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Ballistic phonons and the shape of the ray surface in cubic crystals
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The shape of the acoustic ray surface of cubic crystals is investigated with the object of providing a framework
within which the results of phonon imaging and other ballistic phonon experiments can be interpreted. This surface
is shown to display considerable variability in shape, particularly with regard to the way in which it is folded. The
correspondence between these folds and contours of zero Gaussian curvature on the slowness surface is explored,
and the bearing this has on the presence of caustics in the anistropic flux of phonons emanating from a localized
hear source is discussed. Several of the elementary catastrophes as well as some remarkable types of structural
instability ar'e shown to occur in these caustics. Conditions on the elastic constants are established for the existence
of various systems of folds in the ray surface.

I. INTRODUCTION

The vel.ocity, slowness, and ray surfaces are
invaluable aids to the understanding of the nature
of acoustic-wave propagation in elastically aniso-
tropic solids. Indeed, it is difficult to imagine
how the subject of crystal acoustics could be de-
veloped without these constructs. The ray surface
is physically the most meaningful of the three in
that it represents the wave front or surface of
equal phase for an oscillatory disturbance a unit
time interval after it has been created at the
origin. It also happens to be the most complica-
ted of the three. In spite of its importance, our
knowledge of the ray surface is very limited.
While the analytical techniques for generating this
surface are well established, only a relatively
small number of substances have been investigated
by these means. " There have been several papers
of a general nature in this area, but they have
tended to emphasize issues such as conditions for
the existence of cuspidal edges in symmetry
planes, ' ' and phonon-enhancement factors in
specific directions, ' ' and have not provided much
information on the overall shape of the ray sur-
face.

The status of this problem has been consider-
ably enhanced by the recent surge of interest in

phonon imaging, ' "a technique that employs bal-
listic phonons to probe the effects of elastic anis-
otropy and surface scattering on phonon transport.
This knowledge is of particular importance for the
understanding of low-temperature thermal conduc-
tivity, "Kapitza resistance, "and the shape of elec-
tron-hole droplet clouds in semiconductors. "
Imaging experiments have yielded complex phonon-
intensity maps which show numerous sharp fea-
tures where the phonon flux is much higher than
in the background. These sharp features represent
caustics"" and are associated with folding edges
in the ray surface. With the high-resolution time

of flight techniques that are now available for the
study of ballistic phonons, "one can anticipate a
rapid increase in the generation of detailed experi-
mental data on the ray surface and related matters.

The above considerations have motivated the
theoretical investigation which we report in this
paper. A systematic survey has been carried out
to determine all the topologically distinct shapes
that the ray surface of cubic crystals can take on
under the conditions that the elastic constants sat-
isfy the thermodynamic constraints and the long-
itudinal phase velocity is greater than the two
transverse velocities in all directions. It is hoped
that this study will assist investigators in inter-
preting their experimental results and also provide
some guidance for the selection of specimens and
the design of experiments.

The slowness surface, which is the pol.ar recip-
rocal of the ray surface, plays an important role
in the discussion. It is a much simpler surface to
which one can trace, and thereby gain a deeper
appreciation of, all the important features of the
ray surface. Catastrophe theory provides a ready
framework for the description of the folding edges
of the ray surface and the associated caustics in
the phonon intensity. " For the most part these
caustics can be categorized as one or other of the
elementary catastrophes, but a number of remark-
able cases of structural instability also occur.

The method that is used for the actual. construc-
tion of the ray surface consists of calculating a
set of points representing the group-velocity vec-
tors for a large number of waves with normals
distributed uniformly over the unit sphere. The
distribution of these points corresponds, to within
a factor -1/v' to the distribution of thermal en-
ergy in a system a unit time interval after a pulse
of heat has been injected at the origin. In this
way one obtains a representation of the ray sur-
face as well as a phonon-enhancement map for
ballistically propagating heat pulses.
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Section II of this paper deals with the theoretical
background and the methods used in the computa-
tions. Restrictions on the elastic constants, which
are used to'limit the range of the survey, are dis-
cussed.

In Sec. III the effect that elastic anisotropy has
on the three sheets of the slowness and ray sur-
faces is described. The emphasis is placed on
determining what folds the ray surface has, and
what the associated effects are.

II. BACKGROUND THEORY

A plane acoustic bulk wave in an elastically anis-
otropic medium is governed by the Christoffel
characteristic equation"

fr„.—p 2~„, /=0,

of s = sn. Figure 1 shows a number of sections of
the slowness surfaces of Ge and CsCl. The trans-
verse sheets may be observed to become degener-
ate in the (100) and (111)directions and both pos-
sess regions of positive and of negative curvature.
The longitudinal sheet by contrast is isolated and

entirely convex.
'The ray or wave surface is defined as the en-

velope of plane fronts with respect to the velocity
surface. '"" It follows from this definition that a
ray vector P, and the wave normal n that it is as-
sociated with, are related by

V ~ n= v(n). (3)

The ray and normal are not required to be paral-

where e is the phase velocity of the wave, p is the
density of the medium, and I' is the Christoffel
tensor which, in the case of cubic symmetry, is
given in terms of the elastic constants C,&

and

components of the wave normal n = (n, ) by

(C„+C„)n„n, (res)
r„,=

C„n„'+C„(n'—n„') (r = s) .
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Expanding the determinant in Eq. (1) results in
a cubic equation in v' which yields three values of
the velocity for each direction n. A convenient
method of solving this cubic, which leads to closed-
form expressions for the velocities, has been de-
veloped by this author. " The function v(n), which
is homogeneous of degree 1 in the components of
n, defines a centrosymmetric surface of three
sheets known as the velocity or normal surface.
The equation for this surface is of degree 12 in v

as may easily be verified by multiplying Eq. (1)
by e'. As regards cubic symmetry, the three
sheets remain separated except along the fourfold
(100) axes where the transverse sheets make
smooth contact, and along the threefold (111) axes
where the transverse sheets meet at a conical
point. "

The slowness surface is the inverse of the
velocity surface and represents the directional.
dependence of the slowness s(n) = 1/v(n). It is
also known as the refraction or index surface,
and apart from a factor of scale is identical to
the surface of constant frequency ~ or phonon en-
ergyS in k space. This surface is of great im-
portance in treating reflection and refraction pro-
cesses at boundaries and is a valuable aid in un-
ravell. ing the complexities of the ray surface. It
is also a surface of three sheets and possesses
the same degeneracies as the velocity surface.
Multiplying Eq. (1) by s' reveals that the equation
for this surface is of degree 6 in the components
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FIG. 1. (a) Polar sections of the slowness surface
of Ge showing the variations of s =1/v with 8 for four
values of ft). The two transverse sheets meet at the
conical point (marked 1) in the [111]direction, and make
flat contact in the [001j and [100] directions (marked 2).
{b) Similar sections for the slowness surface of CsCl.
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le1. In fact even in moderately anisotropic crystals
the directions of these two vectors can differ quite
significantly. On multiplying Eq. (3) by s = I/v one
obtains

V ~ s= 1, (4)

which shows that the ray and slowness surfaces
are polar reciprocals of each other. According
to the principle of duality therefore, the degree
of the ray surface is equal to the class of the slow-
ness surface, and this places an upper limit of
6(6 —1}'=150on the degree of the wave surface.
The existence of the eight conical points and six
smooth contacts reduces this number to 150 —8(2)
—6(6) = 98, but this is still so large that the analy-
sis required for deriving and interpreting the equa-
tion of the ray surface would not, at present, ap-
pear to be a practical proposition. " One may
conclude, nevertheless, that the complexity of
the ray surface, while possibly severe, will be
limited to the extent that any straight line can at
most meet the surface at 98 points.

There are fortunately other means of calculating
the ray surface. One which proves to be conven-
ient in practice is based on the fact that in the Bb-
sence of dispersion and attenuation the ray and
group-velocity vectors coincide, so that V may be
obtained from the equation

V= Vz&@(k),

where u(k) is the frequency which is given by

(5)

It follows from these two equations that"

V= &„e(n), V
CI

which may be regarded as parametric equations
for the ray surface. Methods for evaluating the
partial derivatives in Eq. (I) are described in Ref.
18. The ray surface is then simply the locus of
points representing the V's for all n.

In the actual computation of the ray surface it is
sufficient to take a large but finite number of n's
distributed uniformly over the unit sphere. The
resulting V's allow one to visualize the ray sur-
face. In addition, the density with which these
V's are clustered in various directions provides
one with a phonon-enhancement map for the bal-
listic phonon flux emanating from a localized heat
source. One method of displaying the results of
such calculations is used in Figs. 4, 6, 11, and
13, which arephonon-enhancement maps for dia-
mond and C sC1. Each point in these diagrams repre-
sents the direction of a V(n). Caustics are clearly
visible as lines of accumulation of these mode
points.

The polar sections of the ray surface of Ge
shown in Fig. 3 have been prepared in a similar
way, by selecting from a large set of calculated
V s only those which lie within 0.5' of the partic-
ular polar plane. Sectioned folding edges of the
ray surface show up clearly as cusps where the
mode points accumulate.

A. General considerations concerning the slowness
and ray surfaces

(8)

where 60, and M~ are the solid angles subtended
by the two clusters in s and V space, respectively.
It is readily shown from this definition of A that

where E is the Gaussian curvature of the slowness
surface. At the conical points K diverges and
hence the phonon intensity is infinitesimally small
on the circles of conical refraction. The other
extreme is where K is zero. This gives rise to a
caustic on which the phonon intensity is infinite.

The Gaussian curvature is related to the two
principal curvatures L, and L, by

E = I,L2. (10)

With the exception of the eight conical points,
each point s(n) on the slowness surface has a
unique point V(n) corresponding to it on the ray
surface. The ray vectors for the n's in the im-
mediate vicinity of any of the conical points on the
other hand generate a right circular cone about the
particular (111) axis. This effect is known as
internal conical. refraction. " The cone intersects
the ray surface on the circle of conical refraction.
Points on the ray surface immediately to one side
of the circle belong to the T, branch while those
on the other side belong to the T, branch. The two
sections of the ray surface match up smoothly on
this circle. Under certain conditions a folding
edge will touch the circle at six points. Each time
it does so the locations of the T, and T, sections
with respect to the circle are reversed. This ef-
fect is discussed in more detail in Sec. III.

It follows from Eq. (7} that the group velocity
V(n) is perpendicular to the slowness surface at
the point s(n). If a small cluster of points on the
slowness surface, representing the wave normals
for a group of phonons, is considered, then the
curvature of the slowness surface is of crucial
importance in determining the angular size of the
image cluster on the ray surface, and hence the
extent to which the phonons are focused. ' The en-
hancement of phonon flux by this focusing is mea-
sured by the factor'
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Since L, and L, can be positive or negative, the
same applies to E. Away from points of degen-
eracy L, and L, are continuous functions of n and

hence the slowness surface can be partitioned
into" convex regions where L, and L, are both
positive, saddle regions where either L j or L, is
negative, and concave regions where both Lj and

L, are negative. These 'regions are separated by
boundary contours, known as parabolic lines, on
which K= 0. The convex and concave regions come
into contact only at a discrete set of points, if at
all.

The parabolic lines are associated with the fold-
ing edges of the ray surface' and with caustics in

the phonon intensity. For the most part these
caustics correspond to the elementary fold ca-
tastrophe. "~" A number of other types of caustic,
however, also occur. Points on the parabolic
line where the direction of the vanishing principal
curvature is parallel to that line give rise to cusp
catastrophe's. " A parabolic line will meet a sym-
metry plane at right angles (except at degeneracy
points) and there the two principal curvatures
necessarily lie parallel and perpendicular to that
plane and consequently also to the line. It is not
wholly unexpected therefore to find that for cubic
symmetry the majority of cusps are located on
symmetry planes. The occurrence of the butter-
fly and hyperbolic umbilic catastrophes will be
described in the next section.

B. Elastic constants and ranges of anisotropy

The shapes of the three characteristic acoustic
surfaces of a crystal depend only on the ratios of
its elastic constants. The actual magnitudes of
the C,.~'s and the density of the material merely
affect the scale. In cubic symmetry there:are
three elastic constants, and these are required to
satisfy the thermodynamic constraints" C44& 0,
C„' IC» I

and C„+2C„&O.
On a plot of a = C»/C«versus b = C»/C«, as

shown in Fig. 2, this means a crystal must be lo-
cated between the two lines a = —2b and a = b in
order to be stable. A crystal lying to the left of
the first line will have a negative buI.k modulus
while one situated to the right of the second would

have a negative shear modulus in certain orien-
tations.

This wedge-shaped area of stability may be
subdivided into a number of zones which are dis-
tinguished by the presence or absence of various
features in the acoustic surfaces. To start with,
below the line a = 1 where C» &C44, the transverse
phase velocities exceed the longitudinal velocity
in the (100) directions. Similarly, to the left of
the line b = —1 where C»&- C44 the transverse

velocities exceed the longitudinal velocity in the
(111)directions. It is exceedingly rare to find
crystals where the longitudinal mode does not
have the largest velocity, "and so we will confine
attention in what follows to the remaining. area.
'This area is bisected by the line a= b+2, which
corresponds to the condition for elastic isotropy:

C jj C j2 2C44 0 In this isotropic limit the
three sheets of the acoustic surfaces are spheres,
and the two transverse sheets coincide. These
surfaces become progressively more distorted the
further a crystal lies from this isotropy line.

A number of definite stages can be distinguished
in the development of the shape of these surfaces.
In Fig. 2(a), which refers to the T, branch, these
are represented by the lines &, B, C, D, E and

F, and in Fig. 2(b), which applies to the T,
branch, these stages are given by the lines F, 6,
and H. Each of these lines signals the change in
sign of a principal curvature of the slowness sur-
face near either the (100), (110), or (111)direc-
tions which is accompanied by the appearance of
a new feature in the folding of the ray surface.

The compilation of elastic constants by Hear-
mon" has been used for positioning the substances
that are listed in Fig. 2, with one exception: The
constants for diamond (C) are due to Grimsditch
and Ramdas. "

III. THE SLOWNESS AND RAY SURFACES

A. Longitudinal modes (L)

In the elastic constant domain specified in the
preceding section, the mode which in any partic-
ular direction has the largest phase velocity, and

which therefore is associated with the innermost
sheet of the slowness surface, is always longitud-
inal or at least quasilongitudinal in character.
This innermost L sheet is completely separated
from the other two sheets, and it follows from the
fact that the equation for this surface is of degree
6 that this sheet must be entirely convex. " As a
consequence, the corresponding sheet of the ray
surface can possess no folds and must also be en-
tirely convex.

For crystals with ~= Cjj Cj2 2C44 negative,
i.e., those which lie to the right of the isotropy
line in Fig. 2, the L sheet of the slowness surface
bulges out and is most convex in the (100) direc-
tions [see Fig. 1(a)] where v and V have their min-
imum values, and is least convex in the (111)di-
rections where e and V are at their maxima. Con-
sequently, longitudinal phonon flux is concentrated
or focused most strongly in the (111)directions
and is least intense in the (100) directions. These
various effects are evident in the sections of the
ray surface of Ge shown in Fig. 3. The experi-
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FIG. 2. (a) Conditions on the elastic constants that lead to various singular features in the T ~ sheets of the slowness
and ray surfaces discussed in the text. (b) Similar conditions relating to the T2 sheets.

mental results of Hensel and Dynes" confirm that
the I modes of Ge are focused in the (111)direc-
tions.

For crystals which lie to the left of the isotropy
line in Fig. 2 and have & positive, the opposite
applies. The slowness sheet bulges out in the (111)
directions where e and V are at their minima and
is flattest in the (100) directions where v and V are
at their maxima [see Fig. 1(b)]. The phonon flux
is focused towards the (100) directions and away
from the (ill) directions as can. be seen for CsCl
in Fig. 4.

B. Slow transverse modes (T&)

The outermost T, sheet of the slowness surface
belongs to modes which are quasitransverse in
character and which have the smallest of the
three phase velocities. It makes contact with the
T, sheet in the (100) and (111)directions. Except
in the isotropy limit this surface possesses both
convex and saddle regions, and for certain values
of the elastic constants concave regions as well.

On moving from the isotropy condition to the
right, i.e., in the direction of increasing b or de-
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FIG. 3. Polar sections of the ray surface of Ge. A uniform distribution of n's on average 0.5 apart has been used to
generate a set of ray vectors. Each point represents one of these V's which lies within 0.5' of the particular plane.
The symmetry plane sections (a) and (c) show more detail than many similarly described diagrams in the literature.
This is because they include the effect of n's which lie outside the plane but which have V's in these planes.

creasing a, the T, sheet becomes distorted from
spherical. This is most noticeable near the (111)
directions where the surface is dimpled inward,
with furrows running part of the way towards the
neighboring (100) directions. Within these depres-
sions the surface is saddle shaped (i.e., K nega-
tive), and each is bounded by a parabolic line sep-
arating it from the rest of the surface which is
convex (i.e., K positive).

The next important change to come about is the
appearance of sets of four furrows radiating out-
ward from each of the (100) directions toward the
neighboring (111)directions. This feature re-

quires that the principal curvature transverse to
the (110)planes and close to the (100) directions
should be negative. This curvature changes sign
when

2(a —1)(b+ 1)

+ (a —b-2)(a+ 2b+1)(2a+b —1)= 0,

which is represented by line A in Fig. 2. The
proof of this and some subsequent results is given
in the Appendix.

Figure 5(a) shows the regions of different curva-
ture in the proximity of the irreducible sector of



3462 A. G. EVERY

10 20
e (degrees)

30 40 50 54.7
45

FIG. 4. Phonon-enhancement Inap for the I mode of
CsCl. The mode points correspond to the directions of
ray vectors which are associated with n's distributed
uniformly with an average separation of 0.5 . The map
is restricted to the irreducible sector lying between
the [001], [101], and [111]directions, and covers 1/48th
of the unit sphere.
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the unit sphere lying between the [001], [101], and

[111]directions. Those marked + —have one prin-
cipal curvature positive and one negative, and are
separated from the ++ regions in which both prin-
cipal curvatures are positive by parabolic lines
(the solid lines). The double-headed arrows at
various points on these lines denote the direction

of the principal curvature which is zero. The
corresponding portion of the ray surface is shown
in Fig. 5(b). Folding edges of this surface are
represented by solid lines and the dashed line de-
notes the circle of conical refraction on which the
T, and T, sheets meet. The complete T, sheet may
be conveniently visualized as consisting of the fol-
lowing three pieces replicated 48 times in accor-
dance with the symmetry operations of the cubic
point group:

(a) This piece is bounded by the line passing
through the points 0'1'2'3'4'6'0' and is the image
of the region 0123460 of the slowness surface.

(5) Bounded by 0'1'2'0' and is the image of the
region 0120.

(c) Bounded by 4'5'5"3'4' and is the image of
the region 4534. The point 5 has one-sixth of the
circle of conical refraction between 5' and 5" as
its image. Pieces (a) and (5) are joined along the
folding edge 0'1'2', and (a) and (c) are joined
along the folding edge 3'O'. The cusps at 2', 3'.,
and 4' occur as a result of the vanishing principal
curvature at 2, 3, and 4 being parallel to the
parabolic line. The fold lines in Fig. 5(b) can
also be taken to represent the position of caustics
in the phonon intensity. Thus the fold and cusp
elementary catastrophes are featured as well as
the structurally unstable situation in the [001] di-
rection where eight fold lines converge to a point.

As the anisotropy is increased further, points
2 and 3 approach each other and meet, giving rise
to a, continuous furrow running between the [111]
and [001] directions. As a result cusps 2' and 3'
of the ray surface annihilate and pieces (5) and (c)
join up into a single piece. Two crystals that ex-
hibit the type of surface that now results are dia-
mond and aluminium, Figure 6 shows the phonon-
enhancement map for the former.

As the anisotropy is increased further the fur-
rows broaden out near the [001] direction and then
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FIG. 5. (a) Regions of different curvature for the T~
sheet of the slowness surface when the anisotropy lies
just beyond A. (b) Disposition of folds in the ray surface,
which correspond to caustics in the phonon-enhancement
map.

vg0

FIG. 6. Phonon-enhancement map for the T~ mode of
diamond. The cusps 2' and 3' in Fig. 5(b) have just met.
The cusp 7' c'an only just be discerned.
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in three fold lines in the ray surface which bulge
outwards from the circle of conical refraction [see
Fig. 10(b)]. These do not end in cusps, as might
be expected in view of the direction of the vanish-
ing principal curvatures at 3 and 4, but meet the
circle tangentially. The missing portions of these
fold lines, needed for continuity, are to be found
in the T, sheet. Between points such as 3' and 4'
the T, sheet extends beyond the circle of conical
refraction, is folded across the line 3'2'4', and
then approaches the circle from outside. Here it
joins up smoothly with the T, sheet which between
3' and 4' approaches the circle from the inside.

The above situation gives rise to a remarkable
effect in the phonon intensity. The six points
where the fold line touches the circle of conical
refraction lie on a caustic, where the enhance-
ment is infinite as well as on the circle of conical
refraction where the enhancement is zero, so that
the phonon enhancement cannot be uniquely de-
fined at these points. This is related to the fact
that the curvature of the slowness surface at the
conical point does not have a unique value. It
tends to -~, 0, or +~ depending on the direction
of approach. In the phonon-enhancement map for
CsCl shown in Fig. 11 this caustic is only faintly
visible compared with the other much more prom-
inent caustic that is present. One conclusion that
may be drawn from this is that while the analysis
in terms of caustics is important in gaining a
deeper understanding of the main features in
phonon-imaging patterns, "the calculation of the

detailed phonon-enhancement map is necessary for
a complete interpretation of experimental results.

, 0
to

B (degrees)
20 30

2'
1

50 54.7
45

FIG. 11. Phonon-enhancement map for the T~ mode
of CsCl. The caustic that meets the circle of conical
refraction is much fainter than the other caustic, and
almost forms a hyperbolic umbilic catastrophe with it.

C. Fast transverse modes (T2)

The third or T, sheet of the slowness surface lies
between the other two, and belongs to the fast

quasitransverse modes. It is formed into conical
shaped peaks in the (111)directions, and there it
meets with the inward projecting dimples of the

T, sheet. It also makes smooth contact with the

T, sheet in the (100) directions. It is entirely con-
vex when the anisotropy is small, and the corre-
sponding sheet of the ray surface therefore pos-
sesses no folds.

Furrows, running between adjacent (100) direc-
tions, appear in the T, sheet of the slowness sur-
face when the anisotropy reaches line H in Fig.
2(b). This line is given by the equation

a'+ab —2(b+1)' =0.
The curvature transverse to the (100) planes is
now negative.

The ray surface, under these circumstances, is
folded on either side of the cube planes, with two
foie lines running between each pair of adjacent
(100) directions. The T, sheet approaches the
circle of conical refraction from outside and

meets up there with the T, sheet. Miller and Mus-
grave' have described this case in more detail. 'The

caustics in the phonon intensity, associated with
these folding edges, show up prominently in experi-
mental results on Ge.'"" The folding and the effect of
the close proximity of the caustics to the (010)
plane are both apparent in Fig. 3.

To the left of the isotropy line the T, sheet of
the slowness surface remains convex until

(2g+ b —I)(a —b —2) —2(b+ 1) = 0,
which is represented by line G in Fig. 2(b). At
this point, in the (110)directions, the curvature in
the cube planes changes sign. Small +- regions
develop around the (110)direction such as the one
bounded by the chain dotted parabolic line in Fig.
12(a). The ray surface, as a consequence, be-
comes folded in the way shown by the chain dotted
line in Fig. 12(b).

As the anisotropy is increased further, the +-
regions of the slowness surface expand to even-
tually surround the (111)directions, but in the
process leaving small ++ islands at the conical
points as shown by the solid lines in Fig. 12(a).
This process is completed as the anisotropy goes
through line F which is given by Eq. (16). The
resulting system of folds in the ray surface is
shown by the solid lines in Fig. 12(b). Attached
to the circle of conical refraction there are now

fold lines such as 7'5'6' which meet the circle
tangentially and then penetrate through to the T,
sheet as described earlier. Between points such
as 6' and 8', the T, sheet approaches the circle of
conical refraction from the inside. Between points
such as 7' and 6' it crosses the circle to the out-
side, is folded along 7'5'6' and then approaches
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FIG. 13. Phonon-enhancement map for the T2 mode
of CsCl. As with the T~ mode, the fold caustic that
meets the circle of conical refraction is relatively faint.

~ [00']

(b

FIG. 12. (a) Curvature of the T2 sheet of the slowness
surface beyond G (chain dotted line) and beyond F (solid
line). (b) Disposition of folds in the ray surface.

the circle from the outside. Figure 13 shows the
phonon-enhancement map for the T, mode of CsCl.
As in the case of the T, mode, the caustic that
meets the circle is relatively faint and would
probably be difficult to detect experimentally.

IV. SUMMARY AND CONCLUSIONS

The acoustic slowness and ray surfaces of cubic
crystals have been shown to exhibit considerable
variation in shape depending on the degree of
elastic anisotropy. The major emphasis has been
on determining the different ways in which the ray
surface can be folded and thus what systems of
caustics can occur in the phonon-intensity map.
As long as C» & C~ and Cy2 & C4, the longitudinal
sheet of the ray surface does not possess any
folds and is entirely convex. The T, sheet dis-
plays numerous systems of folds depending on the
degree of anisotropy, while the T, sheet shows
slightly less variation.

APPENMX

We outline here a method for deriving Eqs. (11)-
(18). Let g and C denote the polar and azimuthal
angles, respectively, of the normal to the slow-
ness surface in the direction (g, p). Then

tang = (y'„+ y', )'~'/y, ,

and

tanC =V, /V„, (A2)

where p„, V„and p, are the Cartesian compo-
nents of the group velocity which is also normal
to this surface. 'These components may be ex-
pressed in terms of the phase velocity v and its
derivatives by

8v Bv sing
p, =g singcos&4&+ —cosgcosp ——. , (A8)

Bg Bp sing

p„=g sin g sing +—cos g sing +—. , (A4)
ev cos@

80 Bp sing '

Away from the (100) and (111)directions the
curvature of the slowness surface is uniquely de-
fined at every point. The caustics that occur as a
result of this curvature being zero are of the
structurally stable type, with the fold, cusp, hy-

perbolic umbil. ic, and butterfly catastrophes being
featured for various values of the elastic con-
stants. Some remarkable forms of structural in-
stability result from the degeneracy of the T .

modes in the (100) and (111)directions.
From examples given, it is clear that phonon-

intensity caustics can vary considerably in prom-
inence. In interpol"eting phonon-imaging results
therefore, it is important to calculate the full
phonon-enhancement map as well as the locations
of the caustics.
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85
p = g cosg ——sing.C Bg

(A5) ee —0
@=0,7r/4

(A7)

In a symmetry plane the directions of the two
principal curvatures of the slowness surface lie
in, and perpendicular to, this plane. In particu-
lar, if this plane contains the g axis then the two
curvatures are proportional, respectively, to

ee
d

sine 84
and

Se sing 9$

Near the [001] direction the two transverse
velocities are given to second order in g by

'
)1/2

v = 1+ ' (a, + [a', —sin'2p(2a, —1)]'~'},
C4, ] 4C4,

one obtains Eqs. (12) and (13), while by setting

84 =0
e 4' 5=0, w/ 4

(A8)

ae =0
i/2@=7f/4, e= arCCOS{1/S ' )

(A9)

one obtains Eqs. (11), (14), (15), and (17). Simi-
larly by using the well-known velocity expressions
that apply in the (010) and (110) planes for cubic
crystals ' 2 and by setting

where

&, = C„—C„—2C44,

(A6) 86 =0
y=o, e= &/4

(Alo)

and

~, = ~,/(C„- C„)+ 2.
%ith the use of this velocity expression and by
setting

one obtains Eqs. (16)and (18), respectively. Equa-
tions (12), (13), (17}, and (18) have previously' '
been mentioned in the literature, but Eqs. (11),
(14), (15), and (16) are presented here for the first
time.

G. F. Miller and M. J. P. Musgrave, Proc. B. Soc.
London Ser. A 236, 352 (1956).

F. Rosch and G. Weis, Z. Phys. B 25, 101 (1976); 25,
115 (1976).

M. J. P. Musgrave, Proc. Cambridge Philos. Soc. 53,
8ev (195v).

Q. J. P. Musgrave, J. Elastic. 9, 105 (1979).
S. R. Prabhakaran Nayar and K. S. Viswanathan, Can.
J. Phys. 50, 1903 (1972).

H. J. Marie, J. Acoust. Soc. Am. 50, 812 (1971).
J. Philip and K. S. Viswanathan, Phys. Bev. B 17, 4969
(1978).

C. G. Winternheimer and A. K. McCurdy, Phys. Rev.
B 18, 6576 (1978).

B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev.
B 3, 1462 (1971).
J. C. Hensel and B. C. Dynes, Phys. Rev. Lett. 43,
1O33 (1eve).
G. A. Northrop and J. P. Wolfe, Phys. Rev. Lett. 43,
1424 (1979).
W. Eisenmenger, in Phonon Scattering in Condensed.
Matter, edited by H. J. Maris (Plenum, New York,
1980), pp. 303-308.
A. K. McCurdy, H. J. Maris, arid C. Elbaum, Phys.
Bev. B 2, 4077 (1970).

f4P. Taborek and D. L. Goodstein, Phys. Rev. B 22,
1550 (1980).
M. Greenstein and J. P. %olfe, Phys. Rev. Lett. 41,
715 (1978); R. S. Markiewicz, M. Greenstein, and
J. P. %'olfe, Solid State Commun. 35, 339 (1980).
P. Taborek and D. Goodstein, J. Phys. C 12, 4737
(1eve).

i?F. I. Fedorov, Theory of E/astic Waves in Crystals

(Plenuxn, New York, 1968).
A. G. Every, Phys. Rev. B 22, 1746 (1980).
M. J. P. Musgrave, Crystal Acoustics (Holden-Day,
San Francisco, 1970).
M. J. P. Musgrave, Proc. R. Soc. London Ser. A 226,
339 (1954).

2~G. F. D. Duff, Philos. Trans. R. Soc. London 252, 249
(1e6o).
B. A. Auld, Acoustic I'ields and Waves in Solids
(Wiley, New York, 1973), Vol. 1.
M. V. Berry, Adv. Phys. 25, 1 (1976).
J- F. Nye, Physical Properties of Crystals (Oxford
University Press, London, 1957).
The only clear-cut case to the author's knowledge is
that of the intermediate valence compound Tmo 99 Se.
See H. Boppart, A. Treindl, and P. Wachter, Solid
State Commun. 35, 483 (1980). A marginal situation
in which C~~= C~2= C44 is provided by the martensitic
transformation in fcc manganese alloys. See M. Sato,
R. D. Lowde, G. A. Saunders, and M. M. Hargreave,
Proc. R. Soc. London Ser. A 374, 115 (1981).

26R. F. S. Hearmon, in Landolt-Bornstein: Numerical
Data and Eunctiona/ Relationships in Science and
Technology„New Series, edited by K.-H. Hellwege
(Springer, Berlin, 1979), Group III, Vol. II, pp. 1—244.

'M. H. Grimsditch and A. K. Bamdas, Phys. Rev. B 11,
3139 (1975).
In comparing heat pulse intensities the density of mode
points should be multiplied by a factor 1/v to take
account of the heat capacity of the modes.
E. C. Zeeman, Catastrophe Theory (Addison-%esley,
Beading, Mass. , 1977).
p. C. Waterman, Phys. Rev. 113, 1240 (1959).


