
PHYSICAL REVIEW B VOLUME 24, NUMBER 4 15 AUGUST 1981

Nonlocal-density approximation to exchange and correlation:
Effect on the silicon band structure
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We present the results of a self-consistent pseudopotential band-structure calculation for
silicon using a nonlocal-density approximation for the exchange and correlation potential.

The valence bands are very close to the corresponding local-density results; however, the

conduction bands are shifted to higher energies with respect to the valence-band edge. Thus

the agreement with experiment is substantially improved. In particular, the indirect band

gap is reproduced.

I. INTRODUCTION

A variety of band-structure calculations for sil-

icon have been performed in recent years. The best
agreement with the experimental spectra is obtained

by using empirical pseudopotentials. ' These poten-
tials are parametrized one-electron potentials which

are designed to reproduce the observed interband
transitions. However, such a procedure cannot be
made self-consistent because the charge density giv-

ing rise to the potentials is not known.
The calculations which have been carried out to

self-consistency within the density functional frame-
work used the orthogonalized-plane-wave (OPW)
method, the first-principles pseudopotential
method, the augmented-plane-wave (APW)
method and its linearized version (LAPW), and
the linearized-muffin-tin-orbital (LMTO) method.

Apart from minor differences the results of these

calculations agree with each other, yet the agree-

ment with experimental data is only moderate. In
particular, the energy separation between the
valence bands and the conduction bands is too small

in all these approaches. It is generally believed that
this deficiency is related to the insufficient

knowledge of the exchange-correlation potential
which enters the self-consistent one-electron Hamil-
tonian. The local-density approximation, which is

usually made to obtain an expression for this poten-
tial, assumes that the electrons behave locally as a
homogeneous electron gas. The resulting exchange-
correlation potential is then essentially proportional
to the cube root of the local charge density.

The aim of the present work is to show that it is

possible to improve agreement with observed inter-

band transitions by going beyond the local-density
approximation. We adopt a nonlocal approxima-

tion to exchange and correlation which has been

suggested by Gunnarsson et al. ' and also by Alon-

so and Girifalco. ' These authors start with the

exact expression for the exchange and correlation

energy in terms of the charge density and the pair-

correlation function. The latter is then approximat-
ed by an analytic function which is exact in several

limiting cases. It conserves the total exchange-
correlation charge, it reduces to the homogeneous

gas form when the electron density is constant, it

provides exact cancellation of the electron self-

interaction in the case of an hydrogen atom, and it

yields the image potential outside a surface. In con-
trast to the local-density approximation it is not as-

sumed that the electron density varies only weakly

in the range of the correlation hole. The exchange
and correlation potential derived from this approach
has a nonlocal dependence on the entire electron
density distribution. Gunnarsson and Jones have

shown that these nonlocal modifications lead to a
considerable improvement of the exchange-
correlation energy in atomic systems when com-

pared with the local-density approximation. Re-
cently Borstel and Neumann used the functional
form of a homogeneous electron gas to describe the

pair correlation. With this ansatz they performed a
relativistic but non-self-consistent APW calculation
for rhodium. " Even though only the exchange in-

teraction is taken into account they obtained good
agreement between the calculated bands and the
photoemission data. It is, however, unclear how
self-consistency would influence these results.

In the present work we use the nonlocal modifi-

cation to exchange and correlation proposed by
Gunnarsson and Jones to calculate the band struc-
ture of silicon self-consistently within the pseudopo-
tential method. In Sec. II the theoretical develop-
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ment of the nonlocal approximations to exchange
and correlation is given. In Sec. III we present the
self-consistent results in terms of the band structure,
charge densities, and potentials. In Sec. IV we dis-

cuss how the method can be further improved. A
summary is given in Sec. V.

II. NONLOCAL EXCHANGE-CORRELATION
POTENTIAL

electron, the following sum rule should be satisfied:

f d r'n„, (r, r') = —1

which leads to the condition

d r'n r'6 r —r' = —1

We require that the energy functional (1) is correct
in the homogeneous limit, i.e.,

Following Gunnarsson and Jones we start with

the formally exact expression for the exchange-
correlation energy

n f G(~r —r'~}d r'= —1 (6)

(7)

E„,[n] = —., f d r n (r)

&& fd r' n„,(r, r')

It can be viewed as the interaction energy between
the electron distribution n ( r) and a charge density
n „,( r, r ') of its exchange-correlation hole. The hole
describes how the probability of finding an electron
at r ', given an electron at r, is suppressed because
of the Pauli principle and the Coulomb interaction.
We write

n„,(r,r'} = n(r')6(r, r')

where 6 (r, r ') is related to the pair-correlation
function of the system. We choose for 6 a con-
venient analytic form such that certain limits are
reproduced, for example,

where e„,[n ] is the exchange-correlation energy per
particle of a homogeneous system with density n.
Inserting the ansatz (3) into the Eqs. (6) and (7)
yields two equations to determine the coeAicients C
and A, as a functional of n. For an inhomogeneous
system n is determined at each point r by using the
sum rule (5). Thus n becomes space dependent.
This procedure guarantees that the energy functional

(1) gives not only the homogeneous limit but it also

yields e„,( r) = e /2r for—large r in atoms which is

the exact result. Finally, outside a surface, it gives

the image potential. The hope is that this ansatz
can be used to interpolate between the different lim-

its.
The exchange-correlation potential V„, is defined

by

5E„,[n]
V„,(r) =

5n

This ansatz implies that the pair correlation depends
only on the distance between two electrons. Be-
cause the xc hole corresponds to the removal of one where

= Vi(r) + Vz(r)

Vi(r) = —, f d r' n(r'}[6(
f
r —r'f;n(r)) + 6(

f
r —r'f;n(r '))]

1 fd3, f d3 „n(r") 56( (
r' —r" ~;n(r')}

ir' —r"
i

5n(r)
(10}

For systems with slowly varying electron density
n (r) is a weak function of the space variable. It is
therefore reasonable to replace the argument n( r ')
of G in Vi(r) by n(r). V,(r) is then formally
equal to the nonlocal quantum-number-independent
exchange potential derived by Alonso and Girifalco
using Hartree-Fock theory. ' The potential V2(r) is

a result of the density functional theory. The func-
tional derivative in Eq. (10) is known and can be
calculated once n ( r) is given. Because the compu-
tation of V2 is rather tedious we follow Alonso and
Girifalco' and also Borstel and Neumann" and
omit this contribution. A first nonlocal approxima-
tion to the exact-correlation potential is then-
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V„,(r) f d'r'n(r ')

)& G(
/
r —r' f;n(Qr)

which is used to calculate the band structure of sil-

icon self-consistently. The rhs of Eq. (11) may be
rewritten by using the Fourier transform of the
charge density n ( r ),

V„,(r) = 4nCA+, n oe' 'F, (q) ~» qG, (12)

where

4nA, gn oe' 'F2(q)
~ ~G

———1

G

where

(14)

Fq(q) = —f (1 —e "~"' )r sin(qr)dr . (15)
q 0

Again F2 is calculated once and tabulated on a grid.
As one can see from Eq. (12) V„, has to be calculat-
ed on a spatial grid throughout the unit cell which
should be dense enough to properly include the

physical relevant variations in the exchange-
correlation potential. If the symmetry of ihe lattice
is taken into account, the numerical effort can be
substantially reduced.

III. RESULTS AND DISCUSSION

To obtain the band structure of silicon the self-

consistent pseudopotential method is employed. We
construct an effective one-electron pseudo-
Hamiltonian for the valence band electrons, which
has the form

00 —(1/r)F~(q} = —f (1 —e " "' )sin(qr}dr . (13)
q 0

G is a reciprocal space vector, n G is the corre-

sponding Fourier component of the charge density.
The function F j is calculated once and tabulated on
a q grid; The value of F j for a q value, which is

not a grid point, is found by interpolation. The
coefficients C and A, are functions of n ( r), which

are determined from the sum rule (5) rewritten in

the form

0
Ol

-2

c5a. -I.
LUx
w -6

i Zs, v

---i X] C

XI, „

X)„

-10

pseudowave functions which are smooth and node-
less inside the core region and converge identically
to the atomic valence wave functions outside the
core. It should be kept in mind, however, that the
local-density approximation for exchange and corre-
lation is used to generate the pseudopotential.

The ionic pseudopotential is screened by a
Coulomb potential Vc,„~ which is obtained from the
pseudovalence charge density p( r ):

V,„,(r) = f d r'
ir —r'i

and by the nonlocal exchange-correlation potential

V„, of Eq. (12) where n is replaced by p. We will

denote the sum of Vc,„~ and V„, by V„,. The
Schrodinger equation for the Hamiltonian Eq. (16)
is solved iteratively in a plane-wave representation
until the input and output screening potentials are
equal.

The resulting band structure is presented in Fig. 1

and compared with the results of an analogous cal-
culation using a local-density approximation for V„,
suggested by Hedin and Lundqvist. ' In both cases
the energy zero is taken to be the upper valence-

band edge at I . Obviously the unoccupied conduc-
tion bands are shifted upward by 0.3 to 0.5 eV ex-

cept around I 2 „whereas the changes in the
valence bands are only minor. In particular, the ex-

perimentally measured value of 1.12 eV for the fun-

damental gap is reproduced in contrast to many
other first-principles self-consistent calculations.
The agreement with the measured interband transi-

tions I ~5, —I 2&, and I 2, —I 25 „quoted in

Table I is only partially improved. The calculated

H = p /2m + Vps+ Vcoul+ Vxc (16) -12—

L

V~, is a superposition of Si + ionic pseudopotentials.
The pseudopotential is generated by using a method
described in Ref. 12. It has a soft core but acts dif-

ferently on the various angular momentum com-
ponents of the wave function. It yields normalized

FIG. 1. Self-consistent band structure of Si. The solid

lines refer to the results of the present approach using a
nonlocal approximation to exchange and correlation. The
dashed lines are the corresponding bands obtained from
Barth-Hedin's local exchange-correlation potential.
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TABLE I. Comparison of some Si-band eigenvalues
(in eV) of the present pseudopotential nonlocal exchange
and correlation study (NLDA) with the local-density ap-
proximation (LDA) using the Barth-Hedin xc functional.
The experimental values are quoted from Ref. 4. The
"experimental" values for I &s, and X~ „are taken from
the empirical pseudopotential results of Ref. 1.
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FIG. 2. Difference in the screening potentials of the
local-density approximation and the present nonlocal ap-
proach in the (110) plane. The contour values are in Ry.
The dots indicate the Si atomic positions. Nearest-
neighbor sites are connected by a straight line. Also see
text.

but it is more localized near the Si sites with much
smaller density values in the interstitial. It partially
"feels" the reduced screening in the bonding region
introduced by the nonlocal xc approach, therefore
the upward shift in energy remains moderate.

Figure 2 also shows that. by going from the local
to the nonlocal-density approximation for exchange
and correlation the screening potential is strongly
decreased in the Si core region. We will, however,
see below that this is an unphysical result which is
due to the approximations made in our present non-
local approach. It implies that the I 2, state which
is, according to Fig. 5, strongly localized around the

values remain too small with respect to experiment.
It is interesting to analyze why the low-lying anti-

bonding state at X is energetically correct, whereas
the corresponding states at I are still too tightly
bound. Figure 2 shows a contour plot of the differ-
ence in the screening potentials 5V, of the local-
density approximation and the present nonlocal ap-
proach in the (110) plane. The hatched area where
5V, is negative refers to the region where the
screening potential obtained by the nonlocal xc ap-
proximation is larger than the corresponding poten-
tial in the local approximation. This region mainly
comprises the empty interstitial region of the unit
cell. As a consequence states having large ampli-
tudes in this region will be shifted to higher ener-

gies. This is indeed the case for states around X~,
as shown for the X~, state in the contour plot of
Fig. 3. It is a typical nonbonding state with a fairly
high charge density in the interstitial and a low den-
sity in the bonding region. From Fig. 4 one can see
that the I ~5, state has a similar charge distribution,

1.0

O Xic

-1.1

0.9
- 0.7—0.5

~0.3
0.7

=1.1

FIG. 3. Symmetrized pseudocharge density of the X~,
state in the (110) plane of Si as obtained by the present
nonlocal exchange and correction approach. The dots in-

dicate the atomic position, nearest-neighbor sites are con-
nected by straight lines. The charge density is normal-
ized to one electron per unit cell. The extent of the core
region is indicated by a hatched circular area around a Si
position.
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'l.7

- 1.4
- 0.3

--- 1.7

0.5

- 0.1

FIG. 4. Symmetrized pseudocharge density of the

I ~5, state in the (110) plane. Conventions as in Fig. 3.

reduce the errors they proposed a partitioning of the
atomic charge density n „into shell contributions.

Neglecting the term V2(r) [Eq. (10)], this scheme
means that V„, [n„]is replaced by

V„,[n „,] + V„, [n „„]if the potential acts
on a valence state and by V„, [n„,] + V„,[n„,] if
the potential acts on a core state. The subscripts c
alid v denote core and valence states. The sum rule

Eq. (5) for the valence charge density then takes the

form

I d' '
( ')G(r r 'n (7))d r'

Si sites is even more tightly bound than in the
local-density approximation.

IV. IMPROVEMENTS

Although the proposed method seems to give an

improved description of exchange and correlation in

bulk silicon, we have ignored a few inconsistencies

which are possibly responsible for the incomplete
agreement with experiment. First we recall that the

Si + pseudopotential V~, is obtained within the

local-density approximation for the exchange-
correlation part. To be consistent with the bulk cal-

culation the same nonlocal approach should be used

for the atom. This means that the pseudopotential

as used for the calculation of the Si bulk band struc-

ture has to be corrected by adding the term

Vpz Vip whef e the superscripts XL,L should

remind us that either the nonlocal or the local-

density approximation to exchange and correlation

is applied. Gunnarsson et al. showed that the xc
energy in the proposed nonlocal approach is overes-

timated in the region between valence and core elec-

tron shells in an atom due to intershell effects. To

0.3& -0.9
——1.7
~3.2~3.7~2.7—4.8

4.3

2.C

FIG. 5. Symmetrized pseudocharge density of the

I 2, state in the (1-10) plane. Conventions as in Fig. 3.

and similarly for the core charge density. As a
consequence the nonlocal exchange-correlation po-
tential due to the charge density p„of the "pseu-
doatom" is

3 I

VNL[ NL] J' d r NL(~i)
r —r'

(19)

where p„(r) is determined from Eq. (18) with n„,
replaced by p„. The generalization for a bulk
pseudopotential calculation is straightforward. The
xc potential is given by Eq. (19) with p„replaced
by the bulk pseudocharge density p which mimics
the true valence charge density outside the core re-

gion of the Si atoms. The density argument p in the
correlation function G is calculated from the sum
rule Eq. (18), where n „„,n„„and n„are re-

placed by p, n„and p + n, . n, represents the bulk
core charge density. It is obvious that the suggested
modifications can only be carried out at the cost of
heavier computations. A first estimate showed,
however, that the corrected pseudopotential and the
modified sum rule yield a considerable repulsive
contribution to the en'ective potential in the core re-

gion which would very likely further shift the anti-

bonding states at I to higher energies. The poten-
tial modification outside the core region turns out to
be negligible.

V. SUMMARY

We have applied a nonlocal approximation to ex-

change and correlation to calculate the band struc-
ture of silicon self-consistently within the pseudopo-
tential framework. Even though we have neglected
in a first step certain features of the method which
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are essential to describe the potential in the core re-

gion properly, we find that the lowest unoccupied
bands are shifted to higher energies with respect to
the upper valence-band edge. In contrast to first-

principles calculations which make use of the local-
density approximation, the agreement with the ob-
served interband transitions is substantially im-

proved. The calculated indirect gap which is usual-

ly underestimated by 50lo in the local-density ap-
proximation agrees with the experimental value.

No attempt is made to test the e6iciency of our
nonlocal approach at ground-state equilibrium prop-
erties like the lattice constant, the bulk modulus,
and the cohesive energy. This will be done in a
forthcoming publication.
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