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The Monte Carlo technique is applied to a study of the phase transitions and the critical
behavior of the spin--zl- Ising model on an fec lattice with mixtures of two- (J;) and four- (J,)
spin interactions. In the limit J, =0 the model exhibits a first-order transition. The transition
remains of first order for J4/J, > %, but a crossover to continuous transitions is found around

JolJy = %—]; indicating that the model exhibits tricritical behavior. A modified mean-field
theory is presented leading to an approximate description of the tricritical behavior in agreement
with the Monte Carlo calculations. In the region of continuous transitions, 0 <J,/J; < %, the
critical exponent 8 pertaining to the order parameter derived from the Monte Carlo data retains
the Ising value, in accordance with the universality hypothesis. Our findings show that the
four-spin interactions do not lead to nonuniversal critical behavior, contrary to the conclusions
made by Griffiths and Wood from a series analysis.
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I. INTRODUCTION

The universality hypothesis for systems undergoing
continuous phase transitions predicts that the critical
exponents are independent of variations of linear
parameters in the Hamiltonian, provided that the
symmetry of the order parameter and the spatial
dimension remain unchanged. This prediction is sup-
ported by a considerable body of theoretical and ex-
perimental evidence. Systems not covered by this
prediction are those fulfilling the Kadanoff-Wegner
criterion for nonuniversality,! of which the exactly
solvable two-dimensional Baxter model"? is a cele-
brated example. Certain two-dimensional Ising
models with pair interactions are also expected to
display nonuniversal critical behavior.> No three-
dimensional system is definitely known to exhibit
critical behavior in conflict with the universality hy-
pothesis. However, a series analysis by Griffiths and
Wood (GW)*~% of three-dimensional Ising models on
cubic lattices with pair- and multispin (three-spin and
four-spin) interactions has suggested these systems as
possible candidates, although they do not fulfill the

' Kadanoff-Wegner criterion.® The results of GW are
at variance with renormalization-group predictions.”?
Obviously, it is therefore of importance to investi-
gate, by an independent approach, the critical proper-
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ties of the three-dimensional models studied by GW.

In this paper we report the results of a numerical
calculation and a modified mean-field calculation of
the critical properties for a spin-% Ising model on an
fcc lattice with two- and four-spin (quartet) interac-
tions described by the Hamiltonian

H=-J, 20'4'0'/_-14 2 0;0;00] ,
(9] lij.k.1)

(1.n

J; and J4 > 0 are coupling parameters, and o; =1 is
the Ising spin variable at the ith lattice site. The
sums in Eq. (1.1) comprise all nearest-neighbor
bonds [i,j} and all elementary tetrahedra {i,j,k,!}
formed by nearest-neighbor bonds of the 'fcc lattice.
Our numerical calculation is based on the Monte Car-
lo (MC) method. This method appears well suited to
investigate the dependence on J4/J; of the phase
transitions and the critical behavior of this model as
no additional assumptions need be introduced into
the calculation scheme when including the four-spin
term. It should be noted that our realization of the
MC method is free of assumptions except for those
introduced through the use of finite lattices and finite
ensembles in the calculation of averages; moreover,
the dependence of the results on these assumptions
may readily be determined.

For the model in Eq. (1.1) the series analysis by
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GW?¢ leads to exponents varying continuously with
the ratio J4/J; for J4/J, > % This result is based on
the assumption that the phase transition of the model
is continuous for all values of J4/J,. In a previous pa-
per’ we have shown that the model in the pure quar-
tet limit, J, =0, exhibits only one phase transition
which is of first order. The transition temperature
differs from that of the Onsager solution, implying
that the pure quartet model is likely not to possess a
self-dual property as claimed by Wood!® and by GW.*
The calculations to be presented in this paper demon-
strate that'the phase transition remains of first order
for large values of J4/J,, but a crossover to continuous
phase transitions is found for J,/J, = %——;— indicating
that the model exhibits tricritical behavior. 1In the re-
gion of continuous transitions, 0 <J,/J, < -l—, the

critical exponent B pertaining to the order parameter
has the Ising value, in agreement with the universali-
ty hypothesis. Our results therefore resolve the
discrepancy between the results of GW and the pre-
dictions of the universality hypothesis, revealing the
alleged dependence of the exponents on the value of
J4/J, to be an artifact of series analysis carried out in
terms of power-law singularities in a regime of first-
order transitions.

In Sec. II we present the results of the MC calcula-
tions of the order parameter and the internal energy
as functions of the coupling ratio J4/J, and the tem-
perature. It is described in some detail how MC cal-
culations may be applied to determine first-order
phase transitions. From the order-parameter data we
extract the exponent B8 for various values of J,/J,.
The transition temperature as a function of J4/J; is
compared with the transition temperature obtained
from the series analysis by GW® and from calcula-
tions based on the Frank-Mitran theory.!!™* In Sec.
III we present a modified mean-field theory which
leads to a prediction of the transition temperatures
and the tricritical point. Section IV contains a brief
discussion of our results in the context of universali-
ty.

II. MONTE CARLO CALCULATIONS

A. Computational method and detection of
first-order phase transitions

The MC method as an importance-sampling tech-
nique currently constitutes a useful standard tool in
statistical mechanics.!* Our implementation of the
technique and the criteria of convergence are
described in detail in Ref. 15.

The model described by the Hamiltonian in Eq.
(1.1) is arrayed on an fcc lattice with N lattice points.
The fcc lattice is represented by two equivalent inter-
penetrating sublattices. Each sublattice is a tetrago-

nally distorted simple cubic lattice with L? lattice
sites subject to periodic boundary conditions of the
toroidal type. An Ising-spin variable o; = +1 is asso-
ciated with each lattice point. We have calculated the
internal energy per spin £(7T) = (H )/N and the fer-
romagnetic order parameter (the bulk magnetization
per spin)

m(1) =N\ % o) - Q.1

i=]

In addition, we have determined the corresponding
fluctuation quantities, i.e., the heat capacity C(7)
and the bulk susceptibility X(7). The calculations are
performed on lattices with L =6, 10, 18, and 20.

Our results to be presented in Secs. IIB and IIC are
based on statistics corresponding to 500—1000
MCS/S outside transition regions and to 2000—3000
MCS/S in transition regions (MCS/S= Monte Carlo
steps per site).

In this paper we deal with systems which may exhi-
bit first-order transitions. First-order transitions in
MC simulations are signaled by the appearance of
metastable states (which may be long-lived), and
therefore special precautions have to be taken when
calculating ensemble averages in the transition re-
gion. Detection of metastable states is facilitated by
calculating coarse-grained averages' and distribution
functions!®!” of E(T) and m(T). The coarse-
grained averages, which are averages over a small
number of systems of the ensemble, make it possible
to follow the relaxation towards a stable or a meta-
stable state of the system. The distribution func-
tions, which give the frequency of occurrence of a
given energy and order in the systems comprising the
ensemble, also reveal the various stable and meta-

~ stable states and are particularly useful in evaluating

the actual average energy and order associated with a
short-lived metastable state.

In MC calculations on finite systems the oc-
currence of metastabilities—and thereby first-order
transitions—is indicated by one or more of the fol-
lowing observations: (i) the coarse-grained averages
display a characteristic two-step relaxation process,!?
first showing relaxation towards a metastable state
and then eventually towards the stable equilibrium
state. In some cases this two-step process may be
followed by additional relaxation processes leading to
(ii) successive shifts between the stable state and a
metastable state.!s 1719 Often it is not possible within
reasonable computer time to determine which state is
the stable one, and the system therefore effectively
behaves in the simulations as though it were bistable;
and (iii) hysteresis is displayed in E£(T) and m (T)
when these are calculated for increasing and decreas-
ing series of temperatures.

In the case of (ii) with a high shift-frequency the
distribution functions are necessary in order to
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separate close-lying states and to evaluate the proper-
ties of these states. In the calculations reported in
this paper our statistics are sufficient to determine
the positions of the peaks in the distribution func-
tions but not their relative intensities. We are there-
fore unable to give a very accurate determination of
the equilibrium phase-transition temperature.in the
case of first-order transitions associated with metasta-
bilities which occur in an extended temperature range.
In that case, and in the case of a broad hysteresis
curve, we estimate the equilibrium transition tem-
perature by using an equal-area rule.

B. Phase transitions and tricritical behavior

In this section we present the MC results for the
temperature dependence of E(T) and m (7T) and use
the results to determine the phase diagram spanned
by the temperature and the coupling ratio J4/J,.

Figure 1 shows the internal energy as a function of
temperature for various values of J4/J,. The figure
also includes the result for the pure quartet limit,’
J,=0. The figure demonstrates that the system for
JalJy 2> 1 undergoes a first-order phase transition as-
sociated with a discontinuity in the internal energy.
The first-order nature of the transition is deduced
from the observations (i) —(iii) listed in Sec. I A.
For decreasing values of J4//, the discontinuity in £
decreases, and eventually for J4//, < ‘:— it disappears.
For J,4/J, S;— we make none of the observations
(i) —(iii), and conclude that the phase transition in
this region is continuous. Thus the model possesses
a tricritical point somewhere in the region %
<Juldr < 5.

A more detailed picture of E(T) close to the tri-
critical point is shown in Fig. 2 which gives an en-
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largement of the £ (T) curves in Fig. 1 for J4/J, =%
and % In addition, Fig. 2 displays the finite-size
dependence of the results by giving £ (T) for various
values of N. For J4/J, =% the results for N =2000

and 11 664 are identical within the uncertainties and
therefore represent the thermodynamic limit. There
is no evidence of metastable states, and the energy
curve is smooth and continuous within the data-point
density. For J4/J,= % the figure shows a region of
coexistence for the ordered and the paramagnetic
phase. For increasing values of N the width of the
coexistence region shrinks, exposing more clearly the
discontinuity of E(T) at the transition.

The ferromagnetic order parameter m(7T) as a
function of temperature is given in Fig. 3 for the
same values of J4/J, as in Fig. 1. The behavior of
m (T) agrees with our finding of a tricritical point in .
the interval l— <J4/J, < % A finite-size analysis
similar to that given in Fig. 2 for £(7T) shows for
J4/Jz=% that m (T) remains continuous for increas-
ing values of N. The E£(T) curves presented in Figs.
1 and 2 are more useful in locating the tricritical
point, because E(T) is expected to be less affected
by finite-size effects than m (7). A remark is in or-
der on the pure quartet case, where the high degen-
eracy of the ground state’ makes it impossible to
determine from the MC calculations the actual
finite-size order on the high-temperature branch of
the m (T) curve. As explained in Ref. 9 the high-
temperature values of m (7T) for J,=0 in Fig. 3 are
underestimates of the actual order in the finite lattice.

The transition temperatures in the various cases
are determined as follows: In the case of continuous
transitions the transition temperature 7, (the critical
temperature) is determined as the temperature where
the heat capacity attains its maximum. Equivalently,
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FIG. 1. Normalized internal energy E(T)/Ej as a function of temperature for various values of the coupling constants J, and

J4-
except in the case J4 =4 where the system contains N =432 spins.

E, is the energy of the ground state. The data are obtained from Monte Carlo calculations on systems with N =2000 spins,
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FIG. 2. Temperature dependence of the normalized inter-
nal energy E(T)/E, in the tricritical region. J4 is the four-
spin coupling constant, and J, is the two-spin coupling con-
stant. Ej is the energy of the ground state. The data are
obtained from Monte Carlo calculations on systems with N
spins. O: N =2000 for both values of J4; 0O: N =11664 for
Jy = and N =16000 for J, = .

we may obtain 7, from the position of the maximum
of the susceptibility. For finite lattices these two esti-
mates normally differ slightly. In this investigation
we are not interested in providing an accurate esti-
mate of 7, and consequently we have not performed
a full finite-size analysis.?’ Instead we give TMC with
error limits expected to cover the thermodynamic
limit. In the case of first-order transitions TMC is
derived using a simple equal-area rule.

Our results for TMC are given in Table I which also
includes the transition temperatures 7S¥ derived by
GWS¢ from an analysis of the low-temperature series
for the order parameter. The series, which extend to
order [exp(—4J/kgT)1'2, are analyzed in terms of a

simple power-law singularity assuming that the transi-
tion is continuous for all values of J4/J,. Compar-
ison of TMC and TSV reveals the following trends:
for J4/J, < %, TMC and TSPV agree within the error

limits; for J4/J, > %, TSY lies increasingly below
TMC (excepting the limit J,=0). These trends are in
accord with our finding of a tricritical point in the in-
terval % <J4/Jy < —;—, implying that the assumption
made in the series analysis breaks down above

JalJy ~ % It is well known from series studies of
models exhibiting first-order phase transitions that
analysis in terms of power-law singularities is likely to
lead to unreliable estimates of 7,. In Table I we have
also included transition temperatures TF derived by
Frank.!* (The transition temperatures obtained from
a related approach by Mitran!! are not included as
this approach has recently been shown not to be
self-consistent.!?) The theory by Frank seems appli-
cable to continuous as well as to first-order transi-
tions.”> The table shows that TF lies systematically
above TMC and the deviation increases with increas-
ing values of J4/J; < eo.

C. Critical exponent 8

We now investigate the critical behavior of the or-
der parameter in the region of continuous transitions,
JdJy < 7:—, by analyzing the MC data in terms of a
simple power law

m(T) =Bk, t=(T.-D/T. , .2)

B is the critical exponent and B is the critical ampli-
tude. In the analysis we have put T, = TS as we
expect the series estimate of 7, to be more accurate
than TMC in the case of a continuous transition.

In Fig. 4 is presented a log-log plot of m (T) versus

the reduced temperature ¢ for J,/J, =0, %, and f
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FIG. 3. Ferromagnetic order parameter m(T), Eq. (2.1), as a function of temperature for various values of the coupling con-
stants J, and J,. The data are obtained from Monte Carlo calculations on systems with N =2000 spins, except in the case J, =4

where the system contains N =432 spins.
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TABLE 1. Transition temperatures for the model in Eq. (1.1) for various values of the coupling
ratio J4/J,. TMC is the transition temperature obtained from Monte Carlo calculations on systems
with N spins. TSW is the transition temperature derived from series analysis. 7F is the transition
temperature obtained from the theory of Frank. All temperatures are in units of J,/kg, except for

the case J4/J,=o0 where the temperatures are in units of J4/kp.

Jald, TMC TSV TF N
0 9.75+0.05 9.7920¢ 9.7920° 2x18}
5 9.95+0.05 10.02° 10.15¢ 2% 183
T 10.25+0.05 10.2740.06¢ 10.519 2% 183
4 10.86+0.05 10.61+0.08° 11.224 2 % 20°
2 14.28+0.10 13.78+0.06¢ 15.519 2% 10°
4 18.95+0.15 21.23¢ 2% 6
o 2.66+0.01 2.79+0.01° 2.86¢ 2% 10
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2Reference 21.

5The value of T, (pair) in Eq. (3.18) is taken from the series analysis of Ref. 21.

‘Reference 6.
dValues derived from Eq. (3.18).
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FIG. 4. Log-Log plot of the ferromagnetic order parame-
ter m(#) vs the reduced temperature t =(7, —T)/T, for -
values of the four-spin coupling constant J, leading to con-
tinuous transitions. The critical temperature 7, is the one
derived from series analysis. The data for m (#) are ob-
tained from Monte Carlo calculations on systems with
N =2000 spins (O), and N =11664 spins (0). The solid
lines represent the power law m (T) ~ 1B, Eq. (2.3), with
B=031.

Comparing MC data for two different lattice sizes,
N =2000 and 11664, we conclude that our data to a
good approximation represent the thermodynamic
limit for + > 0.008 for all three values of J4/J;. For
J4=0, Fig. 4 shows that the data satisfy the asymp-
totic critical form, Eq. (2.2), for ¢ <0.2 with critical
parameters

B=0.310+0.015, B=14510.05 , 2.3)

which are consistent with the respective series esti-
mates,?2 8=0.312 +£0.005 and B =1.487 +0.002.
For increasing values of J4/J, Fig. 4 shows that the
asymptotic slopes, i.e., 8, remain unchanged, but the
amplitude B increases and the critical region
described by Eq. (2.3) shrinks. The shrinking is
caused by crossover to the tricritical point. However,
we consider our data to be too far from the tricritical
point to sustain a detailed analysis of m (¢) in terms
of a power law with multiplicative logarithmic correc-
tions.??

III. MODIFIED MEAN-FIELD THEORY

The results of the previous section may be under-
stood in terms of mean-field theory suitably modified
to take account of third-order correlations. The need
for such a modification arises from the failure of or-
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dinary mean-field theory to agree quantitatively with
the tricritical value of the coupling ratio, (J4/J;),, in-
ferred from the MC calculations and even qualitative-
ly to account for the variation of the transition tem-
perature with J4/J,. Ordinary mean-field theory
(MFT) implies the equation

m =tanh[(12J,m +8J,m3)/kgT] ,

which leads to the prediction of a tricritical point for
(J4/J,),=0.5, and transition temperatures which are
independent of J4/J,. The modification is made on
the basis of a generalization!? of the Frank-Mitran
theory'!"!2 for the Ising ferromagnet with pair and
quartet interactions in the immediate vicinity of the
phase transition. It will be seen that the modified
mean-field theory predicts a value of (J4/J/,), which
is in good agreement with the MC results.

We start with a summary of the relevant parts of
the Frank-Mitran theory. We consider the Hamil-
tonian

H=H+H, (3.1
where H is the Hamiltonian in Eq. (1.1), written as

=—(1/2") 2.],-,0',-0]—(1/4!) 2 Jppoiojopo, .
i ihkr

3.2)
The lattice-site summations are now unrestricted, and

H, is an added Hamiltonian similar to that used in
the work of Griffiths®*

Hy='3, My (0)"(P)" 33)

Jim.n
(mn=0,1,2, ..., m+n odd)
with

P=0,+0 , (3.4a)

0,=3Jyo; , (3.4b)
I .

0, =(1/31) ZJijk,(rj(rk(r, , (3.40)

Jkr

where the coefficients A}, are to vanish at the end of
the calculation.

For A}, =0, one has the exact equation for the or-
der parameter

m = {(o;) = (tanhBP;), B=1/ksT 3.5

derived most easily by the method of Suzuki,?® where
the thermal averages ( - - - ) are in terms of the
basic Hamiltonian H. Reverting now to the full
Hamiltonian H, and going to the limit A, —0,

T — T,, the assumption is made that the thermal
averages of the same odd powers of P; and O; ap-

proach zero in the same way
((P)¥*) =By ((0)¥*) (3.6)
r=0,1,2, ...

’

where the B,,;; may be functions of \{,, and B, as-
sumed to be analytic in the above limit.
It may then be shown directly that

(P =(B)"(OI™, n=1,2, ..., Q.7
where, using Eq. (3.4)

By=(0,P))/((0)?*)=1+4ayJs/J, . (3.8)

An approximate, self-consistent calculation'? of a, for
the fcc lattice yields

a,=0.073 39

(independent of J4 and J,). Using Eq. (3.7), Eq.
(3.5) may then be written, for A, —0 and T — T,
as

m = (tanhB8B,0;) . (3.10)

It is noted that in the limit J4 =0, Eq. (3.10) is exact.

We are now in a position to set out and modify or-
dinary mean-field theory. For the pure pair-
interaction case, B, =1, one ordinarily takes the ther-
mal averages in Eq. (3.10) inside the hyperbolic
tangent, to write

m =tanhB{(0;) . 3.11)

This is equivalent to a complete decoupling of the
multispin correlation functions. Similarly, in the
pair-quartet case, the first stage of an MFT would be
to write Eq. (3.5) as [using Eq. (3.4a)]

m =tanhB({0;) +(Q;)) . (3.12)

To remain within the spirit of the MFT one would
completely decouple the spins inside (Q;), writing

m =tanhB|(0;) +(1/31) 3, Jy, (o) (ok) (o) | .
Sk

(3.13)

The value of (J4/J,), obtained from Eq. (3.13) is
0.5, a value approximately 25% higher than the
Monte Carlo result.

Now Frank-Mitran theory, as outlined above, pro-
vides a guide for the modification of and improve-
ment over Eq. (3.13). Taking the thermal average
inside the hyperbolic tangent in Eq. (3.10), which it-
self has validity only in the limit 7 — 7., one obtains
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to O (m) within the tanh,

m =tanhBB,(0;) . (3.14)
The contribution of each spin in Eq. (3.14) to the
molecular field is seen to be effectively obtained
from the ordinary MFT, Eq. (3.13), by replacing m
by B,m to order m within the tanh. The ansatz is
now made that to higher orders in m also, one
proceeds from Eq. (3.13) to the modified equation by
replacing m by B,m everywhere inside the tanh. The
result is, for the fcc lattice,

m =tanhB(12J,B,m +8J,Bim?) . © (3.15)

The tricritical point, located from @?8/dm*=0, is
given, using Eq. (3.8), by

4J4/.]2=2(1 +4a2./4/.12)"2, T= T, , (316)
so that, with Eq. (3.9),
(J4/J4),=0.401 . 3.17)

This value of the tricritical coupling ratio is consistent
with the MC data of Sec. II.

We have now presented a theory which predicts tri-
critical behavior in qualitative agreement with MC
calculations. While the above theory is fairly success-
ful in its prediction of the tricritical coupling ratio, it
is less so in its quantitative determination of the tran-
sition temperatures. The latter deviate from the pre-
dictions of series analysis, MC calculations, and
Frank-Mitran theory, by roughly 25% for all values
of J4/J,. This is not surprising, in that (J4/J,), is
dependent on the relative way in which the m and m®
terms enter whatever function is on the right-hand
side of Eq. (3.15), while T, depends sensitively on the
coefficient of m in this equation. However, the
linearity between T, and J4/J/,

T.(pair-quartet) = B, T, (pair) (3.18)

remains as in Frank-Mitran theory. This linearity is
supported by the present MC data, with a MC value
of a,=0.068. The within-10% agreement between
this value and that of Eq. (3.9) is regarded as satis-
factory. To devise a theory which leads to accurate
values for both 7, and (J,/J,),, one might look for a
way to modify Frank-Mitran theory in the light of or-
dinary MFT, rather than the reverse as was done
here.

1IV. SUMMARY AND DISCUSSION ON UNIVERSALITY

We have studied the phase transitions and the criti-
cal behavior of a three-dimensional Ising model with
mixtures of ferromagnetic two-spin (J,) and four-
spin (J,4) interactions. The model does not fulfill the
Kadanoff-Wegner criterion for nonuniversality as it
does not contain a marginal operator which trans-
forms under change of length scale R as R™, where

d is the spatial dimension. The critical exponents are
therefore expected to be independent of the values of
the model parameter J4/J,. Our calculations reveal a
tricritical point and show that in the region of con-
tinuous transitions the critical exponent g retains the
Ising value, in agreement with the universality hy-
pothesis. Our results remove a puzzle which has per-
sisted for quite some time in the literature of phase
transitions, brought about by the evidence reported
from series analysis® in favor of nonuniversal critical
behavior for this model. Moreover, our results are in
accordance with renormalization-group calculations’?
which predict a crossover to first-order transitions
when a fourth-order interaction parameter becomes
sufficiently large.

The results presented in this paper were obtained
for a model including four-spin interactions on an fcc
lattice. We believe, however, that the interpretation
of the series results in light of the encountered tricrit-
ical behavior may in some cases apply to other lat-
tices and other types of multispin interactions. Grif-
fiths and Wood® (GW) concluded from a series
analysis that the spin—% Ising model on a bcc lattice
with ferromagnetic two-spin and four-spin interac-
tions exhibits nonuniversal critical behavior for all
values of J,/J, > 0. We interpret this as evidence for
crossover to first-order phase transitions for even a
very small admixture of four-spin interactions. Simi-
larly, GW?*% from series analysis of spin-% Ising
models on fcc and bcec lattices with ferromagnetic
two-spin and three-spin (J3) interactions found that
the exponents vary with J3/J, for all values of J3/J,
investigated. As shown by Monte Carlo calculations
in Ref. 9, the phase transition for the fcc lattice in
the pure three-spin interaction limit is of first order.
It seems reasonable to interpret the series results as
evidence for first-order phase transitions down to
very small values of J3/J,. It would be of interest to
investigate whether the transition is of first order for
arbitrarily small values of J3/J,. If this is the case, it
may have important implications for the description
by lattice-gas models of simple fluids where three-
body interactions are known to play an important
role.?®

Finally, we wish to comment on the usefulness of
mean-field predictions for phase transitions of Ising
models with mixtures of two-spin and multispin in-
teractions involving clusters of p > 2 spins. In gen-
eral it can be shown that simple mean-field theory in
any dimension predicts a tricritical point for mixtures
of ferromagnetic two-spin and p-spin interactions.
For peven the tricritical point appears for a finite
value of J,/J,, and for p odd the tricritical point
coalesces with the J, =0 axis. These predictions are
in qualitative agreement with the Monte Carlo results
presented in this paper and with our interpretation of
the series results by GW for various three-dimen-
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sional models. For two-dimensional models, howev-
er, the mean-field predictions may well be even qual-
itatively incorrect.?’
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