
PHYSICAL REVIEW B VOLUME 24, NUMBER 6 15 SEPTEMBER 1981

Theory of cyclotron resonance for electrons in a Si surface inversion layer
under a uniaxial stress

C. S. Ting
Department of Physics, University of Houston, Houston, Texas 77004

A. K. Ganguly
NaUal Research Laboratory, Washington, D. C. 20375

W. Y. Lai
Department of Physics, University of Houston, Houston, Texas 77004

(Received 19 March 1981j

The theory of cyclotron resonance for two types of carriers under a uniaxial stress is stu-

died by using the method of kinetic equations. The intervalley electron-electron relaxation

rate v, (co) is obtained by using the memory-function approach at finite temperatures.

The contributions from both the imaginary and real parts of ~, '(co) to the cyclotron-

resonance line shape are considered. The cyclotron-resonance mass as a function of tem-

perature has been obtained. The agreement between our results and experimental measure-

ments seems to be satisfactory.

I. INTRODUCTION

On the Si(100) surface of a metal-oxide —semi-

conductor structure there are two sets of non-

equivalent subbands' —one with two degenerate val-

leys at the center of the two-dimensional Brillouin
zone and the other with four degenerate valleys cen-
tered near the corners along (100) directions. The
subbands of the center valleys are energetically
lower than those of the corner valleys. At zero
temperature and not too high electron density, only
the center valleys are occupied. In the presence of a
magnetic field H, the center of mass of the electrons
performs cyclotron motion with a single cyclotron
frequency given by co~ ———eH/m ~c, where
m i

—0.195m, is the. bare effective mass for elec-
trons in the center valleys, m, and e are the mass
and charge of a free electron, respectively and c is
the speed of light. As the temperature is raised,
thermal occupation of the subbands associated with
the corner valleys by electrons begins to take place.
In a cyclotron-resonance experiment an additional
resonance peak should occur at ~2 eH/m2c
(m2 0.4m, ). the application of a uniaxial stress
is expected to have the same effect as raising the
temperature. Compression along a (100) direction
causes two of the four corner valleys to be lowered
in energy with respect to the center valleys. At
suitable carrier densities there should be partial oc-

cupation of both these subbands and two distinct
resonances are expected. Earlier experiments at low
electron concentration (n =0.5 X 10' cm )

showed that the cyclotron-resonance spectrum could
be fitted satisfactorily with a single-resonance line

shape. ' A theory of Kelley and Falicov who pro-
posed the existence of charge-density wave states on
the silicon (100) surface by assuming an extremely
large intervalley electron-electron coupling, predict-
ed a single resonance at zero temperature.

The effect of intervalley Coulomb scattering on
the cyclotron line shape was studied by Appel and
Overhauser using the equation of motion method,
and also by Takada and Ando using the Fermi-
liquid theory. both of these approaches ' are valid

in the limits of T « Ez' and co « EF'. Here co

is the frequency of the applied ac electric field.
Et,"" (i = 1,2) is the Fermi energy of the carriers in
either the center or the corner valleys. One of the
essential features of these results ' is that there are
always two resonance peaks at low temperature if
the impurity effect on the single-particle relaxation
time is not too strong. A recent experiment on
the cyclotron resonance under uniaxial stress
indeed shows two resonance peaks at carrier densi-

ty n 1.2 &( 10' cm . For the present paper we
wish to study this problem by using the method of
Appel and Overhauser. The primary differences
between our method and that of Ref. 6 are as fol-
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lows. (a) The intervalley scattering rate r, '(co)

will be calculated to higher temperature using the
memory-function approach. (b) The efFect due to
the imaginary part of r, (co) will be considered.
(c) The single-particle relaxation times ri and ri
for electrons in the center and corner valleys,
respectively, will be calculated from the first prin-

ciple by the method described in Ref. 9 using the
impurity concentration as the only input parame-
ter. In Ref. 6 the values of ~i and r2 are arbitrarily
chosen and the effect due to the imaginary part of
r, '(co) is neglected. As we shall see later, the im-

aginary part of r, '(co) shifts the cyclotron mass of
the carriers. In Sec. II, we shall briefly describe
the method of equation of motion and give the ex-

pression for the conductivity of two types of car-
riers. In Sec. III the connection between the inter-

valley electron-electron relaxation rate r, '(co) and

the memory function will be given. The real part
and the imaginary part of r, (co) shall be calculat-
ed using the random-phase and the plasmon-pole
approximations, respectively. In Sec. IV the nu-

merical result of our calculation will be presented.
We shall show that with a fixed impurity (oxide

charge) concentration, there is only one resonance

peak in the resonance spectrum for the carrier den-

sity n = 0.5 && 10' cm . However, when the car-
rier density is increased to n = 1.2 & 10' cm
there are two resonance peaks. This feature is in

agreement with experiments. ' The resonance
spectra as a function of the applied magnetic field

at different temperatures and under several uniaxial

stresses will be given. We also present the results

for the resonance mass as a function of temperature
at n = 1.2 )& 10' cm for different uniaxial
stresses. The final section contains a discussion of
the present results and its connection with previous
woiks. '

II. THE ac CONDUCTIVITY OF
A TWO-COMPONENT PLASMA IN

THE PRESENCE OF A MAGNETIC FIELD

T

l—i co+ —Pi ——ein i E+
7]

1 PiXH
cnim i

r, (ai)
'

l ] ~ —+—l N + —P2 ——e2n2 E+ P2g H
'T2 C82m2

r, (co)
' (2)

where c is the speed of light, r; is the single-

particle-transport lifetime due to scatterings with im-

purities, surface roughness, and phonons for carriers
of type i, r, (co) corresponds to the relaxation "time"
between these two types of carriers. Pz is the rela-

tive momentum between carriers 1 and 2, with the
following expression:

pi
pg =p

n&m&

P2

n2m2

where p = niminzmi/(nimi+ n2mi). If we re-

gard the total masses of carriers 1 and 2 as, respec-
tively, n im &

and n 2m 2, then p is the "total" re-

duced mass.
Now let us assume that the electric field is paral-

lel to the oxide-semiconductor interface (the x-y
plane) and the magnetic field H is directed along the
z axis. It is straightforward to show that the x com-
ponent of the current is given by J„=o~E
+ o.„&E&. The conductivity tensors o. and o.„z can
be obtained by solving Eqs. (1) and (2). In the

present work we need the electrical conductivity for
a circular polarized electric field, namely

o+ ——o~ +

iver„~

After le.ngthy algebra, we obtain

2 2lr 1 i ( ) 2~2 ( )o+(ai) = + 8'i
mi m2

The magnetoconductivity for a system consisting
of two types of carriers has been studied previous-

ly. We shall briefly describe this method and
present the final results. Our system is made of n i

carriers with charge e i and mass m i from the
center valleys (type-l), and n 2 carriers with charge

ez and mass m 2 from the corner valleys (type-2).
Let Pi and P2 be the total momenta of electrons of
type-1 and type 2 and in the presence of both an ac
electric field E = Eoe '"' and a static magnetic field

H, they satisfy the following equations':

with

Pl iQ n2b
+ eie2 +

m2 Pl(
(4)

(+)8 ) =COi+CO jI+Q

8'2 — ——m2+ CO, 2+ b,(+)

Z = W(+)W(+) —ab

b = [(cubi + a)(co2+ b) —ab] + (m, iso, 2
—ab)

—co, i(a)2+ b) —co, i(coi —a) —a b
2 2 2 2 2 2
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For later reference, we expand o+(co) in the above
equation to first-order terms in the electron-electron
relaxation I/r, (co)

2

previously' that the ordinary inverse relaxation
time corresponds to the real part of r, '(co) or the
imaginary part of the memory function M (co). One
of the functions of the imaginary prt of r, '(co), as
can be seen from Eqs. (2) and (3), is to shift the res-
onance frequencies or the effective masses m

&
and

m 2 associated with the center and corner valleys.
The effect of this term on the cyclotron-resonance
spectrum has not been investigated in Ref. 6. One
of the purposes of the present work is to study its
influence. It is possible to compute the four-
particle-correlation function Sz (q, co) in the presence
of a magnetic field by the method described in Ref.
15. However, the resonance spectrum depends criti-
cally on the lifetime broadenings of the Landau lev-

els. There seems no unique way to obtain the
values for these broadenings. In order to decrease
the parameters involved with the present problem,
we shall evaluate M (co} in the absence of a magnet-
ic field. The finite-temperature Green's function
S (q,ico) appearing in Eq. (8) can be shown to have
the form

The expression for the electron-electron relaxation
time r, (co} in terms of the density-density correla-
tion functions will bc given in the next section.

S(q,ico) = T g X"'(q,ico —ico„)X' '( q,ico„) . —

III. EXPRESSION FOR THE RELAXATION
TIME v, (co)

The derivation of the intervalley electron-electron
relaxation time r, (co) in terms of the memory func-
tion" was given previously, ' ' and the procedure
will not be repeated here. If r, (co) is evaluated

only to the lowest order in the intervalley electron-
electron interaction V~2(q), we have r, '(co)

iM (co)—and the memory function M (co) is

given by'

M(~) = — ' gq„'~ V„(q) ~'
PN

X [S„(q,co) —S„(q,O)] . (6)

Sq (q, co) here is the four-particle-correlation function

S~ (q, co) = i I dt e—'"'O(t}

X ([D(q,t)Q( —q,O)]),

The correlation function Sz (q,l) is obtained
from the relation S(q,co+ i5) = Sg(q,co). In the
above equation co„= 2mnT X'"'(q,co.+ i5)
= X„' '(q, co) is the density-density correlation func-
tion for electron of type k (k = 1,2). In general,

the Green's function X(q,co) in random-phase ap-
proximation can be written as

X( )
vr( q,co)

1 —V(q)rc( q,co)
(10)

~jt(q, co) = 2n„g n(k) —n(k + q)
co —e(k + q) + e(k) + i5

where V(q) is the intravalley electron-electron in-

teraction. e'R(q, co) is the density-density correla-
tion function for noninteracting electrons. It has the
following expression.

D(q, t) = p-"'(t)p"'-(t),

where p' ' = g e' 'kjqis the density operator for

type k (k = 1,2) electrons. It has been pointed out

where n„ is the valley degeneracy and n (k) is the
Fermi function e(k) = k2/2m.

If we write ~z( q, co)= —(2/~)mE( q,co), the
function F( q,co) can be reduced to a single integra-
tion. Its real and imaginary parts are given by
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1

ReF(q, co) = I8q

8
X

e '+1(8 g/4g —u)go

(A'g/4q —ug,-e '+1

n
ImF(q, co) = ' J4 rico 0 —in/

1
X

e
(A /4g —u)go +g

1

e +g(S'/4~ —u)g,

{12)

(13)

Here we have set the Boltzmann constant kz ——1,
ri= q I2mEO, a = colEO, A = a —g, 8 = a+n,
go ——EOIT, and u = Ez(T)IEO, with E~(T) the
Fermi energy and Eo a suitable constant with ener-

gy units. It is straightforward to shown that Eqs.
(12) and (13) are independent of Eo. The correla-
tion function X"(q,co) appearing in Eq. (9) can be
obtained from Eq. (10) by replacing V(q), m, n„,
and EF by V;;(q), m;, n„", and Ep~", respectively

The Fermi energies EF and Ez satisfy the equa-

tion of charge conservation n = n
~ + n 2.

(i)
n~ ply T

Qtln(1+ e '), (14)n;=

where u; = Ez'/T. EF" and Ez ' are also connect-
ed by the relation Ez ' ——EF '+ h. 5 is the energy
difference between the lowest sublevels of the corner
valley and the center valley. The frequency summa-

tion in Eq. (9) can be carried out by the standard

method. ' We have

Oo I

ReS+ (q,co) = coth [1m'�"(q,co')P' '( —q,co',co) + 1m' '( —q, co')P"'( q, co',co)],
2m' 2a

(1S)

dN I ' I

1m' ( q,co) = coth —coth
. 2K 2T

ImX~' ( q,co') ImX~ '( —q,co —co'), (16)

with

P
'

( q,co',co) = ReX~ ( q,co' —co) + ReXR ( q,co'+ co) .

In order to obtain the density-density correlation function Xq'(q, co), we need to know the effective intraval-

ley electron-electron interaction V;;(q) (i = 1,2). It has the standard expression'

Esq b;
(17)

I(x) = (1 + x) —(33 + S4x + 44x + 18x + 3x ) + 2e, [e, + eocoth(qD) ]

' —1/3

(z; ) = — a;(N d,p + „n)—3 6m

2 csao
(18}

Here D is the thickness of the oxide layer which we
take as D = 1000 A, e, = 11.8 and eo ——3.8 are,
respectively, the dielectric constants of the silicon
and the oxide, b; = 3/(z; ), and the thickness of the
inversion layer (z; ) with respect to carriers of type i
is given by

where ao ——0.529 X 10 cm is the Bohr radius
and Nd, ~ is the total negative charges per unit area
in the depletion layer. The parameters a~ and a2
are given by a~ ——0.98 and a2 ——0.19S. Although
the formulas for (z; ) have not been obtained in a
self-consistent way, we believe that their values
should be correct within a factor of 2. In order to
evaluate M (co) from Eq. {6), the knowledge of the
intravalley electron-electron interaction V~2(q} is
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essential. It can be obtained from the following for-
mula:

V(2(q} = f dz f dz'~g)(z)
~

f&(z) and t/i2(z) are the wave functions of the elec-
tron associated with the lowest subbands for the
center valley and the corner valley, respectively, and
xiii(z) is given by

V(q, z, z') =
&sq

X
~ g, (z')

~

'V(q, z, z'),

—q /z —z'/ es —eo cothqD

e, + eocothqd

—q{z+z')X e

li,.(z) = (-,'b, ')'"ze (20)

The integration over z and z' in Eq. (22) can be
easily carried out. The result for V&2(q) is

(b)b2) oth(qD)
Vi2(q) = I'(b&,b2) + I'(bz, b&) + (z~z2)

&,q (b) + b2) e, + eocoth qD
(21)

where

bi+b 2Y'(b),b2) =
3 [b2 + (Sb)+ 3q)b2+ 10b)

(b)+ q)

+ 15b~q+ 6q ],

ReXg (q, ro) = ~~(q)

u(q) co —
co&

(22)

cop(q)n
1m' (q,co) = [5(co + co& ) —5(cia —co& )],

2u q ci)q

(23)

Z]
b)+ b2

b)+ q

with

u(q)nq
co&q =

Z2=
bi+ b2

b2+ q

2 2 1 —u (q)n. (q, O)
cd = —iop(q)

u (q)m(q, O)

n(q, O) = ——m ReF(q, O) .2

It is rather difficult to obtain a convergent result'
for ReM(co) by using Eqs. (9)—(13) because the
function ReXz"(q,co) in Eq. (10) is very singular
near the plasmon pole. It would be very time con-
suming to determine this pole numerically within
the random-phase approximation (RPA). In order
to reduce the computation time, we calculate
Indlf (co) according to the method described above
but evaluate ReM (co) by using the plasmon pole ap-
proximation. ' We believe that this approximation
for ReM(co) should yield an almost identical result
to that of RPA. Since the major contribution to
ImM(co) comes from the low lying two-particle ex-
citations of the system, it is not possible to obtain a
reliable result for ImM (co) by using the plasmon
pole approximation where all the oscillator strengths
of low-lying excitations are replaced by higher-

energy plasmons. In the plasmon pole approxima-
tion, the functions ReXz'(q, co} and 1m''(q, co) can
be written, respectively, as'

ReF(q, O) here can be obtained from Eq. (12) by set-

ting co = 0. X~"(q,co) (i = 1,2) are obtained by re-

placing m, EF, n, n„, and u (q) with m;, EF", n;,
n„'", and u;;(q), respectively.

IV. RESULTS

The numerical computation is performed under
the following ideal situation: We assume that a suit-

able uniaxial stress has been applied on Si in the

(1{m) direction, which lowers the ground-state sub-

bands of two of the four degenerate corner valleys.
Then the value of the energy difference 6 between
the ground state subbands of these two lower corner
valleys and those of the center valleys can be easily
varied. For general values of b, the intervalley
electron-electron scattering rate I/r, (co) or the
memory function M (io) can be obtained from Eqs.
(6)—(13). For our numerical computation we take
m i ——0.195m, and m 2

——0.4m, for carriers in the
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center valley and the corner valley, respectively.
Here m, is the free-electron mass. We choose

Nd, ~
——0.3 &( 10' cm for the space charge in the

depletion layer. The angular frequency of the exter-
nal electric field co = 3.5 meV is chosen according
to the experimental condition. ' For carrier density
n = 0.5 g 10' cm and 6 = 0, the numerical
results for both the real and the imaginary parts of
M (co) as a function of the temperature are shown in

Fig. 1 where the dashed line corresponds to the real

part of M (co) which, as we have mentioned previ-

ously, is calculated according to the plasmon pole
approximation. The solid line corresponds to the
imaginary part of M (co) which is evaluated accord-
ing to the random-phase approximation.
ImM (co) ~ T at low temperature, in agreement
with the results of Refs. 6 and 12. However, as T
increases Imllf (co) deviates from T and reaches a
maximum at T —120 K. Then it decreases slowly
as 1/T at higher temperatures.

The essential feature of the real part of M (co) is

that its value becomes negative in the temperature
range from T —20 to 80 K and has a minimum at
T 47 K. The'function M (co) has also been calcu-
lated for pg = 1.2 g 10 cm with 6 = —1.0, 0.0,
and 2.58 meV. They correspond, respectively, to
n ~/n = 0.23, 0.33, and 0.58 at zero temperature.
The results for ImM (co) and ReM (co) are shown in

Figs. 2 and 3, respectively. From Fig. 2 it is easy to
see that the temperature dependence of ImM (co) is

similar to what we have shown in Fig. 1, and its
values at fixed temperature change only slightly

when b varies from —1.0 to 2.58 meV. The real

part of M (co) for b = —1.0 meV shows a

4.0—
I I I

3.0

E

3 2.0

E
1,0

n = l.2 X IO cm

0 5 -"-I.QQ meV

b b, = 00meV
c 5, = 2.58 meV

0 50
)

100 150 200
TEMPERATURE (K)

I

250 300

FIG. 2. The imaginary part of M(co) is plotted as a
function of T for n = 1.2 )& 10' cm, Ed,~

——0.1

)& 10' cm, and three values of A.

00 E
—.=f

E,

m

r(E) 2'

an;(E)
aE

1

r;(E)
(24)

e;(q, 0)
(1 —cog)d P,

minimum at —50 K. However, this minimum gra-

dually disappears as the value of 6 changes from
6 = —1.0 to 2.58 meV.

In order to determine the cyclotron-resonance
line shape, the knowledge of the single-particle
scattering rates 1/~~ and 1/~2 for the center valley
and the corner valley are essential. If we attribute
the single-particle scattering mechanism entirely to
charged impurities, I/r& and I/r2 appearing in a
cyclotron-resonance experiment should correspond
to the high-frequency expansion results in the
memory-function approach'
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FIG. 1. The real and the imaginary parts of the
memory function M(co) are plotted as functions of tem-
perature for n = 0.5)& 10' cm, 6 = 0, and co = 3.5
meV.
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FIG. 3. The real part of M (co) is plotted as a function
of T. The parameters and notation are identical to those
of Fig. 2.



24 THEORY OF CYCLOTRON RESONANCE FORR ELECTRONS IN A Si. . . 3377

where q = 2(2nI;E) '~ sin —,II) and e;(q, 0 = 1

—V-( )m. 0 pon s to the; q, . ; =n.n /2m corres" d
ermi energy at T = 0 K for t

t e impurity concentration and V;(q), the interac-
tion between the charged im urit d
type i, is given by

V~
——(

—2rre /e, q)J(q/II, ), .

10—
CL

K

03
K
c(

with (25)

3 5—
+

b

J x) = 2(1+x) e, (e, + eocothDq)

The oxide charge concentration nI can be ob-
tained if the mobility of the sam le is kn

o ex erna stress. In the following computation
we shall take nl ——1.5 )& 10" h
thet e sample a mobility p = 6 500 cm /V sec for
n =7.7 X10"cm-'cm at very low temperature. The
numerical results for 1/r (' = 1,2)i =, as a function of
temperature are shown in F' . 4 f

—2
ig. or n =-1.2 )& 10'

cm . Curves 1 2 and ~d 3, respectively, correspond
to the cases 6 = 2.58, and —10 V. Thme . The essen-
tial feature of the results is th t da at mo erately low
temperature 1/~; depends linearly on T and at high
temperature it decreases slowly as 1/T. W' h

e necessary parameters, the real part of the con-

4 . We have calculated the cyclotron-resonance
line shape for n = 1.2 X 10'

cm, and 5 = 0 at temperatures T = 10
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(co) are calculated for zero magnetic field and rj.
(j = 1,2)~ ao, we have

A12 ——
2CO m17tl 2

' 1/2 2(m2 —mi)
r, '(to) .

m1n1 + m2ri2

(26)

The right-hand side of the above equation
depends on co and r, '(co) having both a real and an

imaginary part. The value of A12 in Ref. 7 is
evaluated at T = 0 and co = 0. It is real and in-

dependent of co. Therefore, the above equation is
valid only when co~0, where Re[1/r, (co)] co

and 1m[1/r, (co)]= co. From Eq. (26), it is straight-
forward to show that A &z corresponds to Im 1/r, (to)
in the co~ 0 and T = 0 limit. The finite tempera-
ture has also been studied by Takada where the
value of A 12 obtained at co = 0 and T = 0 has been
used. We do not believe that such an approxima-
tion is reasonable because the value of A12 should
change significantly when co ( 3.5 meV) or T is
comparable to the Fermi energies EF" (i = 1,2).

Although our theory is able to explain some of
the features in the experimental measurements, it is
far from complete. For example, at high tempera-
ture, the phonon-mediated intervalley electron-
electron scattering may become important. This
scattering process would add to the intervalley
electron-electron interaction and enhances the value
of r, '(co). Thus the width of the cyclotron-
resonance line shape may become larger and the
cyclotron-resonance mass or masses may have addi-
tional temperature dependence. This effect has not
been considered here, but will be subjected to a fu-

ture study.
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