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Theory of electron-avalanche breakdown in solids
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Electron-avalanche breakdown in solids is explained by a theory that agrees with experimental results for the
magnitude of the breakdown field and its temperature dependence, pulse-duration dependence, material-to-material
variation, and wavelength dependence forit, & 1 pm. The good agreement between experiment and theory with no
parameters adjusted is obtained by using improved magnitudes and energy dependences of the electron-phonon
relaxation frequencies. The contributions of both optical and acoustical phonons to electron loss and energy-space
diffusion must be included. The breakdown field E~ is calculated by solving an eigenvalue equation obtained from
the diffusion-transport equation. Simple models and interpretations of the diffusion equation afford physical insight
into breakdown and render the breakdown conditions predictable. Preliminary results indicate that the diffusion
approximation fails for'wavelengths considerably shorter than 1 pm, where multiphoton absorption must also, be
considered.

I. INTRODUCTION

Damage of dielectric materials by high electric
fields, which has been the subject of numerous
'experimental and theoretical investigations, ''2 has
received renewed attention in recent years as a
resu1t of laser-damage experiments. Electri-
cal breakdown of dielectrics by lightning was one
of the first known electrical phenomena; labora-
tory experiments on electrical breakdown in glass
were initially conducted in 1799.' Despite many

. previous attempts' " to develop a viable model of
laser-induced damage to alkali halides, there has
yet to appear a theory capable of simultaneously
explaining the magnitude of the breakdown field as
a function of temperature, wavelength, pulse du-
ration, and variation from material to material.

Predictions of the electron-avalanche theory and
a comparison of theoretical results with data
available at the time were given by Sparks. '~ A

recent account of theoretical efforts by Soviet
analysts was given by Qorshkov and co-workers, '

and new data taken at the I.ebedev Institute along
with further discussion of the theory were pre-
sented by Manenkov. '3 Difficulties with the elec-
tron-avalanche theory led Schmid and co-workers'
to explore such alternative mechanisms as multi-
photon absorption combined with a possible rapid
transfer of electron energy directly to the lattice
by phonon emission —following a suggestion of
Hellwarth'5 that direct and rapid transfer of energy
to the lattice, followed by its fracture, may ac-
count for the data. Preliminary results of the
present investigation were summarized briefly
elsewhere 8

The general features of the present theory,
which mitigates the difficulties of the previous
theories, are as follows: There must be a mech-

anism to generate a sufficient number of starting
electrons to initiate the avalanche. These few
starting electrons drift upward in energy in the
conduction band through interaction with the laser
field, retarded by energy loss to phonons. Each
electron undergoes a random walk of progressively
increasing kinetic energy until it attains a thres-
hold energy 81. The electron then drops to the
bottom of the conduction band. If an exciton has
been created, its rapid photoionization injects a
second electron into the bottom of the conduction
band. The process is repeated until a sufficient
electron density (-10'8 cm ~) has been created to
damage the crystal, probably by excessive Joule
heating.

This description of electron-avalanche break-
down is indeed also common to most previous
theories. However, a cardinal reason for the
good agreement of the present theory with exper-
imental results, contrasted with the poor agree-
ment of previous similar theories, is the use of
more realistic electron-phonon scattering rates.
Umklapp processes, which were neglected in pre-
vious treatments, "'"are included in the electron-
phonon relaxation frequencies. In other words,
the phonons with which the electrons interact are
not restricted to those in the first Brillouin zone,
as in previous theories. Both acoustical and opti-
cal phonons are included in the interactions with
electrons. Our theory retains the difference be-
tween the electron relaxation frequencies (or scat-
tering rates) y~ at which the electron loses its
forward component of momentum, and yL, at which
the electron loses energy. The resulting magni-
tude and energy dependences of the electron-pho-
non scattering rates are essential differences
between our model and those of previous investi-
gations.
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Another unique aspect of the present theory is
the inclusion of the temperature dependence of the
lattice constant and phonon frequencies. Without
that dependence, the agreement with the measured
temperature dependence of the breakdown irradi-
ance —especially at 10.6 p, m —is degraded. With
the inclusion of the new electron scattering rates
and the temperature dependence of the parameters,
the common transport-equation approach can ex-
plain available data without introducing new mech-
anisms. In particular, the predictions of the theo-
ry agree well with the new I.ebedev data.

The material-to-material variations of the
breakdown electric field E~ in the present theory
result from the values of the characteristic phonon
frequency S(d», which is set equal to the Debye
energy k~8~, and the electron-cation scattering
cross section Q„which is scaled as the square
of the ionic radius.

The electrons that are initially present or gen-
erated (those that start the avalanche) will be
called the starting electrons. Most previous theo-
ries of electron-avalanche breakdown in solids at
laser frequencies have either implicitly or explic-
itly assumed that starting electrons are present
when the laser is turned on. Sparks'~ showed that
experimental data contradict that assumption. The
starting electrons are not initially present; they
must be generated, by an external source or by
the laser field itself, for example. In microwave
gas-breakdown experiments, it is well known that
the starting electrons must be generated. A radio-
active source near the microwave cavity is com-
monly used to provide the starting electrons.

Since both processes —generation and acceler-
ation —are required for breakdown, either the
generation of the starting electrons or the ava-
lanche process itself can determine the breakdown
field. Processes by which the laser field can
generate the starting electrons were discussed
by Sparks. '7 Only the avalanche process is con-
sidered here. The estimates of Sparks" on elec-
tron generation, as well as the good agreement
between experiment and the present theory, in
which the breakdown is dominated by the avalanche
process, partially justify not conducting a detailed
investigation of starting-electron generation. In
fact, the importance of generating the starting
electrons will remain uncertain until verified ex-
perimentally.

If the electrical breakdown field E~ were domi-
nated by starting electrons either initially present
or generated, rather than by the avalanche pro-
cess itself, the experimental value of E~ would
generally be greater than that obtained when start-
ing electrons are provided. If dominated by elec-
trons initially present, E~ would vary from shot

to shot, depending on the probability of a starting
electron being present. Such variations are well
known in microwave breakdown of gases, in which
E~ can vary by well over an order of magnitude.

A major difficulty in obtaining agreement be-
tween theory and experiment is determining wheth-
er the experimental values of E~ are intrinsic. It
is common practice to select only the greatest
measured values of E~. However, those retained
still may not be the intrinsic values. Despite the
inherent difficulty of determining when an intrinsic
value has been attained, it is likely that the
Lebedev values at 1.06 and 10.6 p, m are intrinsic
because they agree so well with the present theory.

In using a differential form of the transport-
equation, we assume that the photon energy N~ is
sufficiently small to be treated by differentials
rather than differences. At high frequencies
(wavelength X c I p, m, very roughly), the differ-
ential approximation gives rise to non-negligible
errors. This and other high-frequency effects
will be considered in a subsequent publication. '

Sparks'~ showed that the process in which an
electron absorbs or emits both a photon and a
phonon is sometimes important in electron-
avalanche breakdown. This was called the Hol-
stein process because Holstein showed it to be
the dominant mechanism determining the value of
the conductivity in the limit (dw»1, provided that
N& is sufficiently small to permit photon emission
as well as absorption. The Holstein process is
tacitly included here because the energy gain of
the electron is treated in terms of the conductivity
(which is controlled by the Holstein process in the
limit ~v» I).

Table I lists processes not included in the pres-
ent theory because they are believed to be negli-
gible in careful experiments for g ~ 1.06 p. m,
along with the expected effect on the value of E~.
The major sections of this paper are as follows:

Introduction; II. Average-electron model;
III. Diffusion model; IV. Electron relaxation
frequencies; V. Numerical results; VI. Interpre-
tations and calculations using simple models;
VII. Acknowledgments.

II. AVERAGE-ELECTRON MODEL

In order to understand the diffusion model, which
is the basis of the present investigation, first con-
sider the average-electron model. Section I dis-
cussed the general features of most current mod-
els —the acceleration of a conduction electron by
the laser field, the loss of energy from the elec-
tron to the phonons, the generation of a second
conduction electron accompanied by a loss of ki-
netic energy'of the first electron, and the repeti-
tion of the process until the electron concentration
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TABLE I. Influence on the breakdown threshold E& of
including various effects in the theory. Note: Experi-
mentally measured extrinsic values are lower than the
intrinsic theoretical values.

Including this effect in the theory
causes the theoretical E& to: Increase Decrease

Spherical aberrations
Self-focusing
Macroscopic inclusions
Sample surface effects
Impurity levels in the band gap
Control of Ez by starting
electrons

Electron or thermal diffusion out
of the focal volume

Raman scattering
Large quantum nature of I'co

Multiphoton absorption
Inter-conduction-band
transitions

X
X

X
X
X
X

xb
X
X

X

For increasing focal diameter.
As photon frequency increases.

(2.l)

for all 8& 81, where 81 is the energy at which the
electron generates a second conduction electron
by excitation across the electronic energy gap.

The rate at which the field E adds energy to the
electron is obtained from the wave-vector equation

k '+yP, =eE»exp(i&et),dk,
dt

(2.2)

where E is along the g axis, k, is the g component
of the electron wave vector k, y, =l/v~ is the
transport (momentum-loss) relaxation frequency,
and ~ is the laser frequency. The steady-state
solution is

is sufficient to damage the crystal.
In the average-electron model, which affords the

simplest mathematical treatment of the general
model, the average energy-loss rate to the lattice
is (d8/dt)z, and the average energy-gain rate from
the electric field is (dS/dt)e. Breakdown occurs
when the gain exceeds the loss;

where Re denotes the real part and E is the com-
plex conjugate of E. Substituting Eq. (2.3) into this
equation, using 8 = ,-E-» (where E is the root-

.mean-square value of the field), and taking the
average over the electron distribution, we obtain

~t'd8, 2 e'7,
(2.4)

(dS
&dt z,

(2.5)

where ~» is the average phonon frequency and the
energy-loss relaxation frequency y~ is different
from y~ in Eq. (2.4), as discussed below. Equating
Eqs. (2.4) and (2.5) gives the threshold value E„o
above which the electrons gain energy from the
field

N&u„m* ~
yz,

I
ya

e' (2.6)

The resulting breakdown criterion that the electric
fieldE must be greater thanE«at all electron
energies —that is,

where 0 is the electrical conductivity. Equation
(2.4) is the well-known conductivity result for a
single electron. Physically, the energy gain in
Eq. (2.4) is small when the electron momentum is
changed rapidly by interactions with the phonons.
That is, in this dc limit of large y~ (or, more
precisely, small ~r,), the phonon collisions in-
hibit the acceleration of the electron by changing
its momentum to the opposite direction from that
imparted by the electric field.

In the opposite limit of slow momentum change,
the energy gain in Eq. (2.4) is again small. For
this case of ~7'„»1, the electron is first acceler-
ated, then deaccelerated when the direction of the
electric field reverses. The process occurs many
times before the electron undergoes a momentum-
changing collision with a phonon. The energy gained
during one hal. f-cycle is lost during the following
hal. f-cycle. 'The maximum energy gain, which is a

, function of the momentum relaxation time w„, oc-
curs at ~7~=1. Then, on the average, the elec-
tron direction is reversed every time the electric
field reverses direction.

The rate at which the electron loses energy to
the lattice is

(2.3) Ea =E«max & (2.7)

Kith current J =ev, where the z component g, of
the velocity v is equal to Ik,/m* and m~ is the
electron effective mass, the rate at which the
field puts energy into the electron is

&d8 = —,
' Re J E*=—,

' Re@ek,

where E«,„ is the maximum value of E„o, and
E~ is the value of E at breakdown —is a fair
zeroth-order approximation, provided the energy-
dependent relaxation frequencies yL, andy~ are
interpreted correctly. However, even with the
proper interpretation of the relaxation frequen-
cies, the average-electron result in Eqs. (2.6)
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5&~&~sr, ~'-~vp
for E ~E~p

I vp

0 for 8 &Eyp.
(2.9}

The value of p goes to zero at 8 =E ~p. For a high
electric field E'»Ego, Eq. (2.9) gives

P =1781~oE2 for Z2»Ego . (2.10}

III. DIFFUSION MODEL

and (2.7) is only a rough approximation. As dis-
cussed below, the inadequacy of the average-
electron result stems both from the difficulty of
treating the energy dependence yl. andy~ properly,
and from the negl. ect of electron diffusion in energy
space. The probl. ems are overcome by using the
transport-equation approach discussed in the fol-
lowing section.

Before leaving the average-electron model, con-
sider the multiplication rate P. As a result of the
repeated doubling of the number of conduction
electrons, their number N, increases exponentially
as N, =Noexp(Pt). The net energy gain, from Eqs.
(2.4) and (2.5), is

j. 2 & 2 @ @VO

dt
——,oE -—I+»y~= ,oE„»—.(2.8)

vp
1

Assuming that o andE2vo are independent of 8 (that
is, y~ and yz, independent of 8), integrating Eq.
(2.8}, and using the breakdown criterion of setting
the pulse duration t =t~ equal to 51/P as discussed
in Sec. V, we obtain

and o is defined in Eq. (2.4). The boundary condi-
tions are

n(8„t)=0, (3 4)

corresponding to no electrons accelerated past the
exciton threshol. d, and

J'(0, t) = 2J(8„t), (3.5)

corresponding to the "flux-doubling" feature of
exciton creation followed by photoionization. Con-
verting the transport equation to a diffusion equa-
tion [Eq. (3.1)] is extremely useful because well-
known, intuitively understood diffusion results can
be brought to bear on the electron-avalanche
breakdown problem, as illustrated below.

The transport equation resulting in Eqs. (3.1}
through (3.5) has been derived in detail by Hol-
stein, starting with the Boltzmann equation,
neglecting the spatial dependence of the electron
distribution, and averaging over momentum direc-
tions to reduce the momentum dependence to an
energy dependence. In starting with the Boltzmann
differential equation, it is tacitly assumed that the
photon energy ~ and the phonon energies S~, are
sufficiently small that energy differences can be
replaced by differentials. The transport-equation
results in Eqs. (3.1) through (3.5) can also be ob-
tained ' from a straightforward summation of
transition probabilities.

The partial-differential equation (3.1) is con-
verted to an ordinary-differentiaL eigenvalue equa-
tion by using the approximation

The central approach of the present investigation
is to solve the appropriate transport equation by an
eigenvalue method. The transport equation, de-
tailed by Holway and Fradin, '6 can be cast as a
diffusion equation in energy space:

(3.1)

n(8, t) =n(8) exp(pt) .
Substituting Eq. (3.6) into Eq. (3.1) gives the
eigenvalue equation

dJ(8) (8)d8

(3.6)

(3.7)

z(8, t) = v(8)n(8, t) -D(8) (3.2)

Here V(8} and D(8 }are the effective velocity and
diffusion coefficients in energy space, respectively.
Both depend on energy, temperature, and laser
frequency. For fields comparable to the break-
down field, ignoring small fiel.d-independent con-
tributions to D, we obtain

v(8) = —,'os' K~„&„D(8)=-,' 8oz', -(3.3)

where E is the root-mean-square electric field

where n(8, t) is the number of electrons with en-
ergy between 8 and 8 +d8, and the energy-space
current (the net number of electrons whose energy
increases from a value less than 8 to a value
greater than 8 per unit time} is

The eigenvalue P is the multiplication rate, and
the eigenfunction n(8) is the electron density in
energy space. When the laser is first turned on,
the initial electron distribution n(8, 0} is not of
the form assumed in Eq. (3.6). However, the in-
itial distribution quickly develops into the eigen-
function distribution n(8) in a time of the order
of the diffusion time constant

dt's I~D ' (3.8}

In fact, for the exactly solvable example of V=O
and D constant, the approach time to n(8) is a
factor of ten shorter than 7'«, . ' Since 7«, is in
the subpicosecond region in cases considered to
datethe ,form n(8) is attained over essentially
the full pulse duration and the approximate eigen-
val. ue solution is quite accurate.

The accuracy of the eigenvalue-equation solution
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has also been demonstrated explicitly by expanding
a representative initial-electron distribution
n($, 0) in the eigenfunctions. Then the projection
of n($, 0) on the eigenfunction with positive real P
(as discussed below} grows according to Eq. (3.6)
for all t& 0, and the projections on the other
eigenvectors decay .rapidly. Dual-space eigen-
functions must be used in the scalar products with
which the expansion coefficients are computed,
because the system operator is non-Hermitian.

An eigenvalue I8 with a positive real part corre-
sponds to an electron concentration that increases
exponentially in time [according to Eq. (3.6)], as
expected for the avalanche process. The eigen-
value problem defined by the differential equation
(3.7), with boundary conditions in Eqs. (3.4) and
(3.5), is non-Hermitian and nonpositive definite.
Thus there is no assurance that either real eigen-
values or positive eigenvalues exist, though the
eigenvalues P must occur in complex-conjugate
pairs. Insight is gained from three simple cases
with exact solutions to the eigenvalue problem:
(1) V($) = -Vo ——const and D($) =Do ——const. (2)
V($)=-Vo ——const, with Vo &0, andD($)=D&$.
(3) V($) = Vo —V,$ and D($) =2V0$. These cases
are discussed elsewhere. In all three, there is
one and only one eigenvalue with a positive real
part (when E is sufficiently large), and the imagi-
nary part of that eigenvalue is zero. All others
have Re(P) & 0, which corresponds to an exponen-
tially decreasing electron concentration. In our
numerical work, we have always found one and
only one eigenvalue on the positive real axis. We
suspect that this is a general feature of the present
problem, but we have no proof.

The boundary conditions in Eqs. (3.4) and (3.5) are
unrealistic in one regard. After creation and sub-
sequent photoionization of the exciton, both el.ec-
trons cannot appear together at precisely zero en-
ergy, but are in fact injected into the band energy
over an energy interval with finite width controlled
by both the exciton linewidth (for sodium chloride
at room temperature, a few tenths of a volt) and the

energy dependence of the photoionization cross sec-
tion. In our numerical work, we have explored the
sensitivity of the solution to this boundary condition
by modifying Eq. (3.6) with a source term that dis-
tributes a total of two electrons over a finite-
energy interval near bottom of the conduction band
for each electron that strikes the threshold for ex-
citon creation at 8,. The solution is affected only
slightly by that procedure, even when the "injec-
tion width" is several tenths of an electron volt.

the expressions

y, =Q Q Q (1 —k k')P „(k,k') (4 1)

and

a,„„= ' QZZZ(. m, )P„(k,k)6($ $„-),
+ q k k'

(4 2)

where the caret (-) denotes a unit vector, P„(k,k')
is the probability that an electron is scattered
from k to k' by absorption or emission (+) of a
phonon of wave vector q and frequency w„6 is
the Dirac 6 function, and N($) is the density of
states in the conduction band. The summations
over g include summations over phonon branches.
The expression in Eq. (4.2) provides the value of
the rate of energy loss S(d»y& directly, rather
than yl, . A value for yi, itself can be obtained by
setting the average phonon energy h, „equal to
the Debye energy

Syh —kg9g) ) (4.2a)

where e~ is the Debye temperature and k~ is the
Boltzmann constant.

First consider the contribution of the longitudi-
nal-optical phonons to y„. In polar materials such
as the alkali halides, the electrons couple strongly
to long-wavelength longitudinal-optical phonons as
a result of the macroscopic electric field they gen-
erate. Within the framework of a model in which
the electron moves in a parabolic band with effec-
tive mass m~, it is straightforward to derive the
contribution to y~ from Frohlich scattering, as
the scattering from the longitudinal-optical pho-
nons is called. When the electron energy 8 is
large compared with the longitudinal-optical pho-
non frequency h~&o, the result of evaluating the
summations in Eq. (4.1) is'~

(4 3)

R(dyhp~ = $( g2 I
l.n

E~ 6 0 ) (8(dip

where n„o ——[exp(hu»o /k~T) —1] ' is the number of
thermal longitudinal-optical phonons present in
thermal equilibrium at temperature T, and eo and
e„are the static and high-frequency dielectric con-
stants, respectively.

The corresponding result for 8+»y& from Froh-
lich scattering is

IV. ELECTRON RELAXATION FREQUENCIES

The transport relaxation frequency y~ and the
energy-loss parameter h»yi, are obtained from

From the $ '~2 dependence displayed in Eqs. (4.3)
and (4.4}, we see that Fr6hlich scattering is most
important near the bottom of the conduction band.
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&& (n, + —,
' + —,')6(8,. —h, + 8'(g, ), (4.5)

where M is the effective ionic mass, N is the
number of unit cells per unit volume, 4 is the
Kronecker delta, 5 is the Dirac 6 function, and
M». is the electron-phonon matrix element de-
fined below. For acoustical phonons of long wave-
length, M is the sum of the masses in the unit
cell; for transverse-optical phonons of long wave-
length, M is the reduced mass of the unit cell; and
for zone-boundary phonons, M is a weighted aver-
age of the mass on each sublattice. Since the ex-
tended zone scheme is used, q is not restricted to
the first Brillouin zone and the phonon frequency
~, is a periodic function of the wave vector, with
the periodicity of the Brillouin zone.

Within the framework of the simplest possible
theory —the free-electron-diffraction theory with
the Born approximation —the electron-phonon ma-
trix element is 3

M 33 = iV,(K)(K e,), (4.6)

where K =—k-k', e, is the unit phonon eigenvector,
and

),(K)=m, fd rexp(-iK r)U(r), (4.7)

where n, is the atomic density and U,(r) is the po-
tential in a unit cell of the crystal. The validity of
E(ls. (4.6) and (4.7) can be extended beyond the
Born-approximation limit by eliminating

~ V,(K)
~

through use of the expression

(4.8)

for the cross section per unit solid angle v, (K).
For sodium chloride, examination of the magni-

tude of the cross sections for scattering from Na'
and Cl ions shows that, in the range of energies
of interest here, the cross section for scattering
from the large polarizable chlorine is far greater
than that of the sodium ion. The corresponding

The h ~ behavior displayed in E(ls. (4.3) and (4.4)
is valid only when 8»h(d«. The full, complex
expression is approximated by rounding off the
singularity by replacing 8 with 2h+&p for electron
energies 8 & 2k~„o. This approximation has little
influence on the results.

Next consider the contribution to y„ from non-
polar phonons, that is, from acoustical and trans-
verse-optical phonons. The probability that an
electron is scattered from k to k' by emission or
absorption of a phonon of wave vector q and fre-
quency +, is given by

)„(k,k')=—~M„.
~ ( (Z(k' —k+3)

2MN~q ]

result is true for all alkali halides. Thus, o,(K)
is well approximated by the cross section for
scattering by the negative ion. In the numerical
calculations, the value of o,(K) is taken as the
free-ion cross section. In effect, that procedure
extends the validity beyond the Born approximation
because the full transition-matrix treatment for
scattering by the negative ion is used in the evalu-
ation of g,(K).

For values of q outside the Brillouin zone, the
scattering events described by Etl. (4.5) are
umklapp processes. A proper description of
umklapp scattering requires a more detailed cal-
culation 'of M». . Even though the full transition-
matrix for scattering by the halide ion is used to
evaluate o,(K), the calculation in effect treats the
electron wave function using a one-plane-wave
approximation. This leads to a nonphysical diver-
gence in P„(k,k') whenever the wave-vector trans-
fer equals a reciprocal lattice vector G because
as q approaches 6 for the three acoustical branch-
es of the phonon spectrum, (d, approaches zero
while M» remains finite. A proper treatment of
the el,ectron-phonon matrix element, 4 which is
equivalent to at least a two-plane-wave approxi-
mation of the matrix element, shows that the elec-
tron-phonon matrix element vanishes as k' ap-
proaches k+ 6, and that the cross section varies
smoothly near these special values of wave-vector
transfer.

When q lies outside the first Brillouin zone, the
phonon frequencies are approximated with suitable
weighted averages of zone-boundary phonon fre-
quencies, and an average is taken over the direc-
tions of the phonon eigenvector e,.'I That approxi-
mation properly includes the effect of the factor
(K e,)3 on the energy variation of the cross sec-
tion as well as the correct volume of phase space
available to the electron in its final state. The ap-
proximated value of the cross section then has the
correct overall energy dependence, with a reliable
semiquantitative estimate of its magnitude at large
electron energies where umklapp scattering domi-
nates.

The limit of small electron wave vectors is k

ek»/2 and h «6» /2, where k)3z is the wave
vector of an electron at the Brillouin-zone bound-
ary. If we use that limit in evaluating the summa-
tions in Eg. (4.1)—with only the summations over
acoustical phonons included, because the available
phase space with q & 2k is small —we obtain

y&(8)= 3 5 dqq coth for 8 & —,8)3z
Q(&)& 3"

4 IfC, q 1

OMcc ~ 0 8

where ao is the lattice constant, M~ is the total
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mass of the unit cell, c, is the sound velocity, k

is the wave vector of the electron, and Q(8)
=—4', (8) is the total cross section integrated over
all solid angles. In the limit of small k, Eq. (4.9)
gives

Y (g)
(2 y}f /2 3M 2 ~ Q(~)

kgT f /2 (4.10)

for a parabolic band with effective mass m~.
In the opposite limit k»k»/2, the electron ef-

fective mass is approximated with the free-elec-
tron mass mo and the corresponding result is

2v R2Q(g) 8 /2/(I +2nL~) (1+2n~„)ra&= 6 +2
+0M) ~0 ~BZ l &LA &TA

(4.11)

where ~„and ~„are the frequencies of longi-
tudinal and transverse phonons at the Brillouin-
zone boundary, respectively, and the effective
mass M is chosen as M&, the heaviest constituent
mass in the unit cell.

In the numerical calculations, we use a straight-
forward extrapolation between the low-energy-
dominated relaxation frequency in Eq'. (4.9) and
the high, -energy, umklapp-dominated relaxation
frequency in Eq. (4.11). The high-energy behavior
of y„(8) displayed in Eq. (4.11) is a crucial feature
of our analysis. Both Holway and Fradin'6 and the
Soviet analysts' ' neglected umklapp scattering,
thereby missing the dominant contribution to the
relaxation frequencies for electron energies high
in the conduction band.

Holway and Fradin approximated the acoustical-
phonon scattering with an expression similar to
Eq. (4.9), but replacing the upper limit on the in-
tegral with a constant for the case of 8& bBz/2.
Using that constant, high-energy upper limit is
equivalent to including only normal processes in
the expression for y~($). In that case, the scat-
tering rate decreases with energy at high energies,
in qualitative contrast to Eq. (4.11).

The Soviet work employed an expression equiva-
lent to Eq. (4. 10), but with Frohlich scattering
ignored. The resulting form for y, (b) was ex-
trapolated to energies beyond 5», thereby under-
estimating the strength of the acoustical-phonon
scattering at high energies.

Finally, consider the contribution to ~ „y~ from
nonpolar scattering. In calculating that contribu-
tion, the phonon frequencies that appear in the
Dirac 6 function in Eq. (4.5) are neglected, and

approximations similar to those above are used.
For scattering from a single phonon branch, this
yields

nvbk'
&~,„y, =

' dn(k')o. (Z)(K. e )', (4. 12)

where v(b) is the velocity of an electron of energy
8. In the low-energy limit, where only long-
wavelength acoustical phonons contribute, evalu-
ating the integral in Eq. (4. 12) gives

m*
km„y~ =-2n.u(h)Q(8)

For 8& lt'»/2, m* is replaced with th'e free-
electron mass mo and M~ is replaced with M& .
The numerical calculation of the Frohlich contri-
butions to y and S~ „y~ is straightforward. Only
the vat. ue of m* near the bottom of the conduction
band is needed. The usual approximation m*
=mo/2 is used, where m, is the free-electron
mass.

To calcul. ate the nonpolar phonon contributions
to y and y~, the cross section Q, (8) for scattering
of an electron by the halide ion is replaced with its
value Q, (b/) at the exciton energy. Then Q, (g/)
is estimated from molecular scattering data. For
example, the cross section for electron scattering
from the molecule HCl is dominated by scattering
from the Cl- ion. Thus, we approximate Q, (S/)
with the HCl cross section, which has the value
Q(b/) =—0.35 nm' at 8 eV. For the other alkali
halides, we use the scaling Q(b/) = (x„/xN, c, )' 0.35
nm, where r„ is the ionic radius of the halide ion.
The estimated values of Q($/) for sodium chloride
and the other alkali halides are some of the major
uncertainties in obtaining quantitative values for
the acoustical-phonon contributions to y~ and y~.
The phonon frequencies are approximated using

cz, k~z and &L„=c,k~z, for q -k~z, where k~z
is the diameter of a spherical Brillouin zone cho-
sen to have volume equal to the real Brillouin zone.

The temperature dependence of the relaxation
frequencies is determined both by the explicit tem-
perature dependence of the Bose-Einstein phonon-
occupation numbers and by the temperature depen-
dence of the lattice constant and the phonon fre-
quencies. Figures 1 and 2 show the magnitude
and energy variations of y, and y~ for sodium
chloride at room temperature. The Frohlich con-
tribution and the acoustical-phonon contribution
are shown separately to illustrate their relative
importance. The Frohlieh contribution is impor-
tant only at low energies, within one to two volts
of the band edge. Figure 3 shows the full curves
of y, and y~ together. Values of the parameters
used in the numerical calculations are listed in

Table II.
V. NUMERICAL RESULTS

The electron multiplication rate P was calcu-
lated, using Hamming's predictor-corrector
method, by a careful numerical integration of the
eigenvalue equation in (3. /), with boundary condi-
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FIG. 1. Variation of the electron-momentum relaxa-
tion rate y& with energy (solid curve) for sodium chloride
at room temperature. The individual contributions from
Frohlich scattering (longitudinal optical) and from scat-
tering by acoustical phonons are shown by dashed lines.

FIG. 3. Variation of both the electron-momentum re-
laxation rate y& and the electron-energy loss rate yl
with energy for sodium chloride at room temperature.
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FIG. 2. Variation of the electron-energy loss rate yl,
with energy (solid curve) for sodium chloride at room
temperature. The individual contributions from Froh-
lich scattering (longitudinal optical) and from scattering
by acoustical phonons are shown as dashed lines.

tions defined by Eqs. . (3.4) and (3.5). If we con-
sider the behavior of P as a function of electric
field and temperature, then the breakdown fields
predicted by the model will be obtained from the
P(E) curves. The dependence of P on the electric
field E is shown in Fig. 4 for sodium chloride at
y=1.06 p.m and four temperatures. Similar
curves for 10.6 p, m are shown in Fig. 5. 'The
dramatic increase in P with increasing E at low
fields, E «E„'0, is explained in Sec. VI and
can be seen from the average-electron model, for
which P goes exactly to zero, as in Eq. (2.9).

At high fields, E'»E2, , the multiplication
frequency has the general behavior

p E2 for E2 » E2 (5.1)

as in Eq. (2. 10) and as discussed in Sec. VI. The
curves in Figs. 4 and 5 do not extend to sufficiently
great electric fields to fully show the E' depen
dence, but we have verified that the quite general
E dependence is attained at high fields. The tem-
perature variation of P displayed in Figs. 4 and 5

can be understood qualitatively, as also discussed
in Sec. VI.

The breakdown field is easily obtained by calcu-
lating the multiplication frequency P as a function
of electric field once a criterion has been estab-
lished for selecting the value of P. We use the
criterion Pt,« ——1V, where t,« is the effective
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FIG. 6. Comparison of the experimental (Ref. 13) and
theoretical values for the temperature dependence of E~
for sodium chloride at 1.06 pm and 10.6 pm.

fall well below our calculated values, the mea-
sured breakdown field may not be intrinsic.

At 10.6 p,m, the calculated breakdown field is
nearly independent of temperature, in accordance
with. the data. However, the calculated value of the
breakdown field is smaller than the reported val-
ues by a factor of two. The smaller value of the
theoretical threshold is in sharp, welcome con-
trast to previous theoretical results, which have
been unable to explain the breakdown at the low
experimental values of E~. More complete in-
formation on the magnitude and energy variations
of the acoustic-phonon contribution to y~ and y~-
particularly their dependence on Q(Sz)—may re-
move that quantitative discrepancy. The value of
the breakdown field at 1.06 p,m is fairly insen-
sitive to the value of Q(8~) because E~ is propor-
tional to the ratio yr. /y~, as discussed in Sec. Vl.
In contrast, agreement at 10.6 p, m is improved
markedly by an increased value of Q, because
E~ is proportional to the product yJ.y~. Although
it is feckless to adjust the values of parameters
to force theoretical results to fit experimental
data, selecting the value of a single parameter
can nevertheless improve the agreement between
theory and experiment, as shown in Fig. 6, for
which an adjusted value of Q, was used, rather
than the unadjusted value of Q, =0.35 nm' (which
is not accurately known).
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FIG. 7. Comparison of the experimental (Ref. 13) and
theoretical values for the room-temperature breakdown
field for several alkali halides at 1.06 pm.

The breakdown fields at 1.06 p.m for several
alkali halides are summarized in Fig. 7. The
present theory provides an excellent account of
the variation of the breakdown field from material
to material. In Fig. 8, the variation of the cal-
culated breakdown field with pulse duration is
compared with the experimental results of the
Lebedev group' ',' Fradin, Yablonovitch, and

Bass,' Smith, Bechtel, and Bloembergen; and
Fradin, Bloembergen, and Letellier. ' The
theoretical values track the trends in the data
nicely, though our calculated breakdown fields
are somewhat larger than those measured by the
Bloembergen group.

The theory adequately accounts for the data on
magnitude, temperature dependence, pulse-dura-
tion dependence, frequency dependence, and
material-to-material variation mt' no adjusted
Parameters. There are minor qualitative dis-
crepancies at A. = 10.6 p.m which have at least
four possible causes. First, even though the
description of y„and S(d,„yL involves no adjustable
parameters, the theory is in fact phenomeno-
logical. A more quantitative account of these
basic relaxation rates may improve the agree-
ment between theory and experiment. In partic-
ular, the calculated values are inherently less
accurate at 10.6 p,m than at 1.06 p.m and other
short wavelengths, because small-wave-vector
phonons determine the breakdown at 1.06 p,m,
whereas phonons with wave vectors q ~ 2k» de-
termine the breakdown at 10.6 p.m.

Section VI shows that low-energy electrons de-
termine the breakdown at 1.06 p.m, whereas high-
energy electrons govern it at 10.6 p,m. The max-
imum phonon wave vector is q =2k (where k-8 ~
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sured breakdown field is the intrinsic value.
However, in experiments where the intrinsic limit
is not reached, the experimental values will us-
ually be lower than the theoretical. Thus, an
extrinsic mechanism would not explain the high
measured values of the Lebedev group.

VI. INTERPRETATIONS AND CALCULATIONS
USING SIMPLE MODELS

Physical explanations of the results presented
in Sec. V are informative, important, and in-
valuable in establishing intuition. The simplest
model, the average-electron model discussed in
Sec. II, affords a useful framework for discussion
of the results, but by itself fails to account for ex-
perimental observations. Calculations based on the
transport-equation approach discussed in Secs. III
and IV agree well with experiment, but numerical
solutions to differential equations without verifica-
tion and interpretation are vacuous.

A. Constant-V and -D model

FIG. 8. Comparison of the experimental (Hef. 13) and
theoretical values for the room-temperature breakdown
field for sodium chloride at 1.06 pm for various pulse
durations.

is the electron wave vector), as seen in the upper
limit of the integral in Eq. (4.9). For phonon
wave vectors q near 2k», the results become
more model dependent. In the calculation of yi
and y~ in Sec. IV, special treatment is required
to remove nonphysical divergences related to
Q, and factors of 1/~, , which diverges as &u,

approaches zero at q = 2k». A better treatment
of the large-wave-vector phonon scattering should
increase the theoretical values of E~ at 10.6 p.m.

Second, the inaccuracy of the value of Q(gl) dis-
cussed above may account for the small discrep-
ancies. Third, low theoretical 10.6 p,m values of
E~ may result from high experimental values due
to spherical aberration, as discussed in Sec.
VI. Fourth, the breakdown at 10.6 p,m may be
limited by the generation of starting electrons,
rather than by the avalanche process itself.

Other, less likely explanations include Raman
scattering and diffusion of the electrons out of
the focal volume (which is unlikely because the
focal volumes at 10.6 p, m are greater than those
at 1.06 p,m and because simple estimates indicate
that real-space diffusion is negligible). Although
certain low experimental values of E& agree well
with theory, those that are lower than the greatest
reliable value are currently believed to be ex-
trinsic. Finally, it is never certain that the mea-

and

g—= h(u „y f /51@ g (6.3)

(6he,„yib'/b~ioE') ex (-p~«E/E') for E' «E~«

"'" '~(E'-0 57E' ) fo E'»E'
(6.4b)

This model treats the transport equation in Sec.
III exactly for the case in which V and D are con-
stants, independent of energy. Proper application
of the constant- V and -D model, for which Ap-
pendix A gives the exact solution of the diffusion
equation, allows the calculation of E~ from simple
closed-form expressions that require nonumerical
computation. The resulting accuracy of these high-
ly simplified calculations is well within the range
of accuracy of the model and values of the input
parameters. Thus, the model results afford a
simple method of obtaining values of E~, as well
as providing scalings and aiding intuition.

The closed-form results of the constant- V and
-D model also illustrate the lowering of E~ below
the average-electron value in Eq. (2.7), as well
as other features of the general- theory. Simple
limiting forms of the breakdown field E~ and the
multiplication rate P for the constant-V and -D
model derived in Appendix A are

(6.1)

where

[1+lng+ ln(1+ lng) j 'i' for E' «E2, (6.2a)

~ ~(0.219 h z/gg +0.57)'+ for E~ » E2~0 (6.2b)

with
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Here E«defined in Eq. (2.6) is the value of E at
which the energy-space velocity is equal to zero.

B. Calculation of E& using the constant-V and -D model

In order to apply the constant-I/' and -D results
to real problems, in which y~ and yI. are functions
of energy rather than constants, y~($) and y (J)
must be evaluated at appropriate values of 5 and
an effective value $1 ff of 8& that is smaller than
the real 5'& must usually be chosen. The magnitude
of the error in the resulting value of E~ depends
on how well these values of y„y~, and b, (or,
equivalently, E«, Z~, and Sr) can be chosen.
Fortunately, the shapes of the Z~($) and Z~(J)
curves are such that choice of the constants E«,
y~, and $1 are obvious and the accuracy of E~ is
extremely good, as illustrated by. the following

examples.
In the discussion of V and D below, the quantity

Eyp
E' is a measure of the height of the barrier

in energy space through which the electrons must
diffuse. Thus, the high barrier extending from
near-zero energy to 5' —= 0.35» for 1.06 p, m in Fig.
9 virtually determines the value of E~, because
the value of E2«($) —E' =—500 (MV/cm)' at 8/8,
= 0.15 is a factor of five greater than -100 (MV/
cm)' at g/br = 0.45, and the value of Es is sensi-
tive to the barrier height. With E„,=15.3 MV/cm,

ff 0.28@~, and yL= 1.6x1 0's', all corres-
ponding to the barrier shown as the dashed line in
Fig. g, Eqs. (6.1), (6.2a), and (6.3) give g=460,
E~=0.33, and

5.1, const V and D, X=1.06 p, m
8 6.5a

5.6, full diff eq. , X = 1.06 p.m .

The approximate value of 5.1 MV/cm nearly
matches the value of 5.6 MV/cm obtained from the
numerical solution of the diffusion equation. The
corresponding results for 10.6 pm for the narrow
and wide barriers in Fig. 9 are, respectively,
g=1.67' 10' and 3.72x 10, E~=0.25 and 0.27, and

0.72 and 0.70, const V and D, ~= 10.6 p.m
B

0.68, full diff eq. , ~=10.6 p, m,

(6.5b)

again showing excellent agreement. The two bar-
riers are two approximations to the actual curves.
They are used to show the insensitivity of the
results to the choice of the barrier in this case.

C. Magnitude of Ez

In the low-field limit E'«E«, which is valid
for nanosecond pulses, the breakdown field in Eqs.
(6.1) and (6.2a) is less than E«, a typical value
being Eg 0 3Eyp Thus Ole simple model illus-
trates the energy-space diffusion effect of reducing
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FIG. 9. Plot of E~, defined in Eq. (2.6), for sodium
chloride at room temperature. Dotted bnes indicate the
values of the breakdown field E~ calculated from the
rectangular barriers shown by dashed lines.

Sparks" pointed out a quite general shortcoming
of previous theories. The factor (1+yea/uP)'~' in
Eq. (2.6) is commonly used because it comes from
the conductivity in that equation. If v.

~ were inde-
pendent of frequency, as was well accepted at that
time, the resulting theoretical frequency depen-

the value of E~ below E« for nanosecond pulses.
That is, E„ in Eq. (6.1) is less than unity.

In the high-field limit E»E~p, which is ap-
proached for picosecond pulses, the breakdown
field in Eqs. (6.1) and (6.2b) is greater than E«.
The high-field limit is valid for sufficiently short
pulse durations, because a decrease in the pulse
duration requires an increase in the electric field
in order for the electrons to be accelerated in the
shorter time. Conversely, at shorter pulse dura-
tions such as nanoseconds, the electric field is
small, and the inequality E'«E~, is satisfied.

The model shows that the average-electron value
of Es in Eq. (2. I) affords a very rough approxima-
tion to E~. Moreover, the corrections from the
transport-equation approach show E~ to be some-
what smaller than E« for nanosecond pulses and
somewhat greater for picosecond pulses.

D. Frequency dependence of E&
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E,—= (3g&u,„yg/e')(y~y»)'" at A. =10.6 p, m. (6.7)

Equation (6.6) shows that the 1.06 pm breakdown
fieid is controlled by the ratio y~/y», which is
greatest at low electron energies, as illustrated
in Fig. 1. The energy dependence of E«, which
is proportional to (y~/y»)"' at 1.06 p, m, is plotted
in Fig. 9. As mentioned above, E»r,(h) —E' is a
measure of the height of the barrier through which
the electrons must diffuse. The obstacle to ac-
celerating the electrons to energy 5» occurs at
low energy, where E~, has the greatest value for
the 1.06- p, m laser frequency, as shown by Fig. 9.
In contrast, at 10.6 p, m, E~ is controlled by the
product y~y&, which is greatest at high electron
energies 5 =-$», as shown by Figs. 1 and 9. Thus,
the obstacle occurs at highenergies 8 =—5» for
the 10.6- p.m laser frequency.

Since low-energy electrons are important for
inducing breakdown at 1.06 p, m and high-energy
electrons at 10.6 p, m, the corresponding values of
y» should be used in evaluating E„, in Eq. (2.6).
The small, low-energy value of y& from Fig. 1
should be used at 1.06 p, m, but the large, high-
energy value of y» at 10.6 p,m. (The corresponding
values of y~ must also be used, of course, but y~
does not vary as strongly with energy as does y». )
The diffusion equation automatically accounts for
the correct 7& at all frequencies. Only when con-
sidering the average-electron model must the ap-
propriate 7& be selected explicitly.

For wavelengths shorter than approximately one
micrometer, &v&»1 is sufficiently well satisfied
at all g for the shape of the Ev,(b) curves to be
independent of &u, that is, Ev,(h} -~. Thus, for
A. ~ 1 p,m, the diffusion transport theory gives
E~- +. However, any of several effects is ex-
pected to cause E~ to be lower than the diffusion-

dence of the breakdown electric field E~ would

grossly disagree with experimental results. The
resolution of that difficulty —and the reason for the
successful explanation of the frequency dependence
of E~ by the present theory —is that 7& in the simple
average-electron model cannot be treated as a
constant, independent of frequency. The value of
r»(g) is, of course, independent of the laser fre-
quency. However, as a result of the energy de-
pendence of v.

~ and ~~, different effective values of
7~ must be used at different laser frequencies, as
illustrated by the following example.

At 1.06 p, m, the inequality y&«+ is valid, where-
as at 10.6 p, m, the inequality ~«y& is valid. Thus,
Eq. (2.6) gives

E,—= ~(3g&u „~/e')"'(y~/y»)"' at A. =1.06 pm,

(6.6)
and

theory value at short wavelengths. These effects
include the breakdown of the validity of replacing
differences by differentials, the specific large-
quantum processes discussed by Sparks, "and
multiphoton absorption.

E. Dependence ofE& ont~ @I O'Mph/L and u

In the low-field limit E'«E~„which is valid
for nanosecond pulses, Eqs. (6.1) and (6.2a} show
that E~ i s weakly dependent on the parameters t~
and $» that appear in E~, and is more strongly
dependent on the parameters k&,„y~ and ~ that
appear in E~, . The weak dependence of the break-
down field on the band gap (or, to be precise, on

SI) and on the laser-pulse duration t for nanosec-
ond pulses was at fir'st surprising. However, the
previously used, average-electron criterion for
breakdown, E~=E«, also gave E~ independent of
5» and t~. Furthermore, agreement with experi-
mental data is good. In the high-field limit E
» E~«, which is approached for picosecond pulses,
Fels. (6.1) and (6.2b) show Es to be rather strongly
dependent on all parameters —t~, 8», S~y~, and
(d.

F. Focal-volume dependence of E+

In laser breakdown of gases, the diffusion of the
electrons out of the focal volume (not to be con-
fused with energy-space diffusion) is an important
effect that determines the value of E~. However,
simple estimates indicate that the diffusion of elec-
trons out of the focal volume in solids is negligible
in all experiments reported to date. Another factor,
the probability of having or generating a starting
electron in the focal volume, could conceivably
cause E~ to depend on the focal volume, as dis-
cussed in Sec. I.

Soileau and co-workers" suggested that spot-
size scaling could possibly reconcile the results
of various analysts. They proposed that the value
of E~ should be a function of the focal-volume size
because the probability of having a starting elec-
tron present decreases with volume. Verification
of the spot-size scaling law, through, for ex-
ample, experiments with starting electrons sup-
plied by a separate source, or examination of the
probabilistic nature of breakdown in small focal
volumes and its deterministic nature in large
focal volumes, is needed because the starting
electrons are currently. thought to be easily gen-
erated by lattice imperfections such as impurities,
dislocations, or grain boundaries. Breakdown is
thought to be controlled by the avalanche process
rather than the generation of seed electrons. How-
ever, these hypotheses have not yet been supported
either by experiment or convincing theory, so
verification of the suggested mechanism giving the
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spot-size scaling would be useful.
Aaron, Ireland, and Grey Morgan ' showed that

"entirely spurious'focal-length' dependence of I,„,
which is not infrequently found in published litera-
ture" can result from irradiance reduction caused
by spherical aberration. Extreme care in mea-
surement is required to avoid the spurious focal-
volume effects.

G. Shape of the P(E) curves

The central features of the electric-field depen-
dence of P illustrated by Figs. 4 and 5 result from
quite general considerations that are independent
of specific models. At high fields, the diffusion
in energy space becomes negligible, and the elec-
trons stream freely to the multiplication energy
gz according to the relation d8/dt —= (dh /dt)s- oE'.
As discussed in Sec. II, that streaming gives
P-E' at high fields. The E' dependence of P at
high fields is also explicitly illustrated by the
constant- V and Dresult -in Eq. (6.5).

At low fields, P decreases rapidly with decreas-
ing E because the barrier height E2«(b) —E'
through which the electrons must diffuse becomes
high. Indeed, in the average-electron model of
Sec. II, P goes to zero at E=E„O. For the diffusion
model, p goes to zero rapidly as p-exp(-E~/E2),
as shown quite generally in Appendix B. The ex-
plicit result in Eq. (6.4a) illustrates that general
high-field result, with the characteristic electric
field E, equal to E«.

H. Temperature dependence of the P(E) curves

In the important range of electron energies dis-
cussed below, the inequality ~»y~(8) is satisfied
at 1.06 pm. At high temperatures, y~(h) - T and

S~~y~ -T if the thermal expansion corrections are
ignored. The electron gains energy from the elec-
tric field at the rate 2e'y+'/m*&u', according to
Eq. (2.4). Thus, as the temperature increases,
the electron is accelerated more efficiently by the
field because y& increases. Since the loss 8+ „y~
is nominally temperature independent, P increases
with temperature. for fixed electric fields. Con-
sequently, the electric field required for break-
down decreases as the temperature is raised, in
agreement with the data.

Figure 4 shows the variation of P with tempera-
ture and wavelength at 10.6 p, m. The variation of
P with electric field at fixed temperatures is
qualitatively similar to the 1.06 p, m behavior, as
expected, but its variation with temperature is
more complex. As the temperature increases
from 77 K to room temperature, P increases much
as it does at 1.06 p.m. Over most of that range,
e &y„(g) is satisfied for the important range of
energies, and the behavior of P with temperature

may be understood by the arguments of the pre-
vious paragraph. At room temperature and above,
the inequality &u&ygb) is satisfied; the electron
thus gains energy from the electric field at the
rate 2e2E'/3m*@», according to Eq. (2.4). As the
temperature increases, with y& nominally propor-
tional to temperature, the electron is accelerated
less efficiently, and P decreases with increasing
temperature, in contrast to its behavior at 1.06
pm. Thus, P first increases with temperature,
reaches a maximum, and then falls. Since the
criterion for breakdown outlined below places the
breakdown field near the maximum at room tem-
perature. , the breakdown field is fairly independent
of temperature, again in accordance with the data.

.I. Energy-space velocity and diffusion

The energy-space velocity V, which appears in

Eq. (3.2) and is defined for the general case in

Eq. (3.3), determines the rate at which the elec-
trons drift to higher energies for positive V, or to
lower energies for negative V, as a result of the
combined effects of E acceleration and y~ loss.
The energy-space diffusiori coefficient D, which
appears in Eq. (3.2) and is defined in Eq. (3.3),
determines the rate at which electrons diffuse
from energy-space regions of high electron con-
centrations to neighboring low-concentration re-
gions.

The average-electron model of Sec. II is equiva-
lent to neglecting the energy-space diffusion. In
extending the average-electron model to include
energy-space diffusion, the quantity E' (J«) -E',
when positive, is a measure of the height of the
barrier through which electrons must diffuse to
reach the multiplication energy h~. When E«(h)
—E is negative, the electrons drift to higher ener-
gies even in the absence of diffusion. Neglecting
diffusion yields Evo(b) —E' & 0 as the criterion
for breakdown, as indicated in Eq. (2.7).

The value of E2«(8) —E' at which breakdown oc-
curs is positive over at least part of the energy
range 0& 5 & 5'~, which indicates that electron dif-
fusion in energy space effectively increases the
electron energy to h~. The electric field thus need
not be as large as the value in Eq. (2.7) predicted
by the average-electron theory. That discrepancy
is one reason previous average-electron theories
predicted values of E~ greater than measured val-
ues.

Physically, the lowering of E~ by diffusion oc-
curs as follows: The process by which the electron
energy is increased to the multiplication value g~
involves many collisions of the electron with pho-
nons. Some collisions (y~) cause the electron to
lose energy, and some (y~) to gain energy from the
electric field.
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APPENDIX A: CALCULATION OF THE BREAKDOWN
FIELD FOR CONSTANT D AND V

Here we solve the eigenvalue equation obtained
from the diffusion equation exactly for the case
of constant diffusion coefficient D and velocity V.
The solution for this simple model affords ap-
proximate values of the breakdown field E~ and

the electron multiplication rate P in key limiting
cases, and determines their dependence on the
variables. The accuracy of these highly simplified
calculations is consistent with that of the overall
model.

For constant D and V, Eq. (3.2) becomes

Z(b, t) =Vn(8, t) -D,sn(b t) (Al)

Substituting into Eq. (3.1), the diffusion equation
in energy space becomes

es ~ pg—=D -V—
(g2

(A2)

Setting Bn/Bt = Pn under the approximation of Eq.
(3.6) yields the eigenvalue equation

d pl
D —V——Pn =0.

dS d8

Equation (A3) is cast into dimensionless form

(A3)

gd dll d 0
dg2 ddt ld d

by dividing t by T ~~
= 8'/D and b by bi and intro-

ducing the dimensionless variables

(A4)

n~=nS~, b~ =b/fUI, p„=pT~~=( gE~) ', (A5a)

The avexqge effect of the collisions determines
the energy-space velocity. The deviations from
the average determine the energy-space diffusion
coefficient. For example, an electron that meets
with fewer than the average number of energy-loss
collisions, together with an optimum distribution
of momentum-reversing collisions, gains energy
faster than does an average electron. At dc, the
optimum distribution of momentum-reversing col-
lisions is none at all; electrons undergoing no col-
lisions are continuously accelerated by the electric
field. For ~g 0, the optimum distribution is a
reversal of the electron momentum with every cycle
of the electric field (at the null in E). Electrons
accelerated faster than average have been called
lucky electrons. ' ' The diffusion equation ac-
counts for lucky electrons automatically, of
course.

Eq E/Evo Uq V7'q~/b~(1 Eq)/Eq (A5b)

(A5c)

Substituting the trial solution n~=exp(ub~) into
Eq. (A4) and solving for o. yields

1
O. = 2Ud+X,

(A6)where

The boundary conditions for the case of constant
D and V are

n(b, ) =0,

dn(0) dn(b g)

(A7a)

or, in dimensionless form,

n (1)=0,

dn, (0) 0 2
dn„(1)

The general solution to Eq. (A4) that satisfies Eq.
(A7b) is

(A7b)

n =exp[o. (b~ —1)]—exp[a (b~ —1)]. (AB)

Substituting Eq. (AB) into Fq. (A7b) and rearranging
terms yields the transcendental equation for P:

2e ~&~' = cosh' —(U~/2r) sinhx,

which reduces to

(A 9)

cosh[(P/D)'~'b ]=2, for V=O. (A10)

In the limit 1«exp(-,'U~}, writing cosh r and

sinh x as 2 [exp(x) + exp(-x}], with U /2r = 1 —2 p /
U~ in Eq. (A9), we obtain the limiting cases of

I
U'e, for lee aap(-'U ) )Af la)d-

for E„«1 (A 1 lb)

Substituting U~=(1 —E2)/E2 and p =(gE')-' into Eq
(Alla) and formally solving for E yields

E„=(I+ lng + in[(l —E2)'/Em]]. -'~'

= [1+lng+ln(1+lug)] "2, g» 1 (A12)

or E'«E«. The breakdown field E~ can then be
obtained using E~ =Ed E~o.

The value of P in this small-field limit is ob-
tained from Eq. (Allb) by using the definitions of

P„and E~ in Eq. (A5), with E« =(35&@,„y~/o)'~'
This gives the result of Eq. (6.4a):

P —= (6h(u, „y~b'/S~oE') exP( E'v, /E'), for E'-«E'„,.
In the other limit of high fields, E2~» 1 (E'» E2v,},

Eq. (A5b) gives U~—= -1. By substituting U~=-1
into Eq. (A9) and expanding cosh x and sinh y, the
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zeroth-order approximation xp =1.59 to x is ob-
tained. Rearranging the definition of r in Eq. (A6)
gives

which, upon integrating over energy from 8 = 0 to
8 =8», yields the following general expression for
P

P = r' - -' U'
d&

or, as a zeroth-order approximation,

(A13a) (B2)

P~ —= P~o
= ro ——' = 2.28

using
/

P =P~D/Si =2P~K&,„yibE'/b~Er, .
Thus Eq. (A13b) yields

(A13b)

(A14a)

(A14b}

I

0.219
(A15)

p, = 4.57K&,„yibE'/S2IE», .
By setting p, =51/t~, the breakdown field can be
calculated from Eq. (A14b):

We used the boundary condition in Eq. (3.5) to ob-
tain this result.

Now in the limit of very small laser fields E,
the electron multiplication rate P will also be very
small, as demonstrated by physical considerations
as well as the numerical calculations presented in

Secs. III through V. For very small values of P,
the term Pn(S) in Eq. (Bl) may be ignored every-
where, and for all energies save those near the
bottom of the band where electrons are injected,
we have

(B3)

or

2 exp[--,'(U~, +&)]=cosh(r, + 5}

(U,„+~) .
sinh(ra+ 6) . (A16)

Expanding and equating first-order terms gives
5 =-0.336& and

A better approximation is obtained by calculating
the next-order term in P and Ee using a double
Taylor expansion about U~ and r in Eq. (A9):

J(S)= V(S)n(S) -I}(S)—
S =d(S,), (84)

a relation that holds for all values of 8 except
those near zero.

Equation (B4) is an elementary differential equa-
tion and may be integrated at once, subject to the
boundary condition n(SI) = 0. The result is

n(S) = J(S,) exp
i

dS"— S„
( s „v(S")
E p

p~ =(ra+ 5)~ ——,
' = ro ——,'+ 2r05+ 2c

p((0 pdl 0

P~, =2ro6+ 2e =-0.570@.

Since U~ =(1 —E2)/E'„=-1+I/E~ = U~o+ U~„

P, = -0.5VO/E' = -0.570Ero/E'.

Thus, in the limit of E»Syph

(A17)

ei dS' ( ~'„„V(S")
L}(S') i~ D(S")

(85

Hereafter we use Eq. (B5) in combination with the
low-field forms

(B6a)

and

and

P =—4.57k((3 „yiS(E2 —0.57E2ro)/SiEro

E~= ( .0129S/g )S'" ~E.

2e'E' Sy~(S )
3m* ar'+y,'(S )

'

'The central quantity is the integral

(B6b)

.APPENDIX B: AN ANALYTIC EXPRESSION
FOR THE MULTIPLICATION RATE P

IN THE LIMIT OF A WEAK ELECTRIC FIELD
, v(S')

(I(S ) dS
(S0

(BV)

pn(S )+ =0, —8J
(Bl)

Here we derive an expression for the electron
multiplication rate P appearing in Eq. (3.6), in the
limit that the laser field E is weak. We begin by
substituting Eq. (2.6) into Eq. (3.1) to find

which is a negative definite function of energy with
maximum absolute value at 8 = 8». In fact, in very
low fields, we have iq(Sz)i» I, and also

i Sip'(Sz) i

» 1. The second integral in Eq. (85} is controlled
by the contributions from energies very close to
8», so we have
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exp[-q(~ i)] —exp[-q(&)]
D(gl) p q D(g ) PL ( I)1 ( I j

( y(g )(
(B9)

For n(S), therefore, we have

n(g) = fexp[q(8) -q(Sz)] —lj~(& r)
iI (@,))

~(&s)
-=~,(, )~

p[q(~)-q(~, )],

(B9a)

(B9b) P = II'(~.) I
e p[q(~,)]

&r
dS exp[q(S )], (B10)

little to the denominator in Eq. (B2).
If we use the form for Eq. (B9h) in.Eq. (B2),

then we have

where the factor of unity in Eq. (B9a) is important
only very close to 8 = S~, a region that contributes

or, using explicit forms for the various quantities
given above,

3~* ' ~»y&(g)
eXp —

2g2 CS g g +Yy~
0 0 . &| )

0 e'0 0 yk

(Bl1)
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