are not sophisticated enough to distinguish
between interacting dislocation loops and interacting
vortex lines in superfluid helium. Superfluid heli-
um usually displays a continuous A. transition, in con-
trast to the first-order bulk melting transition. The
possible role of defects in three-dimensional phase
transitions has been reviewed by Halperin. "

In this paper, we study the long-wavelength proper-
ties of a solid with an equilibrium concentration of
"free" or "unbound" dislocation loops. Although
all solidlike elastic constants vanish, we find a per-
sistent resistance to torsion not present in an isotro-
pic liquid. In this sense, a solid with unbound dislo-
cations is not a liquid, as argued by Shockley, but is
instead analogous to the hexatic phase discussed in

Ref. 4. Assuming isotropic elastic properties, the
stiffness constants characterizing the resistance to
twist inhomogeneities are given explicitly in terms of
edge and screw dislocation core energies. Although
translational order is absent, the system remembers
the singled-out crystallographic axes present in the
solid.

To make this idea precise, consider the distribution
of "bonds" joining a particle located at r to its near
neighbors shown in Fig. 2. Expanding the density

I Om —I
(1.3)

where the Y~ (0) are spherical harmonics. The dis-

tribution of bonds as a function of solid angle 0
could be determined by, say, the Voronoi construc-
tion. 6 In a liquid, we exp'ect that p( r, 0) becomes
isotropic upon averaging over particle positions r,

(p( r. ») = p —=
& Qoo) &~4 (1.4)

m- —4

In contrast to bcc, fcc and simple cubic crystals,
where the (g4 ( r ) ) are also nonvanishing, there is
no translational order. Because this phase has some
mathematical similarity to a nematic liquid crystal, '
we shall refer to it as the "cubic-liquid-crystal
phase. "" It should be stressed that its cubic rota-
tional anisotropy need not be associated with aniso-
tropy in the constituent particles.

We have very little to say about dislocation loop
unbinding as a mechanism for bulk melting. We are
primarily interested in the concept of "a solid with a
finite density of unbound dislocations" as a slightly
awkward description of a phase which is not a crystal.
Our analysis is intended to motivate a discussion of

We find that a heavily dislocated solid has persistent
bond-orientational order in the sense that Fourier
coefficients with I & 0 in Eq. (1.3) fail to vanish
upon averaging. For materials with a cubic rotational
symmetry, the first coefficients which are nonvanish-
ing correspond to I =4,

(Sp(r, 0)) —= (p(r, 0)) —po
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cubic liquid crystals in the more convenient language .

of fluctuations-corrected Landau theory. The fact
that unbound dislocations alone are insufficient to
destroy the rotational broken symmetry one associ-
ates with a crystal does represent an important con-
straint on dislocation mediated melting theories, how-
ever.

The resistance to torsion of a heavily dislocated
solid makes the existence of a cubic-liquid-crystal
phase at least plausible. It then becomes interesting
to ask how it transforms into a liquid and, say, a bcc .

solid. A simple criterion due to Landau" suggests
that both transitions are first order (see Sec. III). We
shall argue, however, that fluctuations drive the
liquid —to—cubic-liquid-crystal transition second order
in 2+~ dimensions. This transition is probably ei-
ther continuous or weakly first order in d =3. A
similar situation arises in nematic liquid crystals,
where the nematic-to-isotropie first-order transition is

anomalously small. Fluctuations have less influ-
ence on the cubic-liquid-crystal —to —solid transition,
which can be strongly first order.

Equilibrium cubic-liquid-crystal phases should be
more rare than their two-dimensional hexatic coun-
terparts. Upon warming up a solid, one can in princi-

ple both enter and leave the hexatic phase via con-
tinuous phase transitions. The strong first-order
melting of virtually all bulk crystals, however, usually
leads directly to a liquid; the cubic-liquid-crystal
phase may be bypassed entirely. ' If the liquid-
to —cubic-liquid-crystal phase transition is nearly con-
tinuous, one might nevertheless expect a liquid to
drop into this new phase upon supercooling. As dis-
cussed in Sec. IV, this transition may be accompanied
by a weak specific-heat singularity, and leads to an
angular modulation in the monodomain x-ray-
diffraction pattern, analogous to that shown for the
stacked hexatic phase in Fig. 1. Near the phase tran-
sition, x rays provide a direct measure of the nine
components of the cubic-liquid-crystal order parame-
ter defined by Eq. (1.5). In an appropriate coordinate
system, the only nonvanishing elements are (Q40)
and (Q44) = (Q4 4). A characteristic feature of
the cubic symmetry is that

I (Q4+4) l (Q4o) I
= aS/14

We shall also argue that the existence of a metastable
cubic-liquid-crystal phase leads to an intrinsic asym-
metry in the limits of supercooling and superheating.

The bond angle order parameter may be useful in

other contexts. The bond-angle density deviation
from anisotropy can also be expressed in terms of a
traceless, symmetric fourth-rank tensor Q'jki,

&gp( r, & ) ) = ( Q jkl( r ) ) e;ejekel

We have used the summation convention, and denot-

~(T, m, n) = xl(Q?jk?IQo) III? ikii
ijkl

f71] nip fP?k nip nI fl~ nk ni

+
5 (gijgkl + gikgjl + 8?lgjk) l (1.9a)

where

Qo
=—( , Q jki Q—jki) '" (1.9b)

over all potential order parameter triplets ( 1, m, n).
Note that all three coordinate axes are equivalent in
the definition (1.8);

Having associated an orthonormal triad with the
bond cluster surrounding a given atom one can assign
a disclination field to every particle configuration.
This has been done by McTague, Allen, and Frenkel
in two dimensions, via the construction of Voronoi
polygons. ' In three dimensions, we imagine the
triads associated with the particles rotating continu-
ously into their configurations at neighboring sites by
the shortest possible route. To see if a closed ring
of near-neighbor atoms contains a disclination, we
make use of the standard definition" involving paral-
lel transport of orthonormal triads around a closed
circuit. Just as in two dimensions, ' one can presurn-

ably build up more complicated defects like disloca-
tions, vacancies, and interstitials from disclination
complexions, and test via computer simulations the
predictions of defect-mediated melting theories.

It would also be interesting to examine the bond
angle order parameter in glassy materials. If a super-
cooled liquid transforms into a cubic liquid crystal,
we expect a corresponding increase in the translation-
al correlation length". Enhanced translational order
slo~s down the dynamics, and promotes glass forma-
tion. According to this argument, at least some
glasses should be distinguished from liquids by a
nonzero value of the bond-orientational order param-
eter. Alben et al. have reported an intriguing angu-
lar anisotropy in various structural models of amor-
phous materials. It would be interesting to try to ac-

ed by e the unit vector associated with the solid an-
gle B. In terms of a singled out orthonormal triad
( l, m, n), we have"

( Qijki ( r ) ) Q 0[Ii IjIk Ii + l?1;I??I'Il?k II?I + Il; I?jIlk Ill

( 8jj 8ki + 8/k 8I? + 5jI 5jk )], (1 .8)

which defines the amplitude Qo of this tensor order
parameter. This form for (Qjkl) allows us to associ-
ate an orthonormal triad with bond clusters like the
one shown in Fig. 2. The traceless, symmetric,
fourth-rank tensor one extracts from the l =4 part of
the expansion (1.3) will not in general have the form
(1.8). We can, however, define an optimal orthonor-
mal trtad associated with a given Qjki( r ) by minimiz-

ing, say
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1
Oil „~ 41 (1.10)

with v~~ & vq. Singularities in a variety of physical
properties can be expressed in terms of gH and gq.

3s'9

Smectics A can also transform directly into isotro-
pic liquids, via a first-order phase transition. Indeed,
the smectic-A, nematic, and isotropic phases are
analogous, respectively, to the solid, cubic liquid

count for these results in terms of an appropriate
bond-angle order parameter. The order parameter
appropriate for structures with a tetrahedral seed, for
example, is constructed from l =3 spherical harmon-
ics. The density correlations expected in equilibrium
cubic liquid crystals are discussed in Sec. IV 8.

As temperature is lowered in a supercooled liquid,
the dynamics slows down dramatically, and one ap-
parently approaches, but never reaches, an asymptot-
ic glass transition temperature To. Assuming that the
supercooled liquid is in the cubic-liquid-crystal phase,
it is intriguing to speculate that the cubic-liquid-
crystal —to—solid transition has something to do with
the temperature To. The transition to a bcc lattice
structure is probably first order in equilibrium. It
remains to be seen, however, if equilibrium concepts
are appropriate in such a situation.

An analog of quenched bond-orientational order
may exist in spin-glasses, with clusters of neighboring
spins replacing the bond cluster in Fig. 2. Halperin
and Saslow have constructed a hydrodynamic theory
of spin waves in such systems by following the
dynamics of spin clusters. They associate an arbitrary
orthonormal triad with each cluster at time t =0.
The algorithm summarized by Eq. (1.9) allows a cal-
culation of (Q'Jk(( r ) ), and could lead to a unique

orthonormal triad associated with the spin-glass
ground state. A nonzero average of Qjk(( r ) is cer-
tainly a sufficient condition for the nonvanishing
spin-wave stiffness assumed by Halperin and Saslow.
It would be interesting to map out the disclination
field of a spin-glass by the technique proposed above
for particle configurations.

The melting of smectic-A liquid crystals, which
are solidlike in one direction, but liquidlike in two, is

an intriguing problem. These systems are known to
be precisely at their lo~er critical dimension, where
fluctuations prevent true long-range translational or-
der. ' Helfrich et a/. have argued that an unbinding
of dislocation loops drives the melting of smectics-A
into nematic liquid crystals. Experimentally, this
transition seems to be second order. Because a
nematic has a singled out direction, one expects blobs
of smectic-A fluctuations just above the transition to
be anisotropic (see Fig. 3). Both theoretically" and
on experimental grounds, it has been suggested the
correlation lengths parallel and perpendicular to the
ordering actually diverge with different exponents:

FIG. 3. Schematic illustration of smectic-A fluctuations in
the nematic phase. The blobs of smectic ordering range in
size up. to a length (~~ along the nematic ordering direction
and up to a length (~ perpendicular to this direction. An ar-
gument given in the text suggests that ()[~ (J.

vii = (5 6) pg (1.12)

for d between three and four dimensions. Lubensky
and Chen38 found a fixed point with this property
within the e =4 —d expansion. This fixed point is
physically inaccessible to lowest order in ~, however.
If correct, the relation (1.11) implies that both the
smectic elastic constant 8 (T) and the nematic Frank
constant E2(T) remain finite at T,. Independent of
the result (1.11), we find that the exponent ri( T),
describing the algebraic decay of translational order in
bulk smectics, ' is finite at T, .

crystal, and liquid phase discussed earlier for isotropic
melting. It would be interesting to study experimen-
tally a metastable nematic phase in a material with a
direct smectic-3 —to —isotropic transition. Such a me-
tastable phase would be most easily obtained by su-
perheating the smectic A, since the nematic-to-
isotropic transition is first order. One might expect a
larger intrinsic limit of superheating than supercool-
ing, contrary to the situation in bulk melting (see
Sec. IV A).

Here„ee show explicitly that a smectic A permeat-
ed by an equilibrium density of unbound dislocation
loops behaves like a nematic, rather than an isotropic
liquid, The nematic Frank constants are given in
terms of renormalized edge and sere~ dislocation
core energies. %e then argue that dislocation medi-
ated melting of smectics 3 into nematics implies an-
isotropic scaling, with

vli = 2vl

The suggestion that dislocation loops might lead to
anisotropic scaling is due to Helfrich. ' More gen-
erally, an adaptation of Josephson's scaling argu-
ment for superfluid "He suggests that
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The properties of a solid with unbound dislocation
loops are developed in Sec. II. Transitions out of the
cubic liquid phase, including fluctuation effects, are
discussed in Sec. III. In Sec. IV, we discuss the ob-
servability of the cubic-liquid-crystal phase in super-
cooled liquids, as well as its x-ray structure function
and hydrodynamics. Results for melting of smectic-
A liquid crystals are presented in Sec. V. In Appen-
dix A, we show that unbound vortex rings in super-
fluid 4He give rise to a normal liquid. This problem
is simpler, but mathematically similar to the behavior
of dislocations in solids. The generalization of the
results of Sec. II to anisotropic solids is described in

Appendix B. In Appendix C, we derive the "Joseph-
son relations" for smectic liquid crystals.

field around such a line,

J(l) du, = —b, (2.3)

which defines the Burger's vector b. The direction
of integration around the contour is that of a right-
handed screw advancing parallel to a unit tangent
vector t on the line. It is easily shown that the
Burger's vector is constant along a line, and that Eq.
(2.3) is equivalent to4'

(2.4)

where 8'"( g) is a two-dimensional 5 function of the
radius vector g taken from the axis of the dislocation
line in a plane perpendicular to the tangent vector t,
and

II. BEHAVIOR OF A SOLID WITH UNBOUND

DISLOCATION LOOPS
Bu„(r )

wmk
(ir

(2.&)

l~PDLD (2.l)

where p, D is a dislocation mobility, and LD is the den-
sity of mobile dislocation line per unit volume. The
basic assumption is that unbound dislocation lines
move to relax uniform shear strains, at a rate propor-
tional to the applied stress. Alternatively, we can say
that all the shear elastic constants characteristic of the
solid vanish.

More precise calculations exploit a continuum
description of dislocation loops embedded in an iso-
tropic solid. ' The long-wavelength elastic properties
are described by a free energy '

In this section, we summarize the behavior of a
solid with an equilibrium density of "free" or "un-
bound" dislocation loops. The meaning of "free"
and "unbound" will be made clear later. As we shall
see, the behavior is not liquidlike at long wavelengths
but instead reflects a residual resistance to torsion.

Following Shockley, " it is easy to see that a finite
density of mobile dislocations gives rise to a liquidlike
response to shear stresses. One arrives at an esti-
mate for the shear viscosity, "

To study behavior at wavelengths long compared to
the spacing between dislocation lines, we average
over a small volume 0, 0 containing many dislocations
(Fig. 4). Equation (2.4) becomes

(2.6)

where n,k( r ) measure the density of Burger's vector
"charge" carried by dislocation lines piercing 00.
This charge density tensor is defined such that its in-
tegral over a surface S spanning a contour C gives

(~)
the sum of all Burger's vectors b enclosed by that
contour,

(2.7)

The unit vector n is normal to the surface, and the

r
F, = —

J~ d r (2pu~J + Xukk) (2.2a)

where the strain tensor u&( r ) is given in terms of
the phonon displacement field u;( r ),

Mi 8Qg
M~g

= — +
2 8fg BrI.

(2.2b)

and p, and A. are "bare" elastic constants, unrenor-
malized by dislocations. Of course, real bulk crystal-
line solids are characterized by an anisotropic elastici-
ty tensor. The extension to anisotropic media will be
discussed later. Dislocation lines are characterized by
a nonvanishing contour integral of the displacement

0

FIG. 4. Large but still microscopic averaging volume k)0
for a crystal pierced by many dislocation lines. Note that the
Burgers vectors {arrows) carried by each line have a fixed
direction. - The closed loop in the volume makes no contri-
bution to the dislocation line density tensor e~j{ r ).
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summation over a runs over those Burger's vectors
encompassed by C. The strains uj'"'( r ) associated
with a given complexion of dislocation lines are given
by minimizing the free energy subject to the condi-
tion (2.6). We then decompose the strain field into
uj'"'( r ) and a deviation @,j( r )

ing displacement field (t ( r ),

(2.8b)
8$; II/ j@j(r)= —, +

The free energy associated with such a configuration
is just

u j( r ) = u,j'"&( r ) + (t(,j( r ) (2.8a)

where Q,j is related to derivatives of a smoothly vary-
I

F~ = —JI d r (2(j,(t((j2+ h, (tikk) + FD

where the dislocation part is"'

(2.9)

Fr( = —— J~d'r( Jkd'r2 qij(r() [r( —rq(q j(irq) — Jtd3r( Jl d3r2g;;(rt) (rt —r2(gkk(r2) . (2.1O)
8m

' '
87r(1 —v)

Here, the tensor r(j( r ) is related to the dislocation charge tensor,
I

~p 9o.'](
lij

2
ipl

~ Jpl ~fp
(2.11)

and v is Poisson's ratio,

v = X/2(p, +i~) (2.12)

The dislocation free energy may also be written in terms of the Fourier transformed charge-density tensor a(j(q):
i

FD = —
Jl

—QkQj(+C'(Ckj+ CjCk( +2E,Bkgj(+2(E, —E,)gjg(( n j(q)ak(( —q)
P 2v

(2m)' q' 1 —v
I I

(2.13)

The tensors Q j and C;, are

Qij —8ij
q

Cij = &ij(qllq

(2.14a)

(2.14b)

I)a,j(r ) =0
Qf(

(2.15)

The calculations become analogous to the statistical
mechanics of magnetic fields subject to the constraint
of no magnetic monopoles —magnetic field lines can-
not start or stop inside the medium.

We are interested in the density of dislocation lines

and we have inserted edge and screw dislocation core
energies per unit length E, and E, with contributions
proportional to

~
b ~'.

We would like to calculate statistical mechanical
-F/k~ T

averages, weighted with e, One must integrate
over the smoothly varying field @j( r ), and sum over
distinct configurations of dislocation loops carrying a

variety of allowed Burger's vectors. This second step
is quite formidable in general, since n;, (r ) is made

up of closed loops carrying discrete amounts of vec-
tor "charge. " The calculation simplifies, however, if
many different dislocation lines pierce the volume

Ao. It then makes sense to integrate, rather than

sum, over the allowed values of the charge-density
tensor n j( r ). The constraint that dislocation lines
must either close or terminate at boundaries amounts
to the condition,

in the limit of large averaging volumes 00, or,
equivalently, at long wavelengths. Dislocation loops
contained entirely within 00 make no contribution to
e,&. If the number of loops drops off rapidly with in-

creasing loop size, few lines will actually pierce large
averaging volumes. The discrete nature of the
Burger's vectors becomes important, and the approxi-
mation proposed above breaks down. Such a system
presumably remains crystalline. Suppose, on the oth-
er hand, there is a finite density of "free" or "un-
bound" lines LD which actually meander across the
entire system. We can always ensure that a large
number of these lines pierce 00 by going to large
averaging volumes. In this limit, we regard n,j( r ) as
a continuous tensor field subject only to the con-
straint (2.15). A similar approximation was used in

the theory of two-dimensional melting, to demon-
strate the existence of the hexatic phase. " The ap-
proximation was called "Debye-Huckel theory, " and
the constraint analogous to Eq. (2.15) was overall
Burger's vector charge neutrality. We identify the
line density LD of unbound loops with the quantity
appearing in the viscosity estimate (2.1).

An analogous approximation may be applied to su-
perfluid 4He in the presence of-unbound vortex rings,
In Appendix A, we show explicitly that the rings
cause the superfluid density (a quantity analogous to
the elastic constants of a solid) to vanish. Thus, su-

perfluid He in the presence of unbound vortex rings
is indeed a normal liquid, as originally suggested by
Feyn man. '
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Here, we are interested in fluctuations in the
bond-angle field

ej( r ) = ,
'

ej—krwkr( r ) (2.16)

The last term in Eq. (2.19) vanishes, as can be seen
by writing ur""'( r ) in terms of the stress, '

where a j( r ) is the stress tensor. Inserting the
decomposition

+Jk Qjk + KjkI HI (2.18)

into Eq. (2.6), and solving for the Fourier transform
ej'"'( q ), we find

which gives the local twist in the material about dif-
ferent coordinate axes. Consider the singular part of
the unsymmetrized strain tensor w;,""s( r ), defined as
the solution of Eq. (2.6), subject to the condition

(2.17)

& sing
~ 1 ~ sing

/m
2

Im

p
sing0 kk ~lm1+v (2.20)

1 lqk
ej( q ) =

2
i ~jklqk@l( q )

2 rkjk( q )

and making use of Eq. (2.17). Combining the dislo-
cation contribution to e, ( r ) with a part due to the
smoothly varying background field Q ( r ), we have fi-
nally

sin ~ qk ~ i . qjej""'(q) = ~jk(q) + —i—~kk(q)2 2
q

2

+ —i—~kk(q)2
q

2
(2.21)

Iqk qm
~jkrur""'(q) .

q
(2.19) Making use of Eqs. (2.21) and (2.9), it is easy to

see that

r

kqT q qk
(e;(q)ej( —q)) = — gj —,+, (~;k(q)~jr( q)) ———, (~;k(q)~rr( —q))

4
I

q2 q4
'

2 q4

(2.22)
qI qI 1 qjqj

(~kk( q) ~jr( —q) ) + — ( ~kk (q) ~ll( q))—
q4 ~ 4 q4

The first term comes from the smoothly varying phonon field @(r ), while the remaining averages are to be
evaluated in an ensemble specified by the dislocation free energy (2.13). It is tedious, but straightforward, to
evaluate the charge correlation functions entering Eq. (2.22), provided n;, (q ) can be treated as the Fourier
transform of a continuous tensor field. The constraint (2.15) is conveniently handled by adding a term

r

d q qIq'k
—,M JI, , uj(q) nkj( q)—

21' q
(2.23)

to Eq. (2.13), and taking the limit M ~ at the end of the calculation. The correlation function which results is

(~ j(q) ~kl( q) ) =—ks T ks T(E, —E,)
(QikQjl+ CilCjk+2Qikpjr) +

2 E QijQkl

kq Tq 2
+ Qik Qjl Cil'Cjk

3
'C''j Ckl

4p, 2p, +3k.
(2.24)

where Q j and Cj wire defined previously, and

Pij(Tq) = qrqjlq' (2.25)

Upon inserting this expression into Eq. (2.22), we
obtain the bond-angle correlation function, namely,

8E, —4E, q2

r

+ +, Q„"(q) . (2.26)
4 2P 2 IJ

Note that, as q tends to zero, all dependence on the 8F = —,
'

Jl d" r [tc.(ri' ~ e)'+ It, ( v e)'] . (2.27)

bare elastic constants drop out.
At small wave vectors, (e;(q)e, ( —q) ) diverges

like I/q'. Evidently, the broken orientational sym-
metry of the crystal remains broken, even in the pres-
ence of a finite density of unbound dislocation loops.
The loops are effective only in destroying the transla-
tional order, and driving the elastic constants to zero.
We can summarize these conclusions by saying that
there is a term in the long-wavelength free energy
which resists deformations in 0, namely,
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The stiffness parameters K, and Kb are analogous to
the Frank constants in a nematic liquid crystal. The
free energy (2.27) is consistent with Eq. (2.26) at
long wavelengths, provided

K, =2E„Kb=8E, —4E, (2.28)

E, E, (g+/a)

E, E, (g~/a)

(2.29a)

(2.29b)

in Eq. (2.29), where a is of order of the interparticle
spacing.

III. TRANSITIONS OUT OF THE CUBIC
LIQUID CRYSTAL PHASE

Evidently, a solid with a finite density of unbound
dislocation loops is neither a solid nor a liquid. Here
we discuss how such a material transforms into the
solid and liquid states. Because there is a cubic bro-
ken rotational symmetry in bond orientations, we
shall call this intermediate phase a "cubic liquid crys-
tal. " Although cubic liquid crystals may occur only
rarely as equilibrium phases in nature, our discussion
suggests they may be observable as metastable phases
in supercooled liquids.

%e shall consider transitions out of the cubic-

There is a residual resistance to torsion not present in

an isotropic liquid. If the edge and screw dislocation
core energies are approximately equal, both K, and
Kb are positive. Negative Kb means that higher order
gradients must be taken into account in Eq. (2.28).
We have not studied the spatial modulation of the
bond-orientational order parameter which presumably
occurs in this case, The generalization of these
results to anisotropic solids is described in Appendix B.

The core energies per unit length entering Eq.
(2.28) are long-wavelength quantities, and should be
renormalized by the effect of short-wavelength fluc-
tuations. %e expect that, above the melting tem-
perature, these quantities scale like a typical cross-
sectional area divided by a typical length along the
dislocation line. Just as in two dimensions, 4 one can
argue that the characteristic length scale appropriate
to unbound dislocations is the translational correla-
tion length (~(T) This argumen. t suggests that we

can account for short-wavelength fluctuations by

making the replacements,

liquid-crystal phase in the context of Landau's theory
of phase transitions. The transition directly from a
liquid to a solid was originally considered by Landau
himself. " The order parameter is composed of
Fourier components of the density po(r) evaluated
at a set of reciprocal-lattice vectors {6}.In terms of
the complex functions po(r), the density p(r) of
particles may be written44

r

p(r) = po+Re gpo(r)e'
G

where p0 is the density in a uniform liquid. The
Fourier coefficients {po(r)}, which vary slowly on a

scale set by 6 ', have both an amplitude and a phase

po(r) ={po(r){e'o'"

(3.1)

(3.2)

Here, u(r) is the phonon displacement field in the
solid. Landau observed that the expansion of the
free energy in powers of the {pc(r)I admits third-
order invariants, which in turn implies that three-
dirnensional melting is a first-order phase transi-
tion. '8 44

A. Cubic-liquid-crystal —to —solid transition

It is easy to adapt Landau's analysis to the cubic-
liquid-crystal —to —solid transition. We assume that
the rotational symmetry of the liquid has already
been broken, and that the system is characterized by
a local set of rotation angles H(r), measured from a
preferred orthonormal triad. The order parameter for
this triad will be discussed in the next subsection,
Density fluctuations leading to a crystal may be
characterized by a discrete set of minimal reciprocal-
lattice vectors {6 } with a fixed orientation relative to
the preferred triad. (In a liquid, one must also con-
sider a continuum of rotations of the {G }.) If gra-
dient terms are included in the free energy, care must

. be taken to ensure that the system is invariant under
rotations. Upon rotating by a small amount 80, we
have using Eq. (3.2) and the transformation proper-
ties of the phonon field,

H(r) -H(r)+H, , (3.3a)

po (r) po (r) exp[i6 (Ho~ r)] . (3.3b)
a a

The rotationally invariant free energy density
describing the tendency to form a solid is4'

S, =-,'" /{6.x(r7-16.x H) p-, {'+-,'a /{6. (V-16." H) p-, {'
a a a

+ —,'s X{po {'+r
a

G +Gp+G -0a p

po po po +O(po )+—IC, {'7&&H{+—Eg('7 H)
a

(3.4)

where s is assumed to decrease linearly with decreasing temperature, and t is a constant. The parameters
A and B are related to the elastic constants of the solid which forms when, for sufficiently small s, we
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have
(p-) ~0 (3.5)

a

The Frank constants K, and Kb are stiffnesses intrin-
sic to the cubic-liquid-crystal phase, and are the same
as those entering Eq. (2.28). Since the expansion
(3.4) admits a third-order invariant in po, where the

a
(6 ) are the minimal reciprocal lattice vectors ap-
propriate to a bcc solid, the transition from liquid
crystal to bcc solid is predicted to be first order.

Fluctuations sometimes lead to violations of the
predictions of Landau theory. As discussed in Sec.
III C, however, the cubic-liquid-crystal —to—bcc-solid
transition probably remains first order, even in the
presence of fluctuations. Well below the transition
temperature, the gradient terms are minimiied when
8( r ) is locked to the curl of the phonon field,

e ( r ) = —,
' ['7 x u ( r ) ] (3.6)

Thus, translational and orientational order are not in-

dependent in a crystal.
Different crystal symmetries are represented by ex-

pansions of the form (3.4), but with different values
of the couplings. Within mean-field theory, the pre-
cise crystal structure is determined by which t cou-
pling first goes negative with decreasing temperature.
Third-order terms are not possible for fcc and simple
cubic lattices. Thus, transitions into these structures
from the cubic-liquid-crystal phase could, in principle,
be continuous.

A free energy expansion similar to Eq. (3.4) was
constructed by de Gennes for the nematic —to-
smectic-liquid-crystal transition. Both theories
resemble gauge-invariant free energies like that
entering the phenomenological Landau-Ginzberg
theory of superconductivity. ' Here, the bond-
orientation field plays the role of a vector potential,
and the effect of a rotation is like a gauge transfor-
matiori. It should be stressed, however, that neither
theory is strictly gauge invariant. The only real sym-
metries are global translational and rotational invari-
ance.

S. Liquid —to —cubic-liquid-crystal transition

The order parameter for the liquid —to —cubic-
liquid-crystal phase transition was discussed in the In-
troduction. It consists of nine Fourier coefficients
Q4 measuring the deviation of the bond-angle field

+4

I2= $ IQ4. 1'.
m —4

Since a (unique) third-order invariant can be ob-
tained from the signer 3j symbols,

(3.7)

4 4 4

m] +m2+m3 0,

Landau theory predicts a first-order phase transition.
As we shall see, this prediction may be altered by
fluctuation effects.

Not all the Q4 need be nonzero in a phase with a

broken cubic rotational symmetry. In the right coor-
dinate system, all the Q4 's will vanish except Q4p
and Q,4= Q4 4. In this special reference frame, cor-
responding to a singled out orthonormal triad, we
have

I2 = Q4o +2
1 Q441'

Upon evaluating the 3j symbols, 13 may be written

(3.9)

9+42z2
l3 = l2 sgn(Q4o) 1+2z' '~'

where

z=Q44/Q4, .

(3.10)

(3.11)

If the transition is weakly first order, the ratio
Q44/Q4p is determined for fixed lz by minimizing the
bracketed portion of Eq. (3.10). The minimum oc-
curs when Q4p has a sign opposite that of the coeffi-
cient of the cubic term, and provided

IzI = J5/14 . (3.12)

Positive Q4p means that most bonds point along the
cube axes, while negative Q4p signifies that they are
predominantly along the cube diagonals,

To see how fluctuations affect the transition, it is
convenient to introduce the traceless, symmetric
fourth-rank tensor defined by Eqs. (1.7) and (1.8).
The explicit connection between the two representa-
tions in the preferred coordinate system discussed
above is

from isotropy [see Eq. (1.5)]. Close to equilibrium,
we assume that the Q4 (r ) vary smoothly on scales
large compared to an interatomic spacing. The con-
tribution of cubic-liquid-crystal fluctuations to the
liquid free energy must be constructed from rotation-
ally invariant combinations of the Q4 ( r ). There is
only one quadratic invariant, namely,

4
2

Qgkle e&ekei= g Q4 Y4 (tl, @)= &4n'/9Qo[5 Y4p(» iti) +&2/35[ Y44(&, @) + Y4 4(e, it)])
m -4

(3.13)

Note that the ratio of the coefficients of Y4+4 and Y4p is indeed 45/14. This ratio is an intrinsic feature of the
cubic symmetry. The Landau free energy density is very similar to that describing the nematic to isotropic transi-
tion in liquid crystals. ' "

, &'( &Qgkl) '+ ll Q—ill+/lQijkl Qklmn QmniJ + 0 ( Q (3.14)
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The coefficient a is assumed to change sign as tem-
perature varies, while b is approximately temperature
independent. The coefficient K' of the gradient term
represents a one Frank constant approximation which
sets K, = Kb. The corresponding expression for
nematic liquid crystals involves a traceless, symmetric
second-rank tensor,

1Qj= Qp(n;n, —
3 gj) (3.15)

C. Fluctuation Effects

The predictions of Landau theory for the cubic-
liquid-crystal —to —liquid phase transition can be called
into question, at least in the vicinity of two dimen-
sions. Similar studies in 2 + e dimensions " have
illuminated the properties of spin systems. It is easy
to see that fluctuations drive the critical temperature

where Qp is the amplitude of the order parameter and
n is a unit vector aligned with the nematogen axis.
The third-order invariant present in the free energies
of both systems suggests that these transitions are
first order. '" F, = , E „d—r[['vr I ( r ) ] + ['7m( r ) ]

+ ['7 n( r ) ]'}
where

(3.16)

E =4Qp2E' (3.i7)

The value of Qp is fixed by the polynomial part of
Eq. (3.14). The partition function Z, associated with
Eq. (3.16) is obtained by integrating over all possible
orthonormal triads I ( r ), m( r ), and n ( r ). Discre-
tizing space into a lattice of points [r }, we have

of the liquid —to —cubic-liquid-crystal phase transition
to zero in precisely two dimensions. Fluctuations in
the three Goldstone modes associated with the Euler
angles of the order parameter triad prevent a genuine
broken symmetry. Just above d =2, T, is presum-
ably very small, and well below the "mean-field"
transition temperature associated with Eq. (3.14). In
this limit, one can neglect fluctuations in the ampli-
tude Qp of the order parameter defined by Eq. (3.18).
Discarding a constant contribution, the free energy
associated with (3.14) becomes

f 7P 1r

b, =g 2 J [1 —cos8(r)]d0(r) J sin[A(r)]dA(r) dP(r) e
r

(3.18)

At every point r, we integrate over a set of rota-
tions" from a reference triad ( l p, mp, np). Each ro-
tation is parametrized by an axis N( r ) with polar
angles J(r ) and P(r ), as well as by the amount ro-
tated 8( r ).

In principle, one could calculate the partition func-
tion (3.18) directly, using the methods described in

Refs. 49—51. It is easier, however, to exploit the
well-known homomorphism between the rotation
group and SU(2)." Each orthonormal triad

( 1, m, n) is replaced by a triplet of 2 x 2 complex
matrices,

I 1 a. =U 0.„U

m m a-=U a.~U

(3.19a)

(3.19b)

(3.19c)

F, = —,(4E) gI ddr Tr('7U 'vr U) (3.20)

Each SU(2) matrix can be decomposed into a linear
combination of the Pauli matrices and the identity"

Here, a- is the vector of Pauli matrices, and we have
brought the matrices into a canonical form by multi-

plying by a traceless Hermitian SU(2) matrix U( r ).
In terms of the SU(2) matrices, the cubic-liquid-
crystal free energy becomes, after some straightfor-
ward manipulations,

with

F, = —(8E) JI d~r ('Vx )2 (3.22)

Hence, the statistical mechanics of interacting ortho-
normal triads (neglecting amplitude fluctuations and
in the one Frank constant approximation) is closely
related. to a theory of interacting four-component
"spins, " each with unit magnitude. The integration

. variables in Eq. (3.18) can be interpreted as the polar
angles of these "spins. "

%e can now transcribe results tabulated for n =4
component spins in 2+& dimensions. " One finds
that the cubic-liquid-crystal —to —liquid phase transi-
tions is continuous, and occurs at a critical tempera-
ture

k T, =8mE(d —2) + O((d —2)') . . (3.23)

Note that the critical temperature vanishes as the
dimension tends toward two from above. Just above
this transition correlations in Q,,kr( r ), should decay
exponentially,

( QijkI ( r ) Qi jkl (o ) ) —e (3.24)

(3.2i1 )

In terms of the four-vector x„=(xp, x), we have fi-
nally

U(r) =x (pr) +ajx(r) (3.21a) with a diverging bond-orientational correlation
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length,

The critical exponent v has the expansion'

v '=d —2+ —(d —2)2+ .
2

(3.25)

(3.26)

there are similar results for singularities in other
quantities.

The critical behavior of cubic liquid crystals resem-
bles that of four-component spins only in the limit
that amplitude fluctuations are negligible. It is possi-
ble to treat cubic-liquid-crystal amplitude fluctuations
perturbatively in 2+ a dimensions, '4 and show for-
mally that they are "irrelevant variables" in the
sense used by Wilson and Kogut. " If T, is not close
to zero, however, the third-order invariant entering
Eq. (3.14) may become important. There is, of
course, no such third-order term in the Landau ex-
pansion for four-component spins. We cannot be
certain that the cubic liquid crystal transition remains
continuous all the way up to three dimensions. It is
also worth emphasizing that the mapping of the rota-
tion group onto SU(2) is not an isomorphism; the
global properties of the two groups are different.
Such differences manifest themselves in the 2+ e ex-
pansion only in terms of order exp[ —const/(d —2)].
Even if the cubic-liquid-crystal phase transition
remains continuous up to d =3, this transition could
be in a universality class different from that of four-
component spins.

' It is instructive to consider the nematic-to-isotropic
transition in 2+ e dimensions as well. Neglecting
amplitude fluctuations, the free energy associated
with the order parameter (3.15) may be written

Fv =
2

K' Jl d r
~ 7Q~~ = —K Jt d2r('7n)~, (3.27)

where K =2K'Qo. In. this limit, the problem resem-
bles a theory of interacting three-component spins.
One would again predict a fluctuation-induced
second-order phase transition near two dimensions,
notwithstanding the third-order invariant appearing in

the Landau theory of nematics. Experimentally, the
nematic-to-isotropic transition is known to be first or-
der in three dimensions. ' The size of this transition
is„however, anomalously small. ~ It is tempting to
attribute this anomaly to fluctuations which drive the
transition continuous near d = 2. Presumably the
transition becomes first order above a critical dimen-
sion d, somewhat below d = 3. Cubic liquid crystals
have three low-energy Goldstone excitations (associ-
ated with Euler angles of the orthonormal triad), in

contrast to two Goldstone modes associated with
nematics. Thus, fluctuations should be even more ef-
fective in suppressing the first-order transition from
liquids into bulk cubic liquid crystals. We believe
that this transition is continuous or at most very

weakly first order in three dimensions.
A similar situation arises in q-state Potts models as

a function of continuous dimensionality. " For
q ~ 3, such systems have a third-order invariant, and
Landau theory predicts a first-order phase transition.
Fluctuations drive the critical temperature of Potts
models to zero in one dimension. Renormalization
group studies have shown that all Potts models
display second-order phase transitions sufficiently
close to d =1." These fluctuation-induced continu-
ous transitions may again be attributed to the
suppression of amplitude fluctuations. When ampli-
tude fluctuations are introduced in the form of "va-
cancies, " approximate renormalization schemes sug-
gest that q-state Potts transitions become first order
above a critical dimension d, (q) ) 1." The three-
state Potts transition actually remains continuous up
to two dimensions. It is possible to treat cubic and
nematic liquid-crystal phase transitions via an approx-
imate recursion scheme due to Migdal and Kadan-
off.' We are presently incorporating vacancies into
this procedure„ in order to determine the nature of
these transitions over a range of dimensionalities
between two and three. The results will appear in a
future publication.

One might also ask if fluctuations alter the cubic-
liquid-crystal —to —bcc-solid transition. In our view,
this is unlikely, although we have not investigated
the problem in detail. In two dimensions, one does
expect a continuous transition from hexatic to solid,
even though the corresponding Landau theory con-
tains a third-order invariant. 4' Fluctuations are not
strong enough to drive the melting temperature to
zero, however. Fluctuations are generally more ef-
fective in systems with non-Abelian symmetries such
as n-component Heisenberg spins with n ~ 3.
The translational symmetry of a solid is Abelian, and
we expect that the corresponding Landau theory is
reasonably trustworthy in three dimensions.

IV. PROPERTIES OF THE CUBIC-LIQUID-
CRYSTAL PHASE

A. Observability in supercooled liquids

We have argued that cubic liquid crystals can con-
dense from a liquid via a transition that is continuous
or at most very weakly first order. This is an impor-
tant conclusion, since it means that cubic liquid crys-
tals may be observable in supercooled liquids, even if
they occur only rarely in equilibrium. In Fig. 5, we

show the free energy of a supercooled liquid

schematically, as a function of a translational order
parameter ~po ~

and the bond-orientational order

parameter Qo. The system will remain near the me-

tastable liquid minimum, provided there has been in-

sufficient time to nucleate a fluctuation over the sad-
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F {lPgi, Qo}

Cubic
liquid
crysto

Supercooled
liquid

1pG I

solid

FIG. 5. Free energy F of a supercooled liquid, as a func-

tion of the translational order parameter i po i
and the bond

orientational order parameter 00. The solid phase is stable

at this temperature. If a material remains liquid upon super-

cooling, it may eventually drop into the cubic liquid phase,
as suggested by the figure.

or(n =4) =--1
3

(4.1)

die point separating the liquid from the solid. We as-
sume that the solid has a bcc lattice structure for sim-
plicity. Note that both

~ po ~
and Qo are nonzero at

the solid minimum. As shown in the figure, the sys-
tem can drop upon sufficient supercooling into a me-
tastable cubic-liquid-crystal phase, with no transla-
tional order, but with Qa &0. We have assumed that
the cubic liquid crystal is not present at the true melt-
ing temperature, i.e., when the liquid and solid mini-
ma have equal depths. In order to reach a cubic-
liquid-crystal phase by supercooling, it is essential
that it not be separated from the liquid by a large
first-order transition.

It may be difficult to detect such a transition exper-
imentally-. If the phase change is continuous, there
will be a weak singularity in the specific heat.
Although the analogy with n = 4 component spins
may not carry over into three dimensions, it is in-

teresting to note that the n = 4 specific-heat exponent
is61

The corresponding specific heat would be cusped.
The specific-heat singularity associated with a weak
first-order transition might also be difficult to ob-
serve experimentally. Other signatures of the cubic-
liquid-crystal phase will be discussed below.

Figure 5 implies an intrinsic asymmetry in the lim-

its of superheating and supercooling associated with
three-dimensional melting, Once a supercooled liquid
has dropped into the cubic-liquid-crystal phase, its
free energy is lowered, and there will be an enhanced
stability against fluctuations over the saddle point
leading to a solid. According to this scenario, the
cubic-liquid-crystal phase no longer exists by the time
a heated solid becomes metastable. Thus, we expect
a conventional limit of superheating, and an uncon-
ventional (large) limit of supercooling in the presence
of a metastable cubic-liquid-crystal phase. Such an
asymmetry has often been observed experimentally,
but is usually attributed to surface effects. ' Here,
we predict an intrinsic asymmetry, present even when
surface effects are unimportant.

8. X-ray structure function

Perhaps the most dramatic signature of the stacked
hexatic smectic phase discussed in the Introduction is
its in-plane x-ray-structure function (see Fig. 1). In-
plane bond-orientational order is reflected in a sixfold
angular modulation in reciprocal space, Here, we
demonstrate an analogous angular modulation in the
x-ray scattering from a monodomain cubic liquid
crystal.

The x-ray-structure function measures fluctuations
in the Fourier-transformed density pq,

(4.2)

The coupling between density fluctuations and the
bond-orientational order parameter Qjkt can be un-

derstood via a simple phenomenological model. The
model makes sense provided density fluctuations at
the wave vectors of interest decay rapidly on a scale
set by variations' in QJkt( r ). A modification of Eq.
(3.14) which includes density fluctuations is the free
energy density

3

~ =
~ + —,J",„„,2, {~«) It q

I'+ B(q) q qtqkq Qtktl p-, l'} . (4.3)

The functions A (q) and B(q) depend only on the magnitude of q, and q is a unit vector along q. pn]y denstty
fluctuations in an annulus of Fourier space Ao (

I q I
( At have been considered. We take this annulus to en-

compass the interesting region surrounding the first maximum in the structure function of the liquid. Fluctua-
tions in p-( r ) at each point r are assumed to be independent. The quantity p-( r ) is the average of e' '"p(R)
as R varies over a coarse graining volume Oa centered at the point r. Here, p(R) is the particle density.

If density fluctuations are integrated out of the partition function associated with Eq. (4.3), it can be shown
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that the resulting free energy functional, defined by C. Hydrodynamics

S(q) = (l,(q) I')

1

"ik& k &i k)t; ik,t tkkkk k). I

(4.s)

The subscript on the average means it is taken over

by an ensemble with a cubic-liquid-crystal free energy
of the form (3.14). Well below the cubic-liquid-

crystal transition temperature, we can approximate
Eq. (4.5) by

t k i

J dp-, (r ) exp —
J d'r

r Ap(P (A) kgT
i

(4.4)

has the form of Eq. (3.14), with modified couplings

a, b, etc. It is also straightforward to evaluate

The dynamics of cubic liquid crystals resembles
that of nematic liquid crystals„' and provides in prin-
ciple a way of distinguishing this phase from solids
and liquids experimentally. Residual bond-angle or-
der couples to the momentum density, and alters the
transverse hydrodynamic excitations, Each trans-
verse shear mode in the liquid is replaced by a pair of
excitations whose frequencies vanish like q' at long
wavelengths. Depending on the values of hydro-
dynamic parameters, these frequencies can be purely
diffusive, or else acquire a real part proportional to

q . The transverse part of the hydrodynamics is very
similar to that worked out for the hexatic phase in

two dimensions.
We start with a generalization of Eq. (2.28) which

includes transverse momentum fluctuations, namely,

S(q) =
~ (q) +~(q)q qjqkqtQjkt

where

(4.6) F = —Jl d r [ K,
~

'7 x e
~

+ K& ( '7 ~ e ) ]

+ J d'r /g, /'
2pp

(4.10)

Q;,kl (Qijkl( r') ) (4.7)

The function A (q) presumably has a minimum in

the range Ap & q & A~ corresponding to the isotropic
maximum in S(q) which occurs when the material is

a liquid. Provided 8(q) is well behaved in this re-

gion, Eq. (4.6) predicts an angular modulation in

S(q) near the liquid maximum associated with a

nonzero bond-orientational order parameter. Wheth-
er the maxima occur predominantly along the cube
axes or cube diagonals is determined by the sign of
the third-order term in Eq. (3.14). We can also ex-
pand Eq. (4.5) in the spherical harmonics associated
with the polar angles e and $-- of the vector q,

oo

S(q) =Co(q)+ g g C, (q)(Q, (r)),
1 4m —I

x Ytiii(eq, @4) (4.8)

The coefficients of the Yi 's are functions Ci(q) of
the magnitude of q only, multiplied by expectations
of the bond-angle order parameter, and its harmonics
with I )4. Near the cubic-liquid-crystal —to —liquid

transition, harmonics with I ) 4 should vanish rapid-

ly compared to the (Q4 ),. If this transition is truly

continuous, the angular modulation in S(q) then
provides a direct experimental measure of the pri-

mary bond-orientational order parameter, As was

discussed in Sec. III, one can always find a coordinate
system such that only Q4+4 and Q4B are nonzero. It
~ould be interesting to test experimentally via x-ray

scattering the prediction that, in this special frame of
reference,

where gr( r ), the transverse part of the momentum
density, satisfies

gT=o . (4.1 I)

Within linearized hydrodynamics, the bond-angle
field decouples from the longitudinal degrees of free-
dom. The quantity pp is the equilibrium mass densi-
ty. Hydrodynamics for systems with broken sym-
metries begins by considering nonzero "Poisson
brackets" between quantities at long wavelengths.
Nonzero Poisson brackets imply reversible dynamic
couplings, just as nonvanishing commutation rela-
tions do in quantum mechanics. Since 0 is the gen-
erator of rotations in g, we have the Poisson bracket

1

(gi ej j PB 2 Bijk
Ik

(4.12)

—q'7' + ( ( rt), (4.13,a)
5 g ( r , t)

8 e( r, t)
Bt 8 g ( r , t)

The dynamics must then be supplemented with all ir-

reversible couplings consistent with the underlying
symmetries and conservation laws.

The cubic-liquid-crystal hydrodynamics which
results from, the above procedure can be summarized
by the equations,

Bgr( r,t), dF= ——Q x
Bt 0e( r t)

Q"-' =~si 4 .
4p

(4.9) -r 'F + V(-, , t)se( r, t)
(4.13b)
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The functions ( ( r, t) and Y( r, t) are Gaussian
Langevin noise sources designed to bring the system
into thermal equilibrium. Upon Fourier transforming
in space, their autocorrelations may be written

properties depend on the sign of

K,
(V Kg)

po
(4.20)

(f;( q, t)(, ( q, t') ) =2rtktt Tq' 5;, —
2

For positive 4, these eigenfrequencies acquire a real
part,

m+(q) = +—WAq' ——(v+ «, ) q'i1 2 1 (4.21)

x 5(q+q )5(t —t'), (4.14a)

8 r( q t) = q x 8 (q, t)/q

8L(q, t) = q 8(q, t)/q

(4.15a)

(4.15b)

(Y;( q, t) Yi(q, t')) =2l ksT5j'
x 5(q+q )5(t —t') . (4.14b)

The first term in Eq. (4.13a) shows that the fluid

moves to relax inhomogeneities in the bond-angle
field, whiie the corresponding term in Eq. (4.13b)
causes the bond-angle field to process at a rate deter-
mined by the local vorticity. The quantity g is the
dynamic shear viscosity, while I is a relaxational
kinetic coefficient. It is straightforward to demon-
strate that Fokker-Planck equation associated with

Eqs. (4.13) relaxes to a probability distribution pro-
—F/kB T

portional to e
The equations (4.13) are most easily solved by

Fourier transforming in space, and decomposing
8 ( q, t) in transverse and longitudinal parts,

while, for 4 negative, they are purely diffusive,

f0+(q) = —
—,
' (v+«, + J~a~)q'i (4.22)

q'(Igr(q, ~) I')
v,ff= lcm 1~m

q Osu 0, 4kB Tp0
(4.23)

Alternatively, one can consider a conventional mac-
roscopic viscosity experiment with the bond orienta-
tions pinned at the walls, as was done in Appendix A
of Ref. 63. In either case, one finds an effective
long-wavelength shear viscosity,

It is difficult to decide between these two possibilities
without knowing the relaxational kinetic coefficient
I . At present, all we can say is that frequencies with
a nonzero real part are favored when Kb is large.

Physically, one would expect the effective shear
viscosity in a cubic liquid crystal to be larger than in a

liquid, since there are twice as many transverse
modes available to dissipate energy. An effective
viscosity can be defined in terms of the transverse
momentum correlation function,

Neglecting the Langevin noise sources, we have
vbff vf 1 + (I/4POI v) 1 (4.24)

Bgr(q, t)
iif.', q' 8 r(q—.»

2

—vq'g (q, t)

5 8r(q, t).
iqgTt q, t)

2pp

—«, q'8 r(q, t)

88L (q, t)

9t
Kbg'8L (q,t)—

where

(4.16a)

(4.16b)

(4.16c)

(4.17)

which is increased over the value it would have in a
liquid.

At the level of linearized hydrodynamics, a cubic
liquid crystal has propagating longitudinal sound and
thermal diffusion modes similar to those in a liquid.
Mode coupling nonlinearities, however, allow
compressional sound to decay into coupled bond-
angle —vorticity excitations, Near the phase transition
to a liquid, where the transverse modes probably ex-
hibit critical slowing down, one might expect an ano-
maly of the sound absorption due to these nonlinear
effects.

V. MELTING OF SMECTIC-A LIQUID CRYSTALS

is the kinematic viscosity, and we have defined two

other quantities with the dimensions of diffusion
constants,

Kb=I &b .

There is one longitudinal eigenfrequency

O)L(q) = Kbg I

(4.18)

(4.19)

and two pairs of transverse eigenmodes co+(q).whose

As discussed in the Introduction, it has been sug-
gested that the smectic-A —to —nematic transition is
actually driven by an unbinding of dislocation loops."
Differences between layered systems and crystalline
solids are reflected in the continuum elastic free en-

ergy appropriate to smectics A, namely,

2
2 2

2

F, = — tdr 8 +E +
2 QZ QZ2 Qy2

t t
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Fig. 6). As a line twists and turns, it acquires both
an edge and screw character. The magnitude of the
Burger's vector is determined by a contour integral
around the line of the displacement in the z-direction

(5.3)

It is convenient to introduce a strain field w( r )
which, in the absence of dislocations, is just the gra-
dient of the displacement,

(5.4)
FIG. 6. Cross section of an edge dislocation in a smectic-

A liquid crystal. The heavy line shows the construction
which defines a Burger's vector of magnitude b, and always

points along the z axis. The dashed parabolas bound a re-
gion of maximum strain. In a coordinate system centered at
the dislocation, these lines are given by z =+x /A. .

which should be contrasted with Eq. (2.2). Here,
u( r ) is a displacement from a density wave in the z

direction. The quantities 8 and K~ are elastic con-
stants parametrizing the parabolic continuum elastic
theory embodied in Eq. (5.1). It can be shown that
there is no true long-range translational order in
three dimensions; instead, translational correlations
decay algebraically to zero. In contrast to crystalline
solids, the energy per unit length of dislocation line
in a smectic A is finite; a cross section of an edge
dislocation line is shown in Fig. 6. As pointed out by
Helfrich, the energy and entropy of an isolated
dislocation loop both grow linearly with the loop per-
imeter. He predicts a continuous phase transition
when the free energy of such an excitation changes
sign. This argument is similar to a heuristic one con-
structed for two-dimensional melting by Kosterlitz
and Thouless.

Here we show explicitly that a smectic A with a fi-
nite concentration of unbound dislocations behaves
like a nematic, with Frank constants A2 and K3 that
depend on the edge and screw dislocation core ener-
gies. %hen expressed in terms of correlation lengths
parallel and perpendicular to the layering, K2 and A'3

behave as predicted by the anisotropic scaling theory
of Lubensky and Chen. " %e also argue that, in pre-
cisely three dimensions, this picture of the transition
implies that

))/$ ndA= —gb' ' (5.6)

The requirement that dislocation lines not stop or
start in the interior of the medium amounts to the
constraint,

'7 $(r) =0 (5.7)

Passing to Fourier-transformed variables, the solu-
tion of Eq. (5.5) may be written

iq x $(-q ) + .

q
2

(5.8)

where Q(q) is an as yet undetermined function. For
a given configuration of dislocation lines, w( r ) must
minimize Eq. (5.1), which amounts to the condition,

QWz
7g( 7g ' wg)

gZ

where

32=K)/B

(5.9a)

(5.9b)

The operator '7q is a gradient acting perpendicular to
the i direction, and wq consists of the corresponding
perpendicular components of w. Equation (5.9) suf-
fices to determine Q(q),

As can be seen from Eq. (5.3), w( r ) acquires a
nonzero curl in the presence of dislocations. Intro-
ducing a vector dislocation charge density B( r ), we
have the relation,

(5.5)

where the integral of B( r ) over a surface S gives the
total Burger's "charge" $ b' ' piercing that surface,

'fll ~ Cl (5.2)

This relation sharpens the predictions of anisotropic
scaling, and allows more detailed confrontations
with experiment.

y( )=
q'(q, '+ x'qq )

x (1 —g q~ )z. [q x $(q)] (5.10)

A. Smectic-A liquid crystals with unbound
dislocation loops

Dislocation lines ' in a smectic A carry Burgers's
vectors which point perpendicular to the layering (see

Equations (5.8) and (5.10) now completely specify
the singular part of the strain in the presence of
dislocation lines.

Just as in our discussion of solids, we break up a
configuration of displacements in thermal equilibrium
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FD =
z
8 Ji d r [ w~ + h. ( 7i' wg) ] (5.12)

Here, w( r ) represents the singular part of the strain
only. The dislocation part of the free energy is most
conveniently evaluated in Fourier space. Making use
of Eq. (5.9a), we find

rs 3

FD= —,'8 ~
q [lw, (q)I'+z'Iq, w, (q) I']

2m '

2+) 2 '4

According to Eqs. (5.8) and (5.10), the function
w, (q) is

into a part due to dislocations and a smoothly varying
background field $( r ). The elastic free energy be-
comes

'2 '
2 2

'2

8 ",,r 8 0~',
~~

'0 ~, a y'
hz

(5.11)
where

We have supplemented the elastic contribution to the
dislocation free energy with phenomenological screw
and edge core energies E, and E,. The screw disloca-
tion core contribution is assumed proportional to the
square of the projection of the lines into the z direc-
tion, while edge dislocations contribute proportionally
to the square of the part of $(q) which lies perpen-
dicular to this direction.

The statistical mechanics as'sociated with Eq. (5.11)-F /kB T
follows from integrating e ' B over the smooth
phonon field Q( r ) and over different configurations
of dislocation loops. Adapting the discussion for
solids with dislocations presented in Sec. II, we imag-
ine that a finite density of "unbound" dislocation
loops actually stretch across the entire system. At
long enough wavelengths, it then becomes permissi-
ble to treat $(q) as the Fourier transform of a con-
tinuous vector field subject only to the constraint
q $(q) =0. We are interested in fluctuations in the
angles 8„(r ) and 8»( r ) describing deviations of the
smectic layer normal from the z direction. It is easily
seen that, for small deviations,

i X'qqzz [q—x $(q)]
w, (q) =

qz2+ ~2qi4

so we have finally

(5.14) 8„(q) =-w„(q) -iq„y(q)

8»(q) = —w»(q) —iq»g(q)
(5.16)

d q &ilz ' [q x$(q)]l'
2 J (2~)2 qz + &zq4

+2E.I$.(q) I'+ 2E.
I $i( q ) I'

(5.15)

It is tedious, but straightforward to evaluate corre-
lations between 8„(q) and 8»(q) in the presence of
unbound dislocation loops, making use of Eqs. (5.8),
(5.10), (5.15), and (5.16). One finds that the fluc-
tuations are described by a nematic-like free energy,

d
Fn = —,

' ~t, [ (E)q„'+2E,q»'+2E, q,') I8„(q)I'+ (K(q»'+2E, q„'+2E,qg') I8»(q) I'
2m '

—2(2E, —E~)q„q»8„(q) 8»( —q)] (5.17)

The expected form for a nematic free energy charac-
terized by a director field n ( r ) isz6

E2 =2E„ E3 =2E,

I

provided the Frank constants E2 and E3 are

(5.21)

F~=
2 J d r IE~('7 n)'+ICz[n ('7 x n)]'

+E, I
n x ( '7 x n ) I') (5.18)

Assuming alignment in the z direction and making
the identifications

8„(r ) = Sn„( r ), 8» ( r ) = Bn» ( r ) (5.19)

5n=—n —z (5.20)

we find that Eqs. (5.17) and (5.18) are consistent for
small

A smectic with a finite density of unbound disloca-
tion loops does indeed behave like a nematic. The
calculation is completely analogous to the one carried
out for solids in Sec. II.

We expect nematiclike behavior at wavelengths
long compared to the distance between unbound
dislocations. The long-wavelength elastic constants
and core energies should be renormalized by fluctua-
tions at shorter length scales. Suppose the medium
behaves like a smectic out to a translational correla-
tion length gs in the z direction, and a length g~ per-

pendicular to this direction. The core energy per unit

length of a sere~ dislocation should scale proportion-
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E, -(g,'/g a)E, , (5.22)

ally with gq and inversely with gi~. This suggests the
replacement

l
I
l

I

E ((8)(/gxa)E, = (go/a)E, (5.23)

where E, is again microscopic quantity. Our final
result for the Frank constants K2 and K3 is thus

where E, now signifies a microscopic core energy,
and a is a microscopic length. A similar argument
for edge dislocations gives fg

l
l
l

t

It2=2E, gj/fra, E3=2E,(II/a (5.24)

The correlation length dependence agrees with the
anisotropic scaling theory of Lubensky and Chen. "
No singularity is expected in the elastic constant K~,
which remains finite below T, .

8. Anisotropic scaling

There is, at present, no first-principles theory of
the smectic A to nematic transition. Lubensky and
Chen have constructed a general scaling theory
which allows for different power law divergences in
translation correlation lengths parallel and perpendic-
ular to the ordering. Analogous predictions for the
dynamics have been given by Swift and Mulvaney.
If a finite density of unbound dislocation line is the
dominant mechanism for breaking up translational
order above T„ the two anisotropic scaling correla-
tions lengths have a definite relation.

The amount of unbound dislocation line can be
parametrized by the areal densities n, and fI, of screw
and edge dislocations contained in planes oriented
perpendicular and parallel to the z axis. Implicit in

the scaling analysis leading to Eqs. (5.23) and (5.24)
are the relations

(5.25)

(5.26)

t

I
I

iY

/

I
I Q(o, r~)
t

(b)

FIG. 7. Effect of an edge dislocation in decorrelating
translational order. In (a), the points being considered must
be on opposite sides of the parabolic regions of maximum
strain to be significantly dephased by the dislocation. For
fixed r&, an edge dislocation will have this effect if it pierces
the plane of the figure any~here in a region of area r& jA..
In (b), the two points must both be within the parabolas,
but on opposite sides of the dislocation, to be affected. De-
phasing will occur if the edge dislocation pierces a region of
area z(z A.)'

( )
iqou(r) (5.27)

where qo is a wave vector which specifies the layering
in the i direction. %e first examine the correlation

G( rq, z) = (p'( rq, z) p(0, 0) ) (5.28)

where r —= ( r~, z), for the special case of separations
perpendicular to the z direction. As shown in Fig.

Thus, unbound screw dislocation lines are on average
a distance (q apart, while unbound edge dislocation
lines are separated by g~~ in the z direction and by gq

in the smectic planes.
To derive a relation between (~i and gq, consider

first the decay of correlations in the translational or-
der parameter

7(a), an edge dislocation will decorrelate G( r&, 0) if
. it falls in an elongated region between the two points
in question. If i(i"(rq, 0) and P(0, 0) are on opposite
sides of the parabolic region of maximum stress asso-
ciated with a straight edge dislocation, they will be
180' out of phase. For the dislocation in Fig. 6, the
region of maximum stress is bounded by the lines
z =+xz/X. Thus, an edge dislocation line must pi-
erce a region of cross-sectional area rq~ /A. in order to
significantly reduce G(rq, 0). A straight screw dislo-
cation [which would run vertically in Fig. 7(a)] whose
projection onto the plane of Fig. 7 cuts rz, can also
decorrelate G( rq, 0). Any screw dislocation within rI
of the plane of the figure will have this effect. Thus,
the probability that either an edge or screw disloca-



380 DAVID R. NELSON AND JOHN TONER 24

tion will dephase correlations at a separation r& is

n, rJ/h. +n, rq (5.29a)

n, gq~/g+ n, gg = I (5.29b)

A second relation follows from considering the
correlations in the z direction as shown in Fig. 7(b).
Only edge dislocations are significant in decorrelating
G(0,z). The two points being correlated must now
fall on opposite sides of the dislocation core itself,
but within the parabolic region of maximum stress.
The probability that G(0,z) is decorrelated is now

n, z(z)).)' (5.30a)

Since G (O, z) will be dephased with unit probability
when z = gll, we require

n g3/2) 1/2 (5.30b)

Combining Eqs. (5.30b) and (5.26), we find the
desired relation between g(l and g~, namely,

6 —6/& . (5.31)

Inserting this result, together with Eqs. (5.25) and
(5.26), into the relation (5.29b), we find that both

edge and screw dislocations contribute to dephasing
G (rq, 0). An identical relation between parallel and
perpendicular translational correlation lengths was
found for the nematic to smectic-A "transition"
which occurs at T =0 in two dimensions.

Somt; predictions of anisotropic scaling in three
dimensions are tabulated below, "

+2 4I/fili It 3

B —
gll/gZ, D —(li

(5.32a)

(S.32b)

The quantities K2 and K3 are the Frank constants
discussed in the previous subsection, and B is the
smectic elastic constant appearing in Eq. (5.1). The
parameter D is related to the penetration depth for
bend and twist deformations in the smectic. Accord-
ing to Eq. (5.31), both E2 and B should be finite at
T, . "Corrections to scaling" terms would superim-
pose cusps on these quantities. Although there is
some experimenta) evidence for anisotropic scaling, "
the existing data on K2, K3, B, and D are not com-
pletely consistent with either Eq. (5.32) or the specif-
ic relation (5.31).

It is possible to measure glI and gq directly, via x-
ray scattering. ' Upon parametrizing these diverging
correlation lengths as in Eq. (1.10), anisotropic scal-
ing suggests a specific relation between v~~, vq, and
the specific-heat exponent n, namely, '"

%e expect that this probability is of order unity when
rq= gq, which gives

experiments of Garland et al. , we find using Eq.
(5.31) that

vii =0.88, vi =0.44 (5.34)

The experimentally observed exponents do not ex-
hibit quite so pronounced an anisotropy. The value
o. ='0.0 obtained by Johnson et al. leads to an even
larger difference between v~~ and v~. Hopefully, more
precise experiments in the future will unambiguously
confirm or deny the anisotropic scaling results (5.32),
and the specific prediction (5.31) of the dislocation
loop mechanism.

There is another reason to believe that $ll ~ /~2 in
precisely three dimensions. In Appendix C we show
using Josephson-like scaling arguments that, for
d &3,

B —0/O' ' It' —8' '/0 (s.3s)

The result for 8 agrees with anisotropic scaling. '
The behavior of K~ is surprising, since K~ is not ex-
pected to diverge on physical grounds. In order
for Kj to remain finite at T„we must have

1
S(Ops) ~,2 (7) (5.37a)

(5.36)

which agrees with Eq. (5.31) in the limit d 3+.
Lubensky and Chen have analyzed a variety of

possible fixed points relevant to the smectic-
A —to —nematic transition, to lowest order in the
E =4 —d expansion. ' Near four dimensions, they
find the first-order transition predicted by earlier
studies. A small first-order transition, of course,
cannot be ruled out experimentally. Another possi-,
bility is a "superconducting fixed point, "with K~ =0.
Lubensky and Chen emphasized crossover effects re-
lated to an unstable fixed point with K~ = ~. They
uncovered yet another fixed point, which although
physically inaccessible to lowest order in e, has pre-
cisely the property Eq. (5.36). If one accepts that
d =3 is the lower critical dimension for smectics,
three dimensions is in some sense very far from
d =4. The dislocation loop mechanism could be
reconciled with Lubensky and Chen's renormalization
group analysis, provided this last fixed point became
both physically accessible and stable as the spatial
dimension tends toward 3. It would be worth check-
ing for such a trend by extending the Lubensky-Chen
calculations to 0 (e').

The Fourier transform of the correlation function
(5.28) is directly related to the smectic-A structure
factor S(qq, q, ). At all temperatures below 7; in
three dimensions, there is an algebraic singularity at
qq =0, q, = qo. Hydrodynamics predicts that, near
this singularity

2vg+ vii = 2 —o,' (5.33)

Taking the representative value o. =0.24 from the
1

S(qx, qo) —
4 2 (r) (S.37b)
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where the temperature-dependent critical exponent
ri(T) is

ri ( T) = ks T ( qo /8 w ) / JBKi (5.38)

Inserting the Josephson scaling results (5.35) for the
elastic constants, we find that

gd-3 (5.39)

There is strong experimental evidence" that the per-
pendicular correlation length exponent vq is finite
above T, . If the same exponent describes fq below
T„we have

q( T)— 1 (5.40)

-E A,/k Tc B

where E, is a typical edge or screw dislocation core
energy per unit length. Below T„dislocation loop
excitations are irrelevant at long wavelengths, and y
is renormalized to zero. All trajectories then ter-
minate in a line of fixed points parametrized by
ri(T). There is a critical fixed point at finite y which

(5.41)

Provided vq(d) does not diverge before reaching its
finite value vq(3) in the limit d 3+, ri(T) must
remain finite as T approaches T, from below. This
prediction is independent of the precise relation
between vq and v~~.

It should be emphasized that ri( T, ) need not be
the same as the corresponding critical exponent mea-
sured precisely at T, . The qualitative renormalization
group flows we expect for the smectic-A —to —nematic
transition are shown in Fig. 8, Temperature is mea-
sured in terms of the function q( T) defined by Eq.
(5.38), and we have introduced a dislocation fugacity
per unit length y. The dashed locus of initial condi-
tions is given by

qo (5.42)

and a reduced temperature,

i m(T —T, )/T, (5.43)

the scaling hypothesis for S(8q~~, qq, t) takes the form

S(8qurqq, t) = 64 2"i S(b28q~~, bqq, b ~t), (5.44)

where b is an arbitrary scale factor. When t =0, Eq.
(5.44) predicts that S(q~~, qq) behaves as in Eq.
(5.37), with the replacement ri(T) —71' For t v.ery

1/vg
small and negative, we choose b such that b ~t is
near the point ri(T, ) in Fig. 8, and find that S takes
the form

S(gq, q, t) = ( '" iP(g'Sq, g q ) (5.45)

The behavior of iP(x,y) for small x and y is fixed by
the hydrodynamic predictions of Eq. (5.37). When

qua=0 one finds that

controls the actual phase transition. The exponent
rt(T, ) is given by the terminus of the heavy trajecto-
ry leaving this fixed point and ending in the line

y =0. There is a separate critical exponent q' deter-
mined by an eigenvalue of the finite y fixed point.
That such a fixed point exists can be inferred from
Helfrich's entropy argument, ' which suggests that
E„and hence, y, are finite at T, . The situation we
envision is quite different than in, say, two dimen-
sional melting, where the fixed point controlling the
transition is part of a fixed line. ' Of course, the re-
normalization flows of Fig. 8 are a physically motivat-
ed conjecture, and are not the result of an actual cal-

culationn.

Stripped of renormalization group jargon, we can
summarize our conclusions in terms of a scaling an-
satz. Upon defining

S (Sq~~, 0, r) 4i" " i I
&qlll'

while, for Sqll=0, the result is

(5.46a)

S(() q r) $2lf —2q /q4 —2g (5.46b)

The amplitudes have a singular temperature depen-
dence, provided

ri =—ri(T, ) W ri' (5.47)

FIG. 8. Conjectured renormalization group flows for the
smectic-A —to —nematic transition. there is both a fixed line

describing the behavior for T & T„and a fixed point at fin-

ite dislocation line fugacity y describing the phase transition.

This picture of the smectic-A —to —nematic transition
is summarized in Fig. 9. Because the hydrodynamic
elastic constant B(T) remains finite at T, , there
should be smecticlike behavior not only at long
wavelengths below T„but also in the center regions
of the figure.

The nature of the smectic-A —to —nematic transi-
tion is one of the few remaining unresolved problems
in equilibrium critical phenomena. Although this
question is far from settled at present, we hope the
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points raised here will encourage further investiga-
tions of interacting dislocation loops, as well as more
precise experiments.

FIG. 9, Different regions of temperature and wave vector
for the x-ray structure function S (Sq~~, q j,t). Temperature
above and below T, is measured by the reciprocal transverse
correlation lengths g~'+. (a) is for q&=0, while (b) corre-
sponds to Sq

~~

=0.
2rrt (Al)

where n is an integer. The field v, is the superfluid
velocity field (whose circulation is quantized in units
of 2rrt/m), and m is the mass of a 4He atom. In the
continuum limit, Eq. (Al) may be restated in the
form

stood in terms of the ~ =4 —d expansion, "which
focuses very little on defects like vortex rings. Both
the diameter of a vortex core and the width of the in-

terface between the core and the surrounding super-
fluid are believed to scale like the superfluid coher-
ence length g (T). Since ( (T) diverges as T T~,
a "vortex ring" becomes indistinguishable at long
wavelengths from an amorphous blob of normal ma-
terial. There is no great advantage in describing this
phase transition in terms of a set of line singularities
like vortex rings. The situation is quite different in
two dimensions, where point vortices have finite
cores right up to the transition. ' The assumption
that vortices remain sharp singularities even at long
wavelengths is basic to the Kosterlitz-Thouless
theory of superfluid helium films.

There is, of course, nothing fundamentally wrong
with a point of view that models excitations in super-
fluid helium by a set of interacting vortex rings. We
shall show explicitly that a finite density of unbound
vortex rings gives rise to a superfluid density which
vanishes at long wavelengths; such a material
behaves like a normal liquid in this limit. . Although
this result is certainly not surprising, it provides a test
of the calculational method which produced the novel
cubic liquid phase in Sec. II.

The basic relation defining the strength of the vor-
ticity carried by a vortex line is
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'7 ~ M =0 (A3)

Equations (A2) and (A3) completely determine the
part of v, ( r ) due to vortex rings. In Fourier space,
we find

where the integral of 9 (r) over a surface S gives the
total vorticity contained within the contour C which
bounds S. To ensure that the dislocation loops close,
we impose the condition

, 2rrt q x M(q)v, &q
m q

(A4)

APPENDIX A: BEHAVIOR OF A SUPERFLUID WITH
UNBOUND VORTEX RINGS

Feynman has speculated that the A. transition in su-
perfluid 4He could be understood in terms of a sud-
den proliferation of unbound vortex rings. ' The
behavior near the A. point is now quite well under- (AS)

To model the free energy associated with a super-
fluid velocity field v, ( r ), we imagine that the He is

embedded in a porous medium, which clamps the
normal veloctiy v„ to zero. The free energy is then

F, = —,'p, J d'r (v, (r)('
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( )g~(, ),2mti q xM(q)
m m q2

(A6)

Inserting this decomposition into Eq. (AS) we find

r

d'r
~
Oy)'+

ksT 2 ~ ksT

~here the vortex contribution is
i

d3q 4rr E
kjiT 2 " (2m) q kjiT

(A7)

and

In general, v, ( r ) will have an irrotational part, pro-
portional to the gradient of a smoothly varying phase
function, as well as a contribution from a distribution
of vortex rings. If $( r ) is the smooth phase field,
we have

placement

E, g+E, /a (A16)

where a is a microscopic vortex core diameter. The
result agrees with the Josephson scaling form for
Ek(q. (+),"

E„(q,g, ) =qf(qg, ), (A17)

provided the scaling function f(x) vanishes linearly
with x for small x. Since ps(q) vanishes for small q,
the behavior is that of a normal liquid.

There is nothing analogous to a bond-angle field in
superfluid helium. It may be possible to construct a
demonstration (along the lines taken here for the su-
perfluid density) that the elastic constants of a solid
do indeed vanish in the presence of unbound disloca-
tions. The original physical argument of Shockley '

seems quite compelling, however.

E =t p, /m kriT (A9)

g*( r ) = p, v, (r ) . (A10)

The quantity E, gives the core energy per unit length
of vortex line.

The renormalized superfluid density can be defined
in terms of the transverse and longitudinal parts of
the momentum correlation function. The momen-
tum is

APPENDIX 8: BOND-ANGLE FREE ENERGY FOR
ANISOTROPIC SOLIDS

In this Appendix, we demonstrate that bond-angle
order persists despite the presence of unbound dislo-
cation loops in anisotropic crystalline solids. %e be-
gin with the incompatibility condition (2.6), which
may be written

and, upon defining

C'J ( q ) = (g ( q )gj ( —q) )
'r

C, (q) j +-C,«) S,j —",'
r

(A 1 1)

rekl i ( +kmn qm ljnl + Qkim (jm )

where

QiJm 5ijqm Simqj

(Bla)

(B lb)

we have"

Ea (q) = Ci. (q) —Cr(q), {A12)

where ER(q) is related to a wave-vector-dependent
renormalized superfluid density ps(q),

Es (q) =t'pa(q)/m'ks T. (A13)

4m K
CL (q) = E, C7 (q) =

4' E +2Ecq
(A14)

It follows from Eq. (A12) that Es(q) vanishes like
q' at long wavelengths

E,Ea(q) = ' q' .
27r2

(A15)

To incorporate fluctuations on scales less than a su-
perfluid coherence length g+( T), we make the re-

In a normal fluid, CL(q) and Cr(q) become equal as

q tends to zero. In an "unbound vortex ring approx-
imation" of the kind used for dislocations in solids
and smectics in Secs. II and V, we readily find from
Eqs. (A6), (A7), and (AS) that

score ~ijkl rnij ( q) rkkl ( q)— (B2)

and a lang-range interaction due to the elastic energy

+el 2 Cijkl&ij (q) akl( 'q)
1 (B3)

In general, the tensors CJ~~ and E&jg/ reflect the sym-
metries of the crystal in question. It should be not-
ed, ho~ever, that while the elastic tensor CJ~~ can al-

ways be chosen to be symmetric under the inter-
changes of i j and k l, the core energy tensor
E«~ cannot, since n& need not be symmetric.

Combining these energies and writing a,&
in terms

of dislocation bond angle and strain fields as in Eq.
(Bl), we can obtain an effective free energy density

In this Appendix, u~ and 8~ denote the singular parts
of the strain and bond-angle fields, due to a distribu-
tion of dislocations. The relation (Bla) holds for any
crystal. The only changes from the isotropic case oc-
cur in the dislocation free energy, which no longer
has its relatively simple isotropic form. It is, howev-
er, presumably still possible to separate the free ener-
gy density into a contribution from the dislocation
cores
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for those fields, which is, to lowest order in q

~D 2 ( 2 Eijkl Qijm (q) Qkln ( q) em ( q) e, ( q)—

,j„[ j(q) e„( q)—] + cjklufj(q) uki( q—) I

(84)
where

~iJk =
Eljmn&ifpqpQmnk(q)

and the superscript d has been suppressed. An effec-
tive free energy for the bond-angle field 8 can now
be obtained by integrating out u» from the probability
distribution

where

M
Digki

= lim Cijki +
2 Cijtnnln CkimpqpM~oo q

i

(810)

We shall not need to evaluate D,jki, since it is bound-
ed above as M ~ and gives rise to a contribution
which is higher order in q than the first term of Eq.
(89). The first term of Eq. (89) is of order q2 at
long wavelengths. To lowest order in q, then, the ef-
fective bond-angle free energy density becomes

(p([e], [u,,]) ~exp —JI (2fr)3 kJJT
(85)

d'q
2EJklg'J Qk'l. e.(q) e.( q)-

~I'J CiJkl ~kl (87)

The constraint (86) is easily incorporated into the
functional integral over Eq. (85) by adding a sort of
"longitudinal mass" as was done (in a different con-
text) in Sec. II. That is, we add to the free energy
(84) an additional term

M
J% j (88

and then perform all functional integrals over u»
without constraint, enforcing the constraint at the
end of the calculation by letting M tend to infinity.
Carrying out this procedure, we find for an effective
free energy density for 8 above,

off(e)
2 [2EijklQijm(q) Qkln(q)

+D„k,(q)a,, (q)Wk(„(q)]

& e (q) e„( q) (q = q/~ q ~)— (89)

This functional integral over u» is constrained, since,
by our definition of the "field of a dislocation, "

u»
must give rise to no body forces. In Fourier space,
this means that

q;cr» =0

where the stress o-» is related to the strain u» in the
usual manner of continuum elasticity theory

(811)

Note that the elastic constants have completely
dropped out of this calculation; the symmetry of the
crystal enters only through the core energy tensor
Ejki. Using the definition of Q/ Jkand Fourier
transforming back into real space, we determine that
the integrated free energy is

with

F ff JI d f it'Jklf)'ej(f) f)kel( r (812a)

E~jkl 2 ( Eijkl 2 Emmlk 5fj + Emm„„5 J Bk( ) . (8 1 2b)

+Jki is a sort of "orientational elastic tensor. " It
clearly has the same symmetries as the core energy
tensor, which in turn has all the symmetries of the
crystal lattice. It must be remembered, however, that
it does not have the symmetries of the elasticity ten-
sor of the solid, since it is not symmetric under inter-
change of its first two or last two indices. Thus,
more independent constants are required to describe
a "bond-oriented liquid crystal" than are necessary to
describe the corresponding solid.

For cubic symmetries, we have

'fd'r [K,[(fi„e„)'+(flpep)'+ (fl, e, )'] +K,[B„e„bpep+8„e„'fl,e, + f)pep f),e, )

+ jt.', [(a„e,)'+ (B„e,)'+ (B,e„)'+(B,e,)'+ (a,e„)'+(B,e, )']

+2', [(e„e,) (e,e„) + (e„e,) (a,e„) + (a, e, ) (a,e, ) ] I . (813)

Note that although the last term in square brackets in this expression can be converted into the 1st by suitable in-

tegration by parts, such a trick will not work in the presence of disinclination lines, which force the introduction of
cuts to keep the strain field single valued. These cuts will give contributions to the energy from the surface term

by which the last term in square brackets and the 1st differ. For systems with a hexagonal symmetry,
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F,„=—
J d'r [E (8„8„+88 )'+E [(6„8„)'+(() 8„)'+(8,8, )'+(8, 8„)']

+E,(8„8 )(8 8„) +Ir. (8, 8,)'+K,B, 8, (8„8„+88 ) +E6[(9„8,)'+(8 8, )']

+&&,(d„8,(),8„+8,8,8,8, ) +It', [(8,8.)'+(8,8, )']] .

Spherical harmonics other than those for I =4 used
here would be required to study bond-angle order in
hexagonal systems.

One can also imagine a more general situation than
that considered throughout this paper in which dislo-
cations with some types of Burgers vectors remain
bound (in the sense of Sec. II) while others become
free." In such a "partly dislocated solid, " some
translational order will persist, together with a type of
orientational order similar to that which we have con-
sidered already. An example of such a phase is the
stacked hexatic phase discussed in the Introduction.
By permeating a crystal with hexagonal symmetry
with a finite density of free dislocations whose
Burgers vectors lie in the hexagonal plane, we there-
by destroy translational order. within that plane.
However, if we allow no dislocations with Burgers
vectors perpendicular to this plane, translational or=

der in that direction will persist. Furthermore, we
would expect sixfold orientational order within the
hexagonal planes, since, as we have seen, free dislo-
cation loops are not sufficient to destroy such order.
Thus we have a phase with long-range translational
order in one direction, and in-plane orientational or-
der. This is exactly the type of order exhibited by the
proposed "stacked hexatic" phase. ' It is equally
easy to see that the so-called "discotic" or "poker-
chip" phase, with translational order in two out of
three directions, can be created by permeating a crys-
tal of the same hexagonal symmetry with dislocation
loops ~hose Burger's vectors point in the direction
normal to the hexagonal planes, while leaving all oth-
er loops bound. This point of view is similar in spirit
to that taken by Martin et al. ,

' who consider succes-
sively less correlated phaseN of matter by discarding
various elastic constants.

F = —, ~
d4r [B(ri,u)'+it', ('7gu)'], (C2)

where '7i is a (d —1)-dimensional Laplacian corre-
sponding to the d —1 directions within layers normal
to the z-direction. We work in d & 3 dimensions,
and assume genuine long range order in

P(r) =—Joe

Fluctuations in the magnitude of P( r ) will be
neglected (this is always permissible in the hydro-
dynamic limit), and we chose the phase of the order
parameter such that (P(r) ) is real and positive.

The large-distance behavior of correlations in the
transverse part of the order parameter,

Pr( r ) = &0 sin[qou ( r ) ] (C4)

is entirely determined by hydrodynamics. It is easy
to show given the Gaussian free energy functional
(C2) that

Cr( r ) —= (pr( r ) gr(0) )

=
i (P( r ) ) i' sinh[Q (r) ] (C5)

~here

1(0( r ) ) I
= Ooexp[ ,

'
qo (u'( —r ) ) ] (C6a)

and

I

Here we adapt the Hohenberg et al. argument to
determine how the hydrodynamic parameters 8 and
K] entering a d-dimensional generalization of Eq.
(5.1) depend on suitably defined parallel and perpen-
dicular correlation lengths.

The generalization of Eq. (5.1) to d dimensions is

Q(r) =qoz (u(r)u(0)) (C6b)
APPENDIX C: JOSEPHSON RELATIONS FOR

SMECTIC-A LIQUID CRYSTALS

2 —d
ps (r (C 1)

In 1966, Josephson published a scaling argument
which relates the behavior of the superfluid density
in 4He near T„ to conventional critical exponents.
Hohenberg et aI. ' have presented a particularly tran-

sparent derivation of Josephson's result. In d dimen-

sions, the hydrodynamic "stiffness" p, ( T) is related
to a suitably defined transverse correlation length

gr( T),

d q
e'q'"

(2m)" Bq'+K q' (c7)

Considering now Q(r) =—Q(ri, z) as a function of
separations perpendicular and parallel to the smectic
layer normal, it is straightforward to show from Eq.

The averages are evaluated in an ensemble specified
by the free energy (C2). Since Q( r ) tends to zero
for large r, the large r behavior of Cr( r ) is just that
of Q(r), which may be written
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(C7) that

Q(rj, 0) 1

BK)
(C8a)

tions

Cr(r~, 0) —
~ (y( r ) ) ~'((q/rq) (C9a)

(u- i)/4

Q (O,z) z- E) 8 (Cgb)

Cr(0 z) —
[ (p(r)) ( (fg/z)" (C9b)

Making use of Eqs. (CS) and (C8), we readily find

(C l0)
Because of the broken translational symmetry in

the smectic phase, correlations decay as power laws
rather than exponentially. The particularly simple
power law decay of Cr( r ) —= Cr( r~, z), however, can
be used to extract correlation lengths via the defini-

which are the results quoted in Sec. V. It is interest-
ing to note that the behavior of E~ below T, matches
that predicted by anisotropic scaling for the Frank
constant E2 above T, .
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