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So][ton damping and topological order in quasi-one-dimensional systems
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The effects of the soliton damping due to the scattering from impurities or from other ther-
mal solitons on the dynamical correlation functions are considered within a phenomenological
model. It is shown that the spin-correlation functions of quasi-one-dimensional magnetic sys-

tems like {CH3)4NMnC13 (TMMC) and CsCoC13 depend strongly on the soliton damping.

I. INTRODUCTION

As is weil known, the one-dimensional system with
a finite-range interaction never undergoes a phase
transition at finite temperatures. On the other hand
a number of systems exhibit a crossover behavior
from the high-temperature disordered phase to the
low-temperature quasi-ordered phase. Even at low

temperatures the topological order of the system is

partially broken due to the presence of thermally ex-
cited solitons or kinks.

In a seminal paper Krumhansl 'and Schrieffer' have
studied the @' model and identified that the central
peak observed in the quasi-one-dimensional system
with displacive phase transition is due to kinks. It is
known that the correlation functions in a number of
systems can be written in a similar form as the @-@
correlation function in the @4 model, if the soliton
behaves like ideal gas. These examples include the
spin correlation of the planar antiferromagnet like
TMMC [(CH3)4NMnC13] in a magnetic field, " the
Ising-like antiferromagnetic chain like CsCoC13, and
the dimerization field correlation function in polyace-
tylene. ' In all of these examples the correlation
length and the correlation time are inversely propor-
tional to the soliton density of the system.

In all of the above analyses it was assumed that the
soliton behaves like a free particle. However in the
real experimental situations the soliton may have a
finite lifetime due to scattering with impurities or
with other solitons. The object of the present paper
is to study the effect of the soliton damping on the
corresponding dynamical correlation functions. We
do not imply here by the soliton damping that the
soliton will decay into other excitations but that the
soliton changes its velocity from time to time due to
scattering. Such effects may be studied experimen-
tally by introducing impurities in the quasi-one-
dimensional magnetic systems described already.
However, the impurities should not disturb directly
the topological order of the system but only introduce
the localized potential which scatters the soliton in

the system, We shall treat the effect of the soliton

damping phenomenologically: we introduce a charac-
teristic frequency v, with which the soliton velocity
will change. In the limit of the large damping our
phenomenological model reproduces recent
results'0 " for ([$(x,t) —$(0, 0) ]z) in the sine-
Gordon (sG) system.

Although the effects of the soliton damping are not
apparent in the static correlation functions, the soli-
ton damping modifies strongly the dynamic correla-
tion of the systems. In general the central peak asso-
ciated with the soliton becomes sharper due to the
soliton damping, which should be readily accessible
by the neutron scattering experiments in the quasi-
one-dimensional magnetic systems.

II. CORRELATION FUNCTIONS IN

THE IDEAL-GAS LIMIT

Here we shall summarize properties of the correla-
tion functions in the limit that the soliton behaves
like ideal gas. For model Hamiltonians given by""

H 4= — dz m(z) + ——(m") @ + —h. @

and

r 1

By 2m"
H,o = — dz m(z ) '+ — cos(g @), (2)2 g (jZ: g2

where m(z) = Bp/Br, m" is the bare phonon (or mag-
non) mass and C the phonon velocity is taken to be
unity, the correlation function ($(z, r ) @(0,0) ) in the
@4 system and (cos[ —,'zg(z, t)]cos[ —,'g@(0,0) 1) in

the sine-Gordon system are given by'
1 'I

(p(z r) g(0, 0) ) = pozexp —2 „n,(~) ~z
—~r

~
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and

(cos[ g—$(z, t)]cos[—gg(0, 0) 1)=,—exp —4 Jl n, (u) ~z
—ut~

m(T) ~ dp
2 m

S (4)

where n, (v) is the density of the soliton with velocity v and p is the momentum of the soliton.
The soliton density n, (u) is given as"

1

exp( —PE,y), for T ( m

n(u) = pm (I + y) (2 + y ') exp( —PE,y), for T » m,
3

(5)

and

(@(z t)@(0,0) ) = @Oexp[ 2n, (—z'+u02t')'i']

and

(7)

(cos[ —,'g@(z, t)] cosf —,'gy(0, 0)])

exp( —PE,y), for T ( m
n, v

IPm(1+y) exp( —PE, y), for T » m (6)

for the Q system and the sG system, respectively,
where E, is the (temperature-independent) soliton
energy, m is the (temperature-dependent) renormal-
ized mass of phonon, '2 p = T ' and y = (1 —vz) 'i'.
Hereafter we take k~ =h =1 for simplicity.

In Eqs. (3) and (4) we have neglected the pure
phonon terms which are much smaller than the soli-
ton term at least for T & —,E,.

Both Eqs. (3) and (4) are well approximated by4'"

I

which are directly accessible to the neutron scattering
and/or the x-ray scattering experiment.

In the low-temperature region (T & 5 K), the
planar spin antiferromagnetic systems like TMMC in
a magnetic field is mapped to the sine-Gordon sys-
tem. Therefore the transverse spin-correlation
function in the planar spin antiferromagnet in a mag-
netic field is described by Eqs. (8) and (12). In the
case of TMMC, both q and ~ dependence of the
spin-correlation functions have been studied recently
by neutron scattering experiments. '4 ' It appears
that Eq. (12) describes both q and tu dependences of
the spin-correlation function quite well. '

A quite similar expression applies also for the long-
itudinal spin-correlation function of the Ising-like an-
tiferromagnetic chain. described by the Hamiltoni-
an ""

0 = 2J X [a„*a„'~)+ e(a„"ax+,+ arar+, )], (13)

exp [ 4n, (z—' + u't') ' '], (8)

where n, is the total soliton density

n, = J)
P n, (u)~ dp

2m
'

and vo is the thermal soliton velocity

goo

uo ——— dpun, (u) n,
m'

1/2

(10)
rr13Eg

The Fourier transforms of Eqs. (7) and (8) are
then given by

where o-„ is the Pauli spin operator attached at the
site n. In this'system the soliton is a domain wall

between two distinct antiferromagnetic ground
states. " For small ~ the soliton energy is given by"

E,(p) =J[I +2ecos(2ap)] (14)

-PE, (p)=exp i x — —e '
~x —ut~, (15)

a ~-~/~ 2m

where x = ma, E,(p) is given by Eq. (14), and

where p is the soliton momentum and a is the lattice
constant, The longitudinal spin-correlation function
of this system is again given by'

(a„'(t)a„*~ (0))

u= E, (p) = —4eaJsin(2ap)8
clp

(16)

and

([cos(—'g@),cos( —'gP) ])(~,q)

2 -3/2

q + —+(4n, )'m 8' ns 2 QJ

m &0 llo
(12)

is the soliton velocity. Equation (15) is approximated
again by

(a'(x, t) a*(0,0) ) = exp'i x —2n, (x'+ u20—t')'t'
Q

(17)
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with

f e/a pE (p)
n, = dpe ' =(2a) 'e ajlo(2PeJ) (18)

2m ~- /'

and

thermal velocity of the soliton but rather like the Fer-
mi velocity of the soliton gas.

III. EFFECTS OF SOLITON DAMPING

uo = 10 '
(2Pe J) sinh(2PeJ) (19)

where 10(z) is the modified Bessel function. The
Fourier transform of Eq. (17) is again

S((uq) = *
q ——+ —" +(2n )'

Vo ,
a vo

—3/2

(20)

which should be valid for ~q
—m/a

~
&& m/a.

Finally the correlation function for the displace-
ment fields in the Su, Schrieffer, Heeger (SSH)
model6 for the trans-polyacetylene is given by'

%e have described so far the dynamical correlation
functions sensitive to the topological order in the lim-
it when the soliton behaves like a free particle. In
this limit the dynamical correlation function takes the
simple general form given by Eqs. (11) or (12).

In actual physical systems the soliton can scatter
each other or can be scattered by impurities or de-
fects on the linear chain. %e shall consider here
these effects phenomenologically. For this purpose
we shall consider first the displacement of the $ field
in the sine-Gordon system [Eq. (2)]. 1n the limit of
the ideal gas approximation, we obtain".

([@(zt) —y(0 0)]') =2n, (z' +uozt')'i' (22)

(u(z, t) u(0, 0) ) = uoz exp i z —2n, (—zz+ uot )'
Q

(21)

where the n, is the total soliton density and vo is the
average soliton velocity. However, in this last exarn-
ple the soliton energy E, ( —0.5 eV) is so large com-
pared with the room temperature that, except in the
extremely high-temperature region, the solitons are
not thermally excited but rather introduced by doping
for example. In this case vo is then no longer the

where n, and uo have been defined in Eqs. (9) and
(10). The squared displacement $ is proportional to
the soliton number passing through the line connect-
ing two points (z, t) and (0,0) in the space-time
plane. This agrees with the result by Gunther and
Imry' in the same limit. In the presence of the soli-
ton damping (i.e., a soliton can be scattered by im-
purities or other solitons) the soliton velocity is no
longer constant of motion. If we assume that the
velocity correlation is lost after a time 7, due to
scattering, we obtain

~2 tt pt

, J u(t)dt =uz dt ' dt e ' =u F(t, r) =2u r[~t~ —7(1 —e ~'~i')]1JO 2 (23)

Then Eq. (23) implies in the presence of the soli-
ton damping Eq. (22) is replaced by

([4(., t) —$(0, 0)]') =2n, [z'+uzF(t, T)]«z

[

diffusive in this limit. Therefore Eq. (23) interpo-
lates two known limits nicely.

Corresponding expressions for (P(z, t)@(0,0) )
and (cos[

z g$(z, t)] cos[ —g@(0,0)]) in the pres-

ence of the soliton damping are given by

(4(z, t)@(0,0)) =pozexp[ —2n, [z'+uozF(t, r)]' ']

In the limit ~t~ &«Eq. (24) reduces to Eq. (22).
On the other hand in the limit ~t ~ && r, Eq. (25)
simplifies as

and

(cos[ ,
'

g P(z, t) ] cos[ ——,

'
g@(0,0) ] )

(26)

([$(z,t) —$(0 0)]') =2n, (z'+2D(t[)'' , exp[ —4n, [zz+uzoF(t, r)]' z j, (27)

(25)

with D = no~ the soliton diffusion constant, which

agrees again with Gunther and Imry' and Buttiker
and Landauer" in that the soliton motion becomes

respectively. Equations (26) and (27) are our funda-
mental results.

As is easily seen the equal-time correlation func-
tion is unaffected by the soliton, damping. In the fol-
lowing we shall study the Fourier transform of Eq. (26).
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IV. DYNAMICAL CORRELATION FUNCTIONS

In the presence of the soliton damping, the dynam-
ical correlation functions are given as Fourier
transform of Eq. (26) or Eq. '(27). Since both func-
tions have the same z and t dependence we shall limit
our consideration to Eq. (26) in the following:

where E =2n, (or 4n, ) and

F(t, r) =2r[lt
I

—r(l —e I&It')] (29)

Since the general expression for S(&o,q) is rather
complicated, we shall confine ourselves in two limit-
ing cases; El &) 1 and EI (& 1 where I = up 7 the
soliton mean free path.

f ooS(,q) = J J dtdze' " ""

x exp[ K[z'—+ uo'F(t, r) ]'t' }

(28)

A. EI &) 1

In this limit we can expand Eq. (28) as

S(o&,q) =So(o&,q) +St(o&,q) +
where

(30)

' 2 —3/2

So(cu, q) = Jl dtdze&t«' ""exp[—K(z'+vot')'t'] = E +q'+-
p

Up

leap

(31)

and

S~(~,q) = —K( '
I dtdz(vo!t!)3(z +u't ) ' 2e' ' ~ exp[ K(—z +v t )' ]

1

6

=2(uol) 'K Jt dHRe (K'+q')' cosh8—
4'

= —,(v, ()-'K K'+q'+-
lJp

'2' -3
E +q2 2 11 CV

4
Vp

2 -1/2

3(Kz +q') —2 — K'+ q'+—

* 2' -1/2

x tanh —A +q +
Up Up

(32)

Equation (32) gives the lowest-order correction to the
ideal gas limit in I . For small co, the correction
term may be approximated by

12' -2

St(«&,q) =-'(uol) 'K E'+q'+-
Vp

(33)

within the same approximation S(o&,q) is given by

~ 2 1/2 1 —3

S(~,q)
2mK Kz+qp+ o& — 4

l '

vo, vo 9~

I

damping may appear somewhat surprising. However,
since the soliton is the agent which breaks the topo-
logical order of the system, it is natural that the pres-
ence of the soliton damping in general encourages
the topological order.

However, it should be emphasized again that the
correlation length associated with the equal-time
correlation function is not affected by the soliton
damping and given by go = K . This prediction may
be tested by introducing impurities in the quasi-one-
dimensional magnetic systems for example.

8. El (& 1

which tells that in the limit o& =0 (i.e., the elastic
scattering) the correlation length is increased as

-1/2

g= E2 — (2
9m

(34)

(35)

In this limit the soliton motion is basically dif-
fusive. We can now expand S(o&,q) as

S(&o,q) =So(o&,q) +So (o&,q) +

SD(~,q) = Jl J"dtdze'« -"'~

(36)

due to the soliton damping. The fact that the correla-
tion length becomes longer in the presence of soliton x exp[ —K (z2+2D! t!) ' ] (37)
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and
Woo f

SD(o),q) =KDr J J dtdz(z +2D Jt J) ' (1 —e J'J ')e' t* ~' exp[ K(z—+2DJt J)' ] (38)

The z integrals of Eqs. (37) and (38) are done easily and we obtain

S,(,q) =2K(K'+q') '' -dt(2DJtJ)'' -"K,( JtJ'') (39)

and

So((o,q) =2KDr l dt(1 —e J'J ')e ' 'Ko(nJtJ' ') (40)

where

n =(2D)'i'(q'+K')'i' (41)

and Kt(z) and Ko(z) are the modified Bessel functions. Finally the t integrals are done for cu » n2 and co « n'
as

SD((»,q) =

&2 &4'

8KD '
1 —3x2 —+3x5x2 —,for ~&&a. ,

0J QJ 2

(K'+ q')' A A
t

1 2
~

2KD J 4co n
ln

2
+0 —,for ~&&o,',

co yn
J

co

(42)

(43)

4

So(ro, q) = 1 —2' +3 x 2"
(K'+ q') n' A

t

T OJ',+Kr'(2D)[1+(r&o)z] 'ln ~, , for cu && n'
1+(res)'

(44)

2

SD(t», q) = —K — 1+in y, for ~ && n',
2 ru ~ 4'

J

(45)

where y'=1, 781, . . . . %e may interpolate Eqs.
(42) and (43) by

2 —1

I

which can be also measured by the nuclear magnetic
resonance technique. ' Substituting Eq. (28) into Eq.
(48), we obtain

SD(co,q) = 8KD ' (K +q')'+24
i

and similarly

(46)
S(t») = JI dt exp[ —it»t —Kuo[F(t, r)]'t' J (49)

SD(o),q) =4K(K'+q')7 (K'+q')'+8-
D

12' —1

(47)
Equation (46) indicates that the dynamical correla-

tion function in the diffusion limit is completely dif-
ferent from that in the ideal gas limit, although the
equal-time correlation length is the same in these
limits and independent of the soliton damping. In
particular, Eq. (46) agrees with the phenomenological
analysis by Imada' in the large damping limit.

Another quantity of interest is the local correlation
function which is defined by

S(o)) =2K vo' K~+-
1)p

2 -1

~ 2l

x 1+—KK —3—1 2 o)

3l

leap

v()
J

(so)

Again the general expression is difficult to analyze.
However, in two limiting cases S(cu) has rather sim-

ple expressions. , For Kl » 1, we obtain

s(cu) = Jl
q s(a), q)2' (48)

On the other hand in the diffusion limit Kl « 1 we
have
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2 (1 —15y~+945y4) +2r(1 —3y2+105y4), for y( = rv/DK2) && 1

S( )= DK'

~ '(Jmy 'iz y—'+ M—my '')+ rM—~y '', fory»1
(51)

(52)

which may be interpolated as

z -3/4 z -ij4
S(co) =2KD ' K4+20 — +2rK K4+12-

D D
(53)

V. CONCLUDING REMARKS

%e have studied possible effects of the soliton damping on the dynamical correlation functions within a
phenomenological model. e have shown that the static correlation length is unaffected by the soliton damping.
On the other hand, the structure of the dynamical correlation functions will be modified strongly, which should
be accessible to the neutron scattering experiments.

Note added in proof. Recently Biittiker" has shown that in the diffusion limit Eq. (25) is given exactly by

z i/z
4Dot

exp +z erf, i, for i & 0
—Z' z

4D, r 4D, r 'i'

with Do = (rr/2) D = r(/3E, ) '. Therefore, Eq. (25) gives the correct asymptotic behaviors for z' » 4Dor and for
z' « 4Dot. Furthermore, our results [Eqs. (24) and (25)l appear to differ from Gunther and Imry'o in that we

find diffusive behavior for t » v and free-particle-like behavior for t (( v. These agree completely with

Buttiker and Landauer. " I thank Dr. Markus Buttiker for helpful correspondence.
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