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The self-consistent electronic structures of Si, Ge, and zinc-blende GaP, GaAs, ZnS, and
ZnSe have been determined using the linear combination of Gaussian orbitals method with
a local-density form of the exchange-correlation functional. A completely general form of
the spatial dependence of the potential has been used to describe accurately the bonding
character in the tetrahedral environment. Results are presented for the valence- and
conduction-band energies, densities of states, effective masses, and charge densities. Com-
parisons are made with previous calculations and with photoemission measurements. A
striking result is that the local-density theory underestimates the optical band gaps by ap-
proximately 30% or more, although the general conduction-band topology is good. The
theoretical valence-band energies, charge densities, and electron and hole effective masses
are also in good agreement with experiment. The energies and wave functions presented
here are used to determine the optical properties of these materials in the following paper.

I. INTRODUCTION

The present study was motivated by the need to
ascertain the efficacy of present-day self-consistent
energy-band theory in describing the electronic
structures (including excitation spectra) of represen-
tative semiconductors. The materials we have
chosen to study are Si and Ge in the diamond struc-
ture, and GaP, GaAs, ZnS, and ZnSe in the zinc-
blende structure. These materials were chosen for
several reasons: (1) due to their technological im-
portance they are well studied experimentally, (2)
there is a long history and theoretical literature re-
garding most of them, and (3) the maximum atomic
number is 34 (for Se) so that relativistic effects,
neglected in our calculations, are relatively unim-
portant. A comprehensive study such as this is par-
ticularly appropriate at the present time as the
local-density (LD) theory of electron systems is now
well developed and relatively unambiguous. Previ-
ous studies of semiconductors have usually been
limited either because of their empirical nature,!~
non-self-consistency,®~!° or the propensity for arbi-
trarily varying the form of the exchange-correlation
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potential to fit some aspect of the experimental
results (often the valencé-conduction—band gaps) at
the expense of theoretical rigor and the concomitant
errors in other parts of the electronic spectrum and
charge density.!'~!7 Furthermore, many of the pre-
vious calculations have made approximations to the
shape of the total potential (muffin tins, overlapping
spheres, etc.,0~518-22) which leads to possible er-
rors in the electronic structure which are largely not
understood. The present calculations using the self-
consistent (SC) linear combination of Gaussian orbi-
tals (LCGO) method, and other recent ab initio cal-
culations,?>?* avoid these pitfalls and may be con-
sidered state-of-the-art applications of the LD theory
for semiconductor systems. This is extremely im-
portant, as attempts to go beyond one-electron LD
theory in describing, for instance, excitation spectra
should be based on sound LD ground-state calcula-
tions in order to avoid being misleading.

We have chosen to divide our work into two pa-
pers for clarity. The present paper is mainly con-
cerned with describing the results of our ground-
state energy-band calculations for the six semicon-
ductors, while the second following paper (to be re-
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ferred to as II) gives a thorough discussion of our
calculated optical properties and compares and
discusses the agreement with experiment. There are
six sections in the present paper: Section II
describes the LCGO methodology used in perform-
ing the band-structure calculations; Sec. III gives
results of the energy bands and densities of states in-
cluding a comparison with other theoretical results;
Sec. IV discusses our results for photoemission spec-
tra and compares with experiment; Sec. V deals
with our calculated hole and electron effective
masses and their experimental counterparts; while in
Sec. VI we present our results for the ground-state
charge densities and the resultant bonding, and
again we compare with the available experimental
data.

II. METHODOLOGY

The linear combination of Gaussian orbital
(LCGO) method?>?¢ has been successfully applied,
self-consistently, within the local-density-functional
formalism to study the electronic properties of a
wide range of simple?”?® and transition metals®®~3!
and a few covalently bonded materials.’?> The essen-
tial features of the computational technique together
with a detailed account of the computer programs
for cubic monoatomic crystals have been published
elsewhere.> Here we will give a brief discussion of
the procedure that we have adopted for a more gen-
eral system with more than one atom per unit cell
and nonsymmorphic group symmetry.

A. Linear combination of Gaussian
orbital basis

The optimum choice of a LCGO basis set which
provides maximum variational freedom yet still
maintains a manageable size of the secular equation

has been the subject of numerous discussions.>* In
our study for covalently bonded diamond and zinc-
blende materials we have chosen a linear combina-
tion of atomic orbitals minimum basis set with an
additional shell of s, p, and d virtual Gaussian-type
orbitals (GTO) for added variational flexibility. The
atomic orbitals were solutions to the atomic secular
equation constructed with the self-consistent

" Herman-Skillman atomic potential®> and a basis set

of GTO. The Gaussian exponents were varied non-
linearly to minimize the atomic energies as follows:
We first construct Gaussian wave functions which
minimize the atomic 1s, 2p, or 3d state energies fol-
lowing the procedure of Euwema.*® For each angu-
lar momentum we add two more extended GTO to
minimize the energies of the next lowest states. This
procedure is continued until all valence states of the
atom are completed. The atomic orbitals were then
augmented by an additional s, p, and d shell of in-
dependent GTO for the variational freedom needed
to describe the wave functions in a solid. The pres-
ence of these diffuse GTO often leads to approxi-
mate linear dependence of the basis set, hence the
overlap matrices must be checked carefully against
negative or unphysically small eigenvalues
throughout the Brillouin zone. We find it helpful to
truncate the tail of the highest valence atomic orbi-
tals by setting minimum values for the correspond-
ing Gaussian exponents. Variationally, this has little
effect because the long tail of the atomic orbitals are
strongly modified in a solid by the overlap of the
wave functions on the neighboring atomic sites.
These changes can only be fitted with the aid of the
additional virtual orbitals. The resulting basis set is
not complete but does overlap both the bounded
and low excited subspace of the wave functions. It
leads to a dimension of 36 X 36 for the secular
equation for Si, 45 X 45 for GaP and ZnS, and

54 X 54 for Ge, GaAs, and ZnSe.

B. Crystal potential
The initial Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic
potentials. The corresponding overlapping atomic charge density is used to evaluate the local-density
exchange-correlation potential which we choose to be a Wigner interpolation formula®’ of the form (energies

are in Ry)
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where the charge density p is evaluated at the point
T. This form of the Wigner interpolation formula is
numerically nearly identical to the one used by
Hamann?® in his Si band-structure calculations to be

(p'? + 0.079)>

, (1)

r
discussed in Sec. III C. Owing to the analytic proper-

ties of the Gaussian orbitals it is customary to ex-
pand the crystal potential in a set of either sym-
metrized plane waves (SPW) or overlapping GTO.



The plane-wave basis has the advantage of being
completely general, but has the disadvantage of
slowly converging near the nuclei due to the
Coulomb singularity. For example, even with the
aid of an Ewald-type procedure, it is necessary to
include 4000 stars of reciprocal lattice vectors to
describe the crystal potential for Ni (Ref. 29) and
Fe.*® For a more complex structure with less sym-
metry such a procedure can be prohibitively expen-
sive. The GTO, on the other hand, converge rather
rapidly (fewer than 20 GTO are needed to describe
an atomic potential to good accuracy). However,
overlapping spherical GTO are too spherical around
each atom to describe the directional bond in a co-
valent material. Although results can be improved
by including higher angular momentum terms
around each atom and/or additional GTO centered
at the interstitial tetrahedral sites, such a procedure
is somewhat arbitrary compared to the Fourier
series expansion, where the reciprocal lattice vectors
are rigorously defined. Thus we choose to expand
our potential in a mixed basis of GTO and SPW as
proposed by Euwema.*® The self-consistent
Herman-Skillman neutral atomic Coulomb and
exchange-correlation potential are each fitted with
18 even-tempered GTO.*® The four longest range
GTO which can be represented by rapidly converg-
ing Fourier series are deleted to avoid excessive lat-
tice sums in constructing the overlapping crystal po-
tential. The difference between the exact atomic
Coulomb potential and the truncated GTO series
are tabulated over a logarithmatic radial mesh and
their Fourier coefficients calculated numerically. In
general, the crystal ¥, (T) cannot be expressed as a
superposition of atomic ¥,.(T). However, subtract-
ing out the contribution from the overlapping atom-
ic GTO series helps to eliminate the cusp behavior
near the nuclei to yield a rapidly converging Fourier
expansion. Typically, 25 independent Fourier coef-
ficients were evaluated via a three-dimensional
least-squares fitting procedure based on a sampling
of 400 random points in the unit cell. Once the ex-
pansion coefficients of the potential are known, the
Hamiltonian matrices can be evaluated analytically,
the secular equation is solved, and we are ready to
find the self-consistent potential.

C. Self consistency

The major modification in the charge density due
to self-consistency (charge transfer, change in
valence electron s and p concentration, etc.) are ex-
pected to occur in the interstitial region, particularly
along the tetrahedral bond. Therefore the Gaussian

24 FIRST-PRINCIPLES ELECTRONIC STRUCTURE OF Si, Ge, ....IL ... 3395

expansion describing the atomic potential near the

nucleus is kept frozen at their starting values; only

the Fourier coefficients are varied following the pro-

cedure of Callaway and Fry.*®® At the /th iteration,

the Fourier coefficients of the input Coulomb poten-

tial VC(K ) are evaluated from the output charge
density p(K) of the (I—1)th iteration, with

- 87 =
Vo(K,) = K“ p(K,), )

and p(ﬁs) calculated analytically from the wave
functions

p(K) = 3 Ca(I)Cy(K)Sy(K,—K,) . 3)
nk
Here the sum runs over all occupied bands (index
n) and wave vectors Kk, c¢,;(k) are the eigenvectors,
and the generalized overlap matrices

SiKK) = [t K pe’™ T K Ddr @)

are simply the matrix elements of the plane waves
calculated between the bas1s functions ¢;(k,7). Ten
special K points® in the - th of the irreducible Bril-
louin zone were used in our iterations for a self-
consistent potential. In order to speed up the con-
vergence, p(K ) is relaxed by mixing with 50% of
the input p(K ) at the (/—1)’s iteration before they are
substituted into Eq. (2). Once p(K ) has been deter-
mined it is straightforward to calculate p(T) and
hence the exchange-correlation potential at the
selected points in the unit cell. The contribution
from the overlapping GTO are subtracted before the
new Fourier coefficients ch(K ) are determined by
a three-dimensional least-squares fitting procedure.
Finally, the plane-wave contributions of both the
Coulomb and the exchange-correlation potential to
the new Hamiltonian are calculated via

Hy(K) = 3 [ VeK)+ VilK,)]

S;(KK,), (5)

where S,-,-(E’,I—(:&) is the same matrix used in Eq. (3)
to evaluate p(K;) which has been calculated once
and for all before the self-consistent cycles begin.
We found p(K ) converges to within 10™* a.u. and
the energies to 0.02 eV at the end of 5 iterations.
Once the self-consistent potential is determined, the
energies and wave functions are tabulated at 89
equally spaced points in 4‘—8th of the Brillouin zone
in order to calculate the density of states and the
optical properties (including the matrix elements)
presented in'the following sections and paper 1I,
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respectively. The tetrahedral integration method*’
was used in these calculations.

III. BAND STRUCTURES AND DENSITIES
OF STATES

In Table I we list the lattice constants used in our
calculations, while Figs. 1 — 6 show the energy
bands and densities of states [N (E)] of Si, Ge, GaP,
GaAs, ZnS, and ZnSe, respectively. Table II gives
a tabulation of energy eigenvalues at the symmetry
points I', X, and L for all six materials; a more
complete list of results on the 89-point mesh is
available from the authors.*! As can be seen from
Figs. 1 and 2 and Figs. 3 — 6 the energy bands and
N (E) of the diamond structure elements Si and Ge
are very similar, as are the results for the zinc-
blende compounds; we discuss the two sets of
results separately.

A. Si and Ge results

From Figs. 1 and 2 we see that the sp® valence
bands of the homopolar semiconductors Si and Ge
are gapless with the lower energy states (e.g., near
I']) being mainly s-like and the upper valence bands
being dominated by p-like character (by inspection
of the LCGO eigenfunctions). Both Si and Ge are
calculated to be indirect-gap semiconductors with
their indirect gaps being I'sss — A§ and I'yss — LS,
respectively. The indirect and lowest direct gaps are
listed in Table ITII. All of the gaps are significantly
smaller than the values observed in optical measure-
ments, although the calculated symmetry assign-
ments of the conduction-band states appear to be
correct in all cases. In particular, the ordering of
the I'Ys and I'% states, opposite for Si and Ge, is
correctly predicted in both cases. We note that the
Iy state of predominant s character is very local-
ized around the Si or Ge site, and its eigenvalue is
sensitive to variations in the SC potential due to
exchange-correlation, relativistic effects, or other ap-
proximations in the theory. Further comparisons

and discussion of the calculated conduction-band
states with optical measurements are presented in
paper II.

B. GaP, GaAs, ZnS, and ZnSe results

The energy bands and N (E) of the heteropolar
zinc-blende structure compounds are shown in
Figs. 3—6. As can be seen the overall topology of
the energy bands of all four compounds are very
similar, but they have some important differences.
First we note that in the zinc compounds the 3d
bands of Zn fall in the middle of the sp valence-
band manifold, in particular, in the heteropolar
valence-band gap. The Ga 3d bands (not shown)
are several electron volts below the lowest sp
valence-band energy (see Sec. IV). The several
electron volt heteropolar valence-band gap between
the lower and ‘upper sp valence bands is related to
the absence of an inversion center in the zinc-
blende lattice and the electronegativity difference
between the cations (Zn or Ga) and anions (P, As,
S, or Se). The occupied valence states are some-
what dominated by anion electrons, with the lowest
band being primarily s-like and the upper band be-
ing p-like. Further discussion of the bonding and
charge density will be given in Sec. VI. All but
GaP are calculated to be direct- (I'{s—T'§) gap
semiconductors. In the case of GaP, the lowest
gap is ['{s— A, similar to Si. All of the gaps are
given in Table III, where, as in the case of Si and
Ge, the calculated gaps are systematically smaller
than those determined from optical measurements,
although the conduction-band topology is in accord
with experiment. An example of a subtle aspect of
the calculated conduction bands of GaAs and GaP
are the relative positions of the lowest L and X§
states in these two compounds. As can be seen
from Table II and Figs. 3 and 4 the ordering in
GaP is X§, L{, and opposite in GaAs, a result in
agreement with experiment.? =% In particular, we
find that L{ lies 241 meV below X§, in GaAs, in
fairly good agreement with the experimental results
of Aspnes et al.* who find the value 170 + 30 meV.

TABLE 1. Cubic lattice constants, a, used in the energy-band calculations.

Si Ge GaAs ZnS ZnSe
a (a.u.) 10.263 10.692 10.684 10.711 10.222
a (A) 5.431 5.658 5.654 5.668 5.409
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FIG. 1. Self-consistent energy bands and density of states for Si.

C. Comparison with other ab initio calculations ous approximations to ¥V, also exist. Several first-
principles SC-OPW calculations''~17 were per-
There is enormous literature on semiconductor formed for a number of semiconductors usually us-
band-structure calculations! =%’ of (with hindsight) ing a form of V,. = —3a(3/7)!3p!/3, with a = %,
varying quality. Some of the earliest successful cal- the Kohn-Sham value, or @ = 1, the Slater value.
culations of Cohen and co-workers' and Herman These SC-OPW calculations'""!” were a tour de
and co-workers® were empirical in nature, fitting ~ force in their time with the principal limitations be-
pseudopotential and OPW parameters to experimen- ing the difficulty of accurately including d electrons
tal optical and photoemission measurements. A in the OPW method and, by today’s standards, the
number of other non-SC calculations®~1° with vari- crude approximation made for V,.. Despite these
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FIG. 2. Self-consistent energy bands and density of states for Ge.
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FIG. 3. Self-consistent energy bands and density of states for GaP.

limitations the discussions of relativistic effects,!!")’
particularly spin-orbit splitting by Wepfer et al.,”
are a good source for ascertaining the quantitative
relativistic corrections (up to several tenths of an
electron volt) neglected in the present work.

More recently, a number of good quality SC cal-
culations??~2* have been performed with which we
can compare. The difficulty in doing so in a mean-
ingful way is due to various approximations often

made to the crystal potential (e.g., spherical approxi-
mations), and also the different forms of V. used.
Because of this we choose Si as an illustrative exam-
ple, there being several SC calculations'>?>** with
no shape approximation to the potential, and the
V. are nearly the same as ours. We show the
comparison in Table IV where we give our energy-
band results for Si along with the LAPW results of
Hamann?® who used a V,, very close to ours; the
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FIG. 4. Self-consistent energy bands and density of states for GaAs.
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FIG. 5. Self-consistent energy bands and density of states for ZnS.

SC-pseudopotential results of Zunger and Cohen?*
who used the Hedin-Lundqvist LD form of V', the
SC-OPW results of Stukel and Euwema'? for a V,,
ofbotha=landa=%.

As can be seen from Table IV our results are in
good agreement with the other SC calculations with
the biggest disagreement being with the « = 1 OPW
results.!? This is to be expected, as the latter is a
large overestimate of the LD form of V. which (see
Table IV) improves the calculated band gap, but
pays the price of yielding somewhat inaccurate
valence bands and presumably the charge density.

The @ = 3+ OPW results'? should be close to the
LD forms of V., and indeed these agree well with
our results and those of Hamann®* and of Zunger
and Cohen.* We should emphasize an important
conclusion of this comparison: All of the SC calcu-
lations using LD forms of V,. underestimate the
band gaps (as exemplified by X{ in Table IV) by
~30% or more. This underestimation of the band
gaps is not an artifact of numerical band-structure
approximations, but rather is a partial failure of the
LD theory in describing excited states. Further dis-
cussions of the observed deviations from one-
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FIG. 6. Self-consistent energy bands and density of states for ZnSe.
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TABLE II. Eigenvalues (eV) of lowest eight valence-conduction bands at ', X, and L. The top of the valence band is
chosen as the zero of energy, and the Zn d bands have been excluded. Symbols in parentheses are symmetry labels. A
more complete tabulation of eigenvalues on the 89-point mesh is given in Ref. 41.

(000~ X(200) Ln=t (000~ X(200) = Lain™
a a a a a a
Si Ge

—12.20(1) —8.03(1) —9.86(2') —12.46(1) —8.55(1) —10.352)
0.0025) —3.114) —7.25(1) 0.0(25") . —3.034) —7.39(1)
2.66(15) 0.79(1) —1.403) 0.72(2) 0.88(1) —1.403)
3.05(2) 10.113) 1.46(1) 2.61(15) 9.56(3) 0.52(1)
3.66(3) 3.8003)
7.732) 7.772')

GaP GaAs
—12.37(1) —9.47(1) —10.34(1) —12.35(1) —9.79(1) —10.56(1)
0.0(15) —6.58(3) —6.57(1) 0.0(15) —6.60(3) —6.49(1)
2.05(1) —2.68(5) —1.1103) 1.21(1) —2.64(5) —1.1203)
4.26(15) 1.84(1) 1.95(1) 3.78(15) 1.61(1) S 137D
2.1303) 5.1003) 1.88(3) 5.153)
10.83(5) 8.55(1) 10.26(5) 8.39(1)

ZnS ZnSe
—12.89(1) —11.67(1) —11.97(1) —12.67(1) —11.55(1) —11.83(1)
0.0(15) —4.493) —5.20(1) 0.0(15) —4.6903) —5.15(1)
2.26(1) —2.19(5) —0.8403) 1.83(1) —2.16(5) —0.853)
7.04(15) 3.61(1) 3.65(1) 5.86(15) 3.18(1) 2.91(1)
4.58(3) 7.5103) 3.64(3) 6.703)
10.92(5) 8.87(1) 10.85(5) 8.91(1)

electron LD theory are given in Sec. IV and in
paper IL

D. Relativistic effects

As mentioned previously our LCGO calculations
are nonrelativistic, a good approximation since the
maximum atomic number of the constituent ele-
ments in our study is 34 (for Se). However, rela-
tivistic corrections are not trivial so that we would
like to point out several aspects of their effects.
Two types of relativistic corrections occur: the
scalar mass velocity and Darwin shifts, and shifts
and splittings due to spin-orbit coupling. The form-
er are discussed in some detail by Stukel et al.!!
and the latter by Wepfer et al.!” in the context of
the SC-OPW calculations referred to earlier.
Another good discussion of the effects of relativistic

corrections may be found in the work of Chelikow-
sky and Cohen' using empirical pseudopotentials.

Consider first the mass-velocity and Darwin
corrections discussed by Stukel et al.!! They find
that the direct band gaps in ZnS and ZnSe are de-
creased by 0.3 and 0.6 eV, respectively, when these
corrections are included. This occurs primarily be-
cause this gap is I'{5— I}, a transition between a p-
like valence and an s-like conduction-band state, for
which the scalar relativistic shifts should be dif-
ferent, with the s-like state being pulled down more
than the p-like state. This should be a rather gen-
eral result: Relativistic effects will tend to worsen
the agreement between the theoretical and experi-
mental band gaps.

Effects due to spin-orbit splitting are more com-
plicated to discuss, but here we note that experimen-
tal values of A, the splitting of the I'}s,, or I'}s



24 FIRST-PRINCIPLES ELECTRONIC STRUCTURE OF Si, Ge, ... . L ... 3401

TABLE III. Present theoretical and experimental
direct (E) and indirect (E,) for Si, Ge, and GaP band
gaps in eV. Source of experimental results is Table 10-1
of Ref. 63.

Theor. Expt.
Si
E, (T'5s — I'fs) 2.66 4.18
E; (T'3s — A 0.65 1.13
Ge
E, (T3 —T%) 0.72 0.89
E, (I'ss — LY) 0.52 0.76
GaP
Eo (Tis—T9) 2.05 2.77
E; (Tis— A) 1.80 2.38
GaAs
E, (T'{s—T9 1.21 1.52
ZnS
E, (I'}s—T9 2.26 3.80
ZnSe
Ey (T —T9 1.83 2.82

states vary from ~0.04 eV for Si (Ref. 45) to
~0.45 eV for ZnSe.*® These are nontrivial correc-
tions which, however, likely have only a small effect
on the calculated charge densities and photoemis-
sion spectra which we discuss in this paper.

-IV. COMPARISON WITH PHOTOEMISSION
MEASUREMENTS
One of the most widely used experimental probes

of the semiconductor ground-state eigenvalues is
photoelectron spectroscopy.*’ Within certain ap-
proximations, to be discussed, angle-integrated mea-
surements of the energy distribution curves (EDC)
can be compared with appropriately broadened den-
sities of states, while angle-resolved photoelectron
spectra (ARPES) give direct E(k) results. EDC’s
obtained at x-ray**~>! and ultraviolet’>~>¢ wave-
lengths (to be referred to as XPS and UPS, respec-

tively), have been obtained for all of the semicon-
ductors we have studied (only XPS for ZnS). Re-
cently, accurate ARPES measurements have been
reported for GaAs. 378

In Fig. 7 we compare our theoretical N.(E)
broadened with a Gaussian function of 0.7-¢V full
width at half maximum with the experimental*®—36
XPS and UPS EDC’s. The broadening approxi-
mately accounts for the experimental resolution and
electron lifetime effects. No matrix elements were
included in the theoretical results so that the
discrepancies in the absolute intensities were not
meaningful. Although direct E (k) information is
not available from the EDC’s, in the past the experi-
mental data have been analyzed with the help of
theoretical band-structure results (usually results of
empirical pseudopotential calculations) to yield esti-
mates of critical-point energies. In Tables V and VI
we compare our critical-point energies with the so-
determined experimental counterparts. Note that in
Table VI we give the experimental and theoretical
locations of the Ga and Zn 3d bands (not shown in
Fig. 7) for comparison. Figure 8 shows our E(k)
curves along three symmetry lines along with the
ARPES results for GaAs,”*® and Table VII com-
pares the theoretical and experimental critical-point
energies. We also include in Table VII the XPS-
EDC values® for GaAs in order to indicate the
differences that show up between these two mea-
surements and their interpretations,

The agreement between our E(k) results and the
ARPES measurements for GaAs is quite good, with
the largest deviations being the systematically higher
(by ~0.5—0.75 eV) theoretical values of the low-
lying narrow As s band. Although this discrepancy
is not very large, it points up the nature of the
corrections one must consider in comparing theoret-
ical one-electron eigenvalues with photoemission
measurements (see below). The overall qualitative
agreement between our broadened N (E) results and
the XPS and UPS measurements is also very good.
Here too, however, there are deviations which need
to be explained. Experimentally, there is always
some uncertainty with regard to determining the
zero of energy (top of the valence band) which may
explain the small uniform shifts of the experimental
spectra with respect to our calculations [see, particu-
larly, the ZnS results in Fig. 7(e)], but relative peak
shifts need to be accounted for. These relative shifts
are most apparent for the narrow lower valence
bands (~ — 12 eV) for the zinc-blende compounds,
and particularly so for the Zn and Ga 3d levels. It
appears that the largest theoretical-experimental
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TABLE IV. Comparison of present LCGO eigenvalues (eV) with other ab initio self-

consistent calculations for Si.

Present OPW® OPW®
work LAPW? a= % Pseudopotential®

H —12.20 —12.02 —11.74 —12.04 —12.20
s 0 0 0 0

1s 2.66 2.49 2.79 2.33 2.48

S 3.05 3.18 2.75 3.31 2.50

H —8.03 —17.84 —7.75 —17.83 —8.02
X5 —3.11 —2.82 -2.72 —3.00 —2.93

§ 0.79 0.55 1.28 0.34 0.52
X4 10.11 10.32 9.79 9.87 9.97
LY —9.86 —9.64 —9.53 —9.63 —9.92

H —17.25 —17.06 —6.75 —17.14 —-17.21
L% —1.40 —1.16 —1.18 —1.26 —1.26

§ 1.46 1.40 1.60 1.39 1.39

g 3.66 3.37 3.83 3.12 3.12

#Reference 23.
YReference 12.
‘Reference 24.

disagreements occur for the relative separations of
the higher extended valence bands and the lower ly-
ing more localized occupied states. The more these
lower states are localized (narrower bands), the
larger is the disagreement. The theoretical-
experimental disagreements arise from the fact that
the photoemission experiment is not a direct mea-
sure of a ground-state property. Rather, in photo-
emission one measures the total energy difference
between an initial N-electron system and an

(N — 1)-electron system with an ejected electron.
This total energy difference is usually approximated
by the one-electron eigenvalue as we have done, but
this is clearly an approximation which neglects re-
laxation effects around the hole and other many-
body effects. For an isolated atom it is not difficult
to calculate these total energy differences directly,
but for a solid this type of calculation is not
rigorously defined (see Ref. 59 for a detailed discus-
sion of this point). Because of this we will here be
content with a crude, but instructive discussion of
these corrections.

In the case where an energy band is relatively
unhybridized, one might expect that the corrections
to the one-electron theory could be approximated by
an atomic calculation. This is because in this case
the band in question might be well approximated by

its atomiclike character (s, p, d, etc.), whereby the
corrections would correspond to a relatively uni-
form band shift. The relative corrections to the
more localized bands such as the low-lying narrow s
bands or the Zn 3d band versus the more extended
upper valence p bands in the zinc-blende com-
pounds can then be estimated by an atomic calcula-
tion. We have done this for GaAs using an atomic
approximation for the As 4s and 4p states, calculat-
ing the total energy differences of the N and N — 1
systems, comparing with the one-electron eigen-
values, and estimating the relative shifts between the
s and p bands due to the many-body corrections.*
We thus find a relative correction of ~0.8 eV
lowering the 4s band into nearly perfect agreement
(see Fig. 8) with the ARPES measurements. Simi-
lar estimates for the location of the Zn 3d band im-
proves the theoretical-experimental agreement.®!
More rigorous ways of handling these kinds of
corrections in a solid-state calculation are currently
being studied by a number of groups. For the time
being, the accurate calculation of excitation spectra
in a one-electron, or a quasi-one-electron approach,
is a questionable practice. As evidenced by the
comparison with photoemission spectra here, and
with optical spectra discussed fully in II, a number
of theoretical improvements are needed.
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FIG. 7. Comparison of Gaussian broadened (FWHM = 0.7 eV) density of states (solid line) with experimental x-ray
(dashed lines from Refs. 48— 50) and ultraviolet (chain-dotted lines from Refs. 52— 55) photoemission measurements: (a)

Si, (b), Ge, (c) GaP, (d) GaAs, (e) ZnS, and (f) ZnSe.

V. EFFECTIVE MASSES

Effective masses of electrons and holes are impor-
tant parameters in discussions of transport proper-
ties,®>% exciton effects, and electron-hole liquids in
semiconductors,*~%7 to name a few. Values of ef-
fective masses can often be determined by, for in-

stance, cyclotron resonances®®~"! or transport mea-

surements.®*’>"> In this section we present the
results of our calculations of hole and electron effec-
tive masses at the valence-band maxima and the
conduction-band minima of the six semiconductors
that we have studied.

The effective masses are defined by
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TABLE V. Comparison of the negative of the one-electron valence-band eigenvalues (eV)
of Si and Ge, with the values inferred from angle-integrated photoemission measurements. In
parentheses are the quoted experimental uncertainties where available.

Si Ge
Feature Theor. Expt. Theor. Expt.
ry 12.20 12.4(6)° 12.46 12.6(3)2
13.0°
LS 9.86 9.2¢ 10.35 10.6(5)2
10.3¢
L 7.25 6.4(4)° 7.39 7.7(3)
6.6° 7.2¢
3 min 473 472 4.42 4520
b ¢ 3.11 2.94 3.03 3.2
L} 1.40 1.202¢ 1.40 1.4(3)

#Reference 55.
®Reference 52.
“Reference 48.
dReference 56.

TABLE VI. Comparison of the negative of the one-electron valence-band eigenvalues (eV) of GaP, GaAs, ZnS, and
ZnSe, with the values inferred from angle-integrated photoemission measurements. In parentheses are the quoted experi-
mental uncertainties where available. Theoretical values of the Zn 3d band energies are obtained from the maximum in

the calculated density of states.

The 3d bandwidths are 0.86 and 0.66 eV for ZnS and ZnSe, respectively.

GaP GaAs ZnS ZnSe
Feature Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt.
I, 12.37 13.2(4) 12.35 13.8(4) 12.89 13.5(4) 12.67 15.2(6)
11.8(5)° 12.9(5)°
L, 10.34 10.6(3)? 10.56 12.0(5)* 11.97 12.4(3) 11.83 13.13)
X, 9.47 9.6(3)? 9.79 10.7(3)2 11.67 12.03)? 11.55 12.5(4)
9.73)° ' 10.03)®
L, 6.57 6.902)? 6.49 7.12)2 5.20 5.5(2) 5.15 5.6(3)2
X, 6.58 6.9(3)° 6.60 6.9(2)° 4.49 4.69 5330
W, 6.35 6.5(2) 6.40 6.6(1)? 4.42 4.927 4.54 5.2(2)°
2t min 40 4002 4.0 4.402) 3.2 3.4(3p 3.2 3.4Q2
4.13® 4.12)° 3.403)°
W, 3.61 3.6(2) 3.52 4.02)? 2.76 3.002)? 2.80 2.6(2)
Xs 2.68 27022 2.64 2.5(3)2 2.19 2.5(3)? 2.16 2.13)?
L, 1.11 1.203) 1.12 1.4(3)? 0.84 1.4(4)p 0.85 1.3(37
0.8(2)° 0.8(2)° 0.72)°
Ga(Zn)3d 15.6 18.55(10)2 15.8 18.82(15) 6.4 9.03(15)2 6.7 9.20(15)?

#Reference 50.
YReference 53.
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for a direction k about some point fo in the Bril-
louin zone. The masses as defined in Eq. (6) can be
determined using k + P perturbation theory,®>’! but
in our case it is particularly easy to evaluate the
band energies at a sequence of points around kq and
evaluate m* from Eq. (6) directly. This has been

done for all of the Eo’s in the following discussion.
We now discuss the electron and hole masses
separately.

A. Hole masses

The constant energy surfaces at the top of the
valence band are warped cubes having highly
direction-dependent effective masses.5%*7! Neglect-
ing spin-orbit splitting as we have, the valence
band-maxima at T are the triply degenerate I'ss for
Si and Ge, or I'{s for the zinc-blende compounds.
Two types of hole masses can be defined, heavy (k)
and light (/) corresponding to the splitting of
I'}s (T's) into a fairly flat doubly degenerate band
(along A and A), and a more curved singly degen-
erate band, respectively. This can be seen clearly in
Figs. 1—6. Since we have neglected spin-orbit cou-
pling in our work we cannot say anything about the
so-called split-off mass band resulting from the
spin-orbit coupling. The calculated hole masses in
the [100] and [111] directions are given in Table
VIII, where we note the considerable anisotropy for
the two directions. Average density of states hole
masses can be defined by suitably averaging the
direction-dependent masses over a number of angles.
To do this we have followed the procedure of Lax
and Mavroides’®’* who make use of symmetry in
defining the band energies close to " as

— k2k2+k2k2+k2k2
E(K)=— K4 £B) |1 —y|=—— 5 “% M
and
My e =7 (1003337, + 0.01057y, — 0.000 1877, — 0.00003yy + +++ ). ©

In Eqgs. (7) and (8) the upper sign goes with the
light mass and the lower sign goes with the heavy
mass. As can be seen from Egs. (7) and (8) the
average light and heavy masses can be determined
from the knowledge of E(k) in two directions
which we have chosen as the [100] and [111] direc-
tions. Table VIII lists the resulting average hole
masses for all of the semiconductors along with the
experimental results for Si (Ref. 75) and Ge,”® and
Lawaetz’s’* empirically determined values for the
zinc-blende materials. Experimental results for the
latter compounds are very sparse, and Lawaetz’s
values (his method gives very good agreement with
experiment for the hole masses of Si and Ge) should
be reasonably close to the true values. As can be
seen from Table VIII, our theoretical average hole
masses are systematically smaller than experiment

'or Lawaetz’s values,’ although the overall quantita-

tive agreement is fairly good. Finally, we note that
the experimental effective masses include effects due
to the electron-phonon interaction (polarons) not ac-
counted for in our bare band-structure masses.
Theoretical estimates of these effects, which can
change m* by several percent, have recently been
discussed by Beni and Rice,”” and references
therein.

B. Electron masses

The electron effective masses associated with the
conduction bands are usually determined by cyclo-
tron resonance or electroreflectance measurements,
or from an analysis of transport data. For the semi-
conductors we have studied, there are two kinds of
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TABLE VII. Valence-band critical-point energies, in
eV, for GaAs.

Theory® ARPES® XPSs*

s 0 0 0
it —12.35 —13.1 —13.8
L} —1.12 —1.30 —1.4
v —6.49 —6.70 —7.1
LY —10.56 —11.24 —120
XY —2.64 —2.80 25
X3 —6.60 —6.70 -71
H —9.79 —10.75 —10.7
 nin —4.0 —40 —4.4

*LCGO method, present work.

Angle-resolved photoemission spectroscopy, Ref. 58.
‘Angle-integrated x-ray photoemission spectroscopy, Ref.
50.

electron masses we discuss: one associated with the
lowest conduction band at I', usually referred to as
the cyclotron mass m., the second for the indirect-
band-gap materials Si, Ge, and GaP, which are as-
sociated with the conduction-band minima along A
for Si and GaP, and at L for Ge.

The cyclotron masses m, we have determined
are given in Table IX along with the values from

the experiment where available.”® %' As can be
seen the agreeement between theory and experiment
is generally good, with the largest discrepancies be-
ing for ZnS and ZnSe. We note that in the former
case the experiment was done on a hexagonal phase
of ZnS,*® while for ZnSe the experimental error bar
is +15%.8!

For the indirect-gap materials we have found that
the constant energy surfaces around the conduction-
band minima are the well-known spheroidal sur-
faces for Si and Ge, and thie same for GaP. In fact,
we have found that the GaP surfaces have the same
topology as Si, with six independent spheroids along
the symmetry equivalent A axes. To our knowledge
this is the first theoretical calculation to determine
this structure for GaP, and the result has important
consequences for interpreting experimental data and
for theories such as electron-hole condensation. For
Ge, there are four independent surfaces at L.

Two independent electron masses m,; (L for
longitudinal, parallel to the I'-A-X axes for Si and
GaP, and parallel to the I"-L axis for Ge), and m_
(T for transverse, perpendicular to the spheroidal
axes) have been determined. Table IX lists our
theoretical results along with the available experi-
mental values.??~3 The agreement is excellent, and
we note our prediction of m,; for GaP for which
there are no direct measurements. The calculated
total density of states mass for GaP
my = 6" mami)"? = 1.37 agrees well with the
value 1.21 + 0.08 determined by Baranskii et al.”

TABLE VIII. Hole effective masses for carriers at the top ( I') of the valence bands.
Values quoted are in units of the free-electron mass. [k and hh stand for light and heavy
holes, respectively. The first four columns give values of m* for the ﬁ-space directions indi-
cated, while the theoretical and experimental values in columns five to eight are average

values as discussed in the text.

muT muT mh";: mh‘é
mp[100]  mys[100]  my[111]  mys[111]  Theor. Expt. Theor. Expt.
Si? 0.153 0.217 0.083 0.541 0.105 0.154 0356 0.523
Ge® 0.037 0.199 0.031 0.512 0.033 0.042 0.332 . 0.347
GaP* 0.122 0.398 0.091 0.908 0.102 0.14 0.627 0.79
GaAs* 0.068 0.334 0.056 0.827 0.060 0.074 0.547 0.62
ZnS°¢ 0.198 0.700 0.153 1.652 0.169 0.23 1.121 1.76
ZnSe® 0.139 0.546 0.110 -1.243 0.121 0.149  0.859 1.44

*Experimental values from Ref. 75.
"Experimental values from Ref. 76.

“Experimental values are the semiempirical results of Lawaetz, Ref. 74.
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TABLE IX. Electron (conduction-band) effective masses at I" and along A, in units of the
free-electron mass. m.* is the “cyclotron” mass at the lowest conduction-band I state. m,;,
and m,r are the longitudinal and transverse masses for Si, Ge, and GaP at the conduction-

band minima (A,L, A, respectively).

A in is the calculated fractional I'-X distance of the loca-

tion of the minimum for Si and GaP, and AE™" is the calculated value of this minimum with

respect to the X{ point.

Theor. Expt. Theor. Expt.

mer m:]" AE min
Theor. Expt. Anin (meV)

Si 0.158 0.915 0.916¢
Ge 0.037 0.038% 1.66 1.58f
~ GaP 0.127 1.25
GaAs 0.070 0.066°
ZnS 0.184 0.28¢

ZnSe 0.130 0.17¢

0.197 0.191°¢ 0.846 138.2
0.088 0.082f
0.24 0.258 0.864 37.0

*Reference 78.
"Reference 79.
‘Reference 80.
dReference 81.
‘Reference 82.
fReference 83.
gReference 84.

from an analysis of their experimental measure-
ments on the temperature dependence of the carrier
density in Te-doped GaP. There is also considerable

"interest in the values of A, and AE ;,, the values
of the location of the conduction-band minimum
along the A direction, and the value of the energy of
this minimum with respect to the X{ point, respec-
tively. These values are also given in Table IX for
Si and GaP.

IV. CHARGE DENSITIES AND
FORM FACTORS

The valence electron charge densities for Si, Ge,
GaP, GaAs, ZnS, and ZnSe are shown along the
bond direction in Fig. 9 (solid lines) and as contour
plots in the (110) plane in  Fig. 10. They were cal-
culated by summing | ,( KD |2 over all valence
bands (index n) and sampling ten special K points®
in the irreducible Brillouin zone. To be consistent
with the results of the Ga compounds, the Zn 3d
states, which lie more than 5 eV above the bottom
of the valence bands with a dispersion of less than 1
eV, were not included. Note that the overall shapes
of the charge-density contours for Si (Fig. 10) agree
very well with previous theoretical studies*»** and
with that constructed from the x-ray data.’ The

peak height of 21.3e/cell at the bond center is some-
what smaller than the experimentally derived value
of 27.6, a result that was also found in earlier first-
principles calculations®>?* using the local-density ap-
proximation. Recently, Scheringer®® has pointed
out that Yang and Coppen’s®® value may be overes-
timated by as much as 3. 6e/cell due to inaccuracies
in the measured form factors®’ of four high momen-
tum components. Note that our results for Si and
Ge turn out to be extremely similar; their valence
charge densities at the bond center are almost identi-
cal, although Si has a slightly more localized bond
than Ge. Similar trends can be seen within the Ga
and Zn compounds. Judging from the locations and
heights of the bond charges (solid lines in Fig. 9),
GaP and ZnS are more covalent and ionic than
GaAs and ZnSe, respectively. As we move from
the III-V to the more ionic II-VI compounds, the
bond centers are shifted toward the anion sites, the
maximum intensities increase, and the bonds be-
come more localized.

Figure 11 displays our deformation densities
(valence density minus a superposition of spherical,
neutral, atom valence density used as starting values
in our SC calculations) in the plane of the bond.
Negative contours are dashed. It is interesting to
note that the deformation charge bond densities for
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FIG. 9. Calculated valence p(r) (solid lines) and 8p(r) (chain-dotted lines) along the [111] bonding direction: (a) Si,
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(b) Ge, (c) GaP, (d) GaAs, (e) ZnS, and (f) ZnSe. p(r) is the self-consistent charge density, 8p(r) is the deformation den-
sity (self-consistent minus starting overlapping atomic charge densities), and r is the fraction of the nearest neighbor

(bond) distance. The 3d bands of the zinc-blende compounds are not ‘included.

Si and Ge are elongated perpendicular to the bond
rather than along the bond direction as found in
their valence densities (Fig. 10). The region of nega-
tive deformation charge is rather small indicating an
overall increase of charge in this plane. Thus, a ma-
jor effect of self-consistency is the buildup of charge

along the bond as is to be expected in covalent sem-
iconductors. For the zinc-blende materials, we note
that the non-SC charge density derived from the po-
tential of a superposition of overlapping, spherical,
neutral, atomic charge densities already contains
some degree of charge asymmetry in the bond.
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FIG. 10. Calculated self-consistent valence charge density in a portion of the [110] crystal plane for (a) Si, (b) Ge, (c)
GaP, (d) GaAs, (e) ZnS, and (f) ZnSe. The contours are in units of electrons/unit cell, and the contour interval is two
electrons/unit cell. The 3d bands of the zinc-blende compounds are not included.
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TABLE X. Comparison of experimental and theoretical form factors (in units of
electrons/unit cell) for Si.

K(a/2m) Experiment® Present SC-OPW" Pseudopotential®
[111] 15.19 15.11 15.12 15.13
[220] 17.30 17.26 17.28 17.14
[311] 11.35 11.37 11.33 11.02
[222] 0.38 0.25 0.34 0.38
[400] 14.89 14.92 14.88 14.70
[331] 10.25 10.17 10.20 9.94
[422] 13.42 13.37 13.36 13.30
[333] 9.09 9.07 9.02 8.92
[511] 9.11 9.08 9.08 8.98
[440] 12.08 12.04 12.04 12.00

2Reference 88 except for [222] which is from Roberto et al., Ref. 89.

*Reference 87.
‘Reference 24.

This explains why the corresponding deformation
charge maps show more covalent character than

ionicity when compared with their respective
valence charge maps. Nevertheless, the bond center

of the deformation charge density in Fig. 9 (broken

lines) is shifted additionally towards the anion site in

the zinc blendes studied.

A more direct comparison between theory and
experiment can be made by examining the x-ray
form factors. The choice of Gaussian orbitals as

our basis functions enables us to evaluate the
Fourier transforms analytically [Eq. (3)]. They are

tabulated and compared with other theoretical esti-
mates and available experimental data in Tables

X —XIV for Si, Ge, GaP, GaAs, and ZnSe, respec-
tively. All of the experimental results have been
corrected for anomalous dispersion and to zero
temperature. No experimental data are available
for comparison for ZnS.

Si is the best studied material both theoretically
and experimentally. Our results, which include the
modification of the core wave functions in the crystal
environment, are in excellent overall agreement with
earlier SC-OPW calculation using a Kohn-Sham ex-

TABLE XI. X-ray form factors for Ge (in units of electron/unit cell).
K(a/2m) Experiment? Present SC-OPW®
[111] 39.42 38.83 38.95
[220] 47.44 47.23 47.26
[311] 31.37 31.29 31.21
[222] 0.26 0.22 0.48
[400] 40.50 40.56 40.54
[331] 27.72 27.39 27.53
[422] 36.10 3591 36.00
[333] 24.50 24.35 "+ 24.34
[511] 24.35 24.38
[440] 32.34 ©32.23 32.32

#Reference 90.
YReference 87.
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TABLE XII. Absolute values of the x-ray structure
factors for GaP (in units of electrons/unit cell).

Present
K(a/2m) Experiment® results
[111] ' 28.83 28.84
[200] 14.40 14.63
[220] 32.19 31.77
[311] 22.92 22.89
[222] 12.79 12.45
[400] 26.19 26.95
[331] 19.43 19.69
[420] 10.48 10.44
[422] 23.86 23.79
[333] 17.24 17.34
[511] 17.24 17.35
[440] 21.01 21.32

#Reference 91.

change potential.®” The small differences compared
with the first-principles pseudopotential results**
may be due to the frozen atomic core approxima-
tion that they used and the procedure for core
orthogonalization of the nodeless pseudowave func-
tions. The agreement between our theoretical
results and the experiment®®# is very satisfying.
Generally, the theoretical-experimental differences

TABLE XIII. Absolute values of the x-ray structure
factors for GaAs (in units of electrons/unit cell).

Present
K(a/2m) Experiment?® Experiment® results
[111] 39.44 39.06 38.85
[220] 47.18 46.66 47.18
[311] 31.37 31.04 31.25
[400] 40.84 40.40 40.44
[331] 27.75 27.45 27.32
[422] 36.22 35.84 35.80
[333] 24.37 24.10 24.30
[511] 24.54 24.27 24.30
[440] 32.38 32.04 32.15
[444] 26.94 26.66 26.77

abReference 92. Two different anomalous dispersion
corrections were used in reducing the experimental data.
See Ref. 92 for details.

TABLE XIV. Absolute magnitude of the x-ray form
factors for ZnSe (in units of electrons/unit cell).

K(a/2m) Experiment® Present SC-OPW?
[111] 39.64 38.99 39.06
[200] 3.72 2.9 2.79
[220] 4745 47.16 47.37
[311] 32.28 31.23 31.38
[222] 2091 2.55 2.38
[400] 40.58 4027 40.63
[331] 27.39 27.23 27.59
[420] 3.02 2.82 277
[422] 35.14 35.63 36.11
[440] 32.19 32.06 32.55

aR eference 87.

are within the accuracy of the measurements. How-
ever, we feel that the disagreement for the (222) re-
flection is significant.

The (222) forbidden reflection has been the sub-
ject of intense investigation for many years.?* Note
that this term is a direct measure of the asymmetric
charge distribution of the valence electrons around
the atoms in the lattice. For example, an experi-
mental value of 0.34 for f(222) alone would contri-
bute 2.7e/cell to the charge density at the center of
the Si— Si bond, while a superposition of overlap-
ping spherical atomic Si charge densities would only
yield 15.0e/cell. Although our value f(222) = 0.25
is somewhat smaller than experiment and other
theoretical estimates, our bond-charge maximum of
21.3e/cell agrees very well with recent accurate
LAPW calculations of Hamann (22.2e/cell)
(Hamann’s form factors are not given in Ref. 23).
The first-principles pseudopotential method?* yields
a larger form factor (0.38) and also a larger bond
maximum (24.0e/cell).

Table XI shows our results for Ge along with
those from the earlier SC-OPW calculations®” and
experiments.”® As for Si, the theoretical-
experimental comparison is very gratifying except
for the (222) forbidden reflection which once again
shows the theory underestimating the experimental
result.’® We note that similar results were found in
recent SC LCGO calculations for diamond,*? where
the theoretical value of f(222) (0.15e/cell) was only
half of the experimental measurement.

The calculated values of the absolute value of the
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TABLE XV. Calculated real and imaginary parts of the Fourier coefficient of the charge densities (in units of
electrons/unit cell) for the zinc blendes. The origin is at the cation, and the real part is followed by the imaginary

part.

K(a/2m) GaAs GaP ZnS ZnSe

[111] 26.65 28.27 26.42 11.57 25.62 12.44 25.91 29.13
[200] —1.48 0 14.63 0 13.06 0 —2.99 0
[220] 47.18 0 31.77 0 31.54 0 47.16 0
[311] 21.48 —22.70 21.12 —8.83 20.31 —8.86 20.76 —23.33
[222] —1.20 0.19 12.45 0.19 11.21 0.10 —2.55 0.13
[400] 40.44 0 26.95 0 26.35 0 40.27 0
[331] 18.64 19.98 18.20 7.51 17.26 7.77 17.83 20.58
[420] —1.39 0 10.44 0 9.23 0 —2.82 0
[422] 35.80 —0.02 23.79 —0.03 23.11 —0.04 35.63 —0.04
[333] 16.40 —17.93 15.92 —6.86 14.98 —17.16 15.57 —18.62
[511] 16.42 17.91 15.95 6.84 15.00 7.13 15.60 18.59
[440] 32.15 0 21.32 0 20.72 0 32.06 0
structure factors of GaP, GaAs, and ZnSe are compare favorably, although the agreement is not
shown in Tables XII— XIV along with the mea- quite as good as for Si and Ge. Table XV lists our
sured results®”*!"2 and, for ZnSe, the SC-OPW cal- calculated values of the real and imaginary parts of
culations.®” Here, too, the theory and experiment the structure factors of all four zinc-blende com-

TABLE XVI. Directional anisotropy of charge and spin densities for transition metals by
comparing the ratios of form factors for wave vectors of the same magnitude.

Element Form factors Wave vectors Theor. Expt.
. . (3,3,3) b
S . 2.179* 3.02
Ni pin 1) 9 8
. (3,3,0) d
F > 2.351° 2.848
¢ Spin (4,1,1)
(3,3,0)
F h 22 1.0025°¢ 1.010°
€ Charge @1.1)
r.o11f
(3,3,0) h
v Ch : 1.0039# 1.024
arge 4,1,1) ‘
1.0085'

‘Reference 29.
YReference 93.
“Reference 30.
dReference 94.
‘Reference 95.
fReference 96.
8Reference 31.
hReference 97.
iReference 98.
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pounds. The origin is at a cation site, and the real
part is followed by the imaginary part.

The discrepancies between our charge-density
results and experiment (the theory gives a slightly
too small bond charge and underestimation of the
asphericity in the charge density) are probably relat-
ed to the approximations inherent in local-density
theory. Similar results have been found previously
for the charge and spin densities in transition-metal
systems (underestimation of asphericity) using vari-
ous SC-LD approaches. In all ab initio calculations
that we know of the asphericity, as mirrored in the
form factors, is too small by 50% or more. To il-
lustrate this point we show in Table XVI the
theoretical ratios of form factors with the same mag-

nitude of K for Ni,?® Fe,* and V,*! along with ex-
perimental results.”>~°® Additional experimental
measurements for systems of varying degrees of co-
valency, ionicity, and metallicity would be useful for
determining ways of improving the theory.
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